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Abstract
In neuroscience, simulating electric current in the head of a

subject is of main interest for both electroencephalography (EEG)
and transcranial direct current stimulation (tDCS). EEG is used to
reconstruct the electric activity of the brain based on themeasured
electric potential on the scalp. On the other hand, tDCS consists in
injecting a small electric current through the head of a subject to
modulate the activity of a specific brain region.

Such simulations rely heavily on the electric conductivity of the
biological tissues composing the head. Unfortunately, there is cur-
rently no effective and non-invasive method to measure it accu-
rately for each individual. Consequently, researchers and practi-
tioners have to set arbitrary values chosen from the literature, de-
spite the fact that this property has been shown to varywidely both
inter- and intra-subject. The simulations also depend on the geom-
etry of the tissues and on how they are modelled.

In this thesis, we studied the influence of different skull models
and of the electrical conductivity of the tissues on the EEG forward
problem. We also analysed the effect of the uncertainty in the con-
ductivity on the electric field induced in different regions of the
brain by several stimulating electrode montages in tDCS.

To support these experiments, we developed a python package
named Shamowhich provides the user with tools to performmesh
generation, current simulation, surrogate modelling and sensitiv-
ity and uncertainty analyses with a user-friendly API. It interfaces
with industrial grade software to perform the computationally in-
tensive tasks and is easy to use on distributed architectures.

The present work describes both Shamo and the results that it
helped to obtain for the different experiments.
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Résumé
Dans le domaine des neurosciences, la simulation du courant

électrique dans la tête d’un sujet est d’un intérêt majeur, tant pour
l’électroencéphalographie (EEG) que pour la stimulation transcrâ-
nienne à courant continu (tDCS). L’EEGest utilisée pour reconstruire
l’activité électrique du cerveau à partir du potentiel électrique me-
suré sur le cuir chevelu. D’autre part, la tDCS consiste à injecter un
petit courant électrique dans la tête d’un sujet pour moduler l’acti-
vité d’une région spécifique du cerveau.

De telles simulations dépendent de la conductivité électrique
des tissus biologiques composant la tête. Malheureusement, il
n’existe actuellement aucuneméthode efficace et non invasive pour
la mesurer avec précision pour chaque individu. Par conséquent,
les chercheurs et les praticiens doivent fixer des valeurs arbitraires
choisies dans la littérature, malgré le fait qu’il a été démontré que
cette propriété varie considérablement entre les sujets et à l’inté-
rieur d’un même sujet. Les simulations dépendent également de la
géométrie des tissus et de la façon dont ils sont modélisés.

Dans cette thèse, nous avons étudié l’influence de différentsmo-
dèles de crâne et de la conductivité électrique des tissus sur le pro-
blème direct de l’EEG. Nous avons également analysé l’effet de la
conductivité sur le champélectrique induit dans différentes régions
du cerveau par plusieurs montages d’électrodes en tDCS.

Pour soutenir ces expériences, nous avons développé un pa-
ckage python nommé Shamo qui fournit à l’utilisateur des outils
pour effectuer la génération de maillage, la simulation de courant,
la génération de modèles de substitution et les analyses de sensi-
bilité et d’incertitude avec une API simple. Il s’interface avec des
logiciels de qualité industrielle pour effectuer les tâches de calcul
intensif et est facile à utiliser sur des architectures distribuées.

Ce travail décrit à la fois Shamo et les résultats que cet outil a
permis d’obtenir pour les différentes expériences.

ii



Table of Contents

Table of Contents —————————————————————————————— iii

List of Symbols———————————————————————————————— vii

List of Abbreviations———————————————————————————— xi

1. Introduction ——————————————————————————————— 1

2. Neuroscience——————————————————————————————— 13
2.1. Brain activity 14
2.2. Electroencephalography 21
2.3. Transcranial direct current stimulation 27
2.4. Head tissue segmentation 31
2.5. Cortex parcellation 36

3. Modelling ————————————————————————————————— 39
3.1. Electroquasistatic head model 40
3.2. Head tissues electric conductivity 53
3.3. Sensitivity and uncertainty analysis 60
3.4. Surrogate modelling 67

iii



4. Shamo ——————————————————————————————————— 79
4.1. Mesh generation 80
4.2. Electrodes 84
4.3. Tissues properties 90

5. EEG applications ———————————————————————————— 97
5.1. Dataset 98
5.2. Finite element models 99
5.3. Electrode placement 101
5.4. Electric conductivity of the tissues 101
5.5. Leadfield matrices 102
5.6. Uncertainty quantification and sensitivity analysis 104
5.7. Discussion 107
5.8. Conclusion 109

6. TDCS applications ———————————————————————————111
6.1. Preliminary results 112
6.2. tDCS experimental setups 114
6.3. Dataset 115
6.4. Finite element models 116
6.5. Electrode placement 117
6.6. Electric conductivity of the tissues 121
6.7. Regions of interest 122
6.8. Simulation results 123
6.9. Models comparison 125
6.10. Induced transmembrane potential 130
6.11.Discussion 132
6.12.Conclusion 135

7. Discussion—————————————————————————————————137

8. Conclusion and perspectives ————————————————————145

iv



Appendix
A. Paper 1 ———————————————————————————————————151
A.1. Introduction 152
A.2. Materials and methods 155
A.3. Applications 167
A.4. Discussion 174
A.5. Conclusion 176
A.6. Data availability 177
A.7. Information sharing 177
A.8. Acknowledgements 178

B. Paper 2 ———————————————————————————————————179
B.1. Introduction 181
B.2. Materials and methods 183
B.3. Results 198
B.4. Discussion 204
B.5. Conclusion 206
B.6. Acknowledgements 207

C. Shamo tDCS————————————————————————————————209
C.1. Simulation results 210
C.2. Models comparison 222

List of Figures ————————————————————————————————227

List of Tables —————————————————————————————————233

Bibliography —————————————————————————————————235

v



vi



List of Symbols

Here are the notations used throughout the thesis. Due to the
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all the constants are denoted with an underline

¯
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Xm,1 . . . Xm,n
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i The electrical current A
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1.
Introduction

The brain, being one of the most complex organs in the human
body, has been studied for centuries to unravel itsmysteries. Along
the way, many powerful techniques have been developed to help
better understand its inner mechanisms or even to influence its
behaviour.

For instance, electroencephalography (EEG) is one of the oldest
and easiest available methods to record the electric activity of the
brain, with the first reported recording dating from 1924 [Tudor
et al., 2005]. By placing electrodes on the scalp of a subject, re-
searchers andpractitioners acquire high frequency signals that can
be analysed to reconstruct the actual brain activity that induced it.
This process, referred to as source reconstruction, is far from triv-
ial and relies onmultiple simulations of the propagation of electric
current in the head [Weinstein et al., 2000; Grech et al., 2008; Wen-
del et al., 2009; Darbas and Lohrengel, 2018; Zorzos et al., 2021].

On the other end of the spectrum, transcranial direct current
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Introduction

stimulation (tDCS) is a neuromodulation method, meaning it alters
the behaviour of the brain. It consists in injecting a small electric
current through the head of a subject. In this case, simulations are
performed to gain insights on the effect of the stimulation and as-
sess inwhich regions the current actually flows [Sadleir et al., 2010;
Bikson et al., 2012; Thair et al., 2017; Lee et al., 2021].

In these two applications, modelling provides additional inner
information about this otherwise closed black box that is the brain.
Hence, techniques such as boundary element methods (BEM) and fi-
nite element methods (FEM) have been applied for decades to com-
pute the electric field and current density throughout biological tis-
sues [Mosher et al., 1999; Fuchs et al., 2002; Schimpf, 2007; Hallez
et al., 2007]. These methods mainly depend on two important fac-
tors: the head geometry and the physical properties of the tissues.

First, the shape of thehead and its different compartments serves
as a support for the simulation. Each individual is different on a
macroscopic scale, and so is its head. We do not have the same
brain, nor the same skull or muscles. While BEM can capture these
differences, it is limited by the assumptions that the tissues are con-
tinuous and isotropic,meaning that one tissue class is boundedby a
single surface and that its properties are the same in the whole vol-
ume. This led to the use of FEM, which can represent the complex
geometry of fragmented anisotropic tissues and allows the creation
of highly realistic models.

Unfortunately, there is no easy and non-invasive way to accu-
rately know the exact geometry of the different tissues composing
the head. Nevertheless, with the advent of computed tomography
(CT) and magnetic resonance imaging (MRI), it is now possible to
approximate the shape of these tissues using segmentation tech-
niques. However, most of the popular segmentation algorithms
are limited to the five main tissue classes (i.e., white matter, gray
matter, cerebrospinal fluid, skull and soft tissues), even though re-
cently publishedmethods focus on increasing the number of tissue
types that can automatically be differentiated [Puonti et al., 2020;
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Taberna et al., 2021].
Since it is of main interest for the simulations, the effect of dif-

ferent geometries, andmoreprecisely of the skullmodel, have been
studied [Sadleir and Argibay, 2007; Dannhauer et al., 2011; Lanfer
et al., 2012; Montes-Restrepo et al., 2014]. Indeed, the bone acts
as an electrical insulator due to its low electrical conductivity com-
pared to its adjacent tissues. While it is usuallymodelled as a single
compartment, it is now more and more recognized that differenti-
ating the soft and compact bone increases the accuracy.

Once the geometry of the tissues is determined, the physical
properties of the tissues, and more precisely their electric conduc-
tivity, must still be specified to properly simulate the electric cur-
rent. During the past century, the electric properties of the biolog-
ical tissues have been measured in different environments (i.e., in-
vivo, ex-vivo and in-vitro) and conditions (temperature, age, health
status, current frequency…)using several acquisitionmethods [Burger
andMilaan, 1943; Geddes and Baker, 1967; Gabriel et al., 1996b,c,a;
Gabriel, 1996; Latikka et al., 2001; Goncalves et al., 2003]. From
these numerous measurements, the electric conductivity of the tis-
sues has been shown to vary widely, both inter- and intra- subjects.
Recently, the review from McCann et al. [2019] provided probabil-
ity distributions of the conductivity of most of the tissues compos-
ing the human head. Still, the common practice when performing
simulations is to arbitrarily set fixed values for these properties
based on the literature.

Due to the variability in the published values, the influence of
the chosen parameters and geometric models on the results of the
simulations have been studied for the past decades and have been
shown to induce erroneous electric field and potential estimations
[Haueisen et al., 1995, 1997; Vallaghe and Clerc, 2009; Jochmann
et al., 2011;Montes-Restrepo et al., 2014; Cho et al., 2015; AkalinAcar
and Makeig, 2013; Wolters et al., 2006; Vorwerk et al., 2019a; Sat-
urnino et al., 2019]. For instance, errors in the localisation of the
reconstructed dipoles of up to 20mm have been reported for basal
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brain locations [Lanfer et al., 2012; Akalin Acar and Makeig, 2013].
Indeed, inaccuracies in the physical parameters directly result in
errors in the forwardmodels, and thus in the reconstructed sources
localization or current flow. Similarly, the uncertainty in the con-
ductivity parameters have been hypothesised as an explanation
to the high variability in the responses to tDCS experiments [Sat-
urnino et al., 2019].

These results are the spark that triggered the present thesis. But
before stating the questions and problems we decided to tackle,
there is an important topic to discuss in order to give some con-
text about neuroscience and research in general. When Ioanni-
dis published his groundbreaking paper entitled “Why most pub-
lished research findings are false” [Ioannidis, 2005] and the term
“reproducibility crisis” was coined, thewhole research community
started working toward better reproducibility. Many initiatives
arose to increase replicability, improve data sharing and, in all
senses, make better science.

This crisis highly affected, and is still affecting today, the neu-
roscience field. Considering this brief introduction to one of the
biggest open issues in research, it was clear for us that the tradi-
tional simulation method relying on arbitrarily set physical prop-
erties was too error-prone and yielded toomuch uncertainty about
the results and conclusions drawn from it. As stated above, many
researchers studied the influence of these parameters and, while
their results are of practical interest for future developments, there
was no available tool to include these processes in traditional EEG
or tDCS protocols. Indeed, most of these published papers were
focusing on the results obtained for a single subject or a specific
group, not on publishing a toolbox to achieve similar results. Con-
sequently, their findingswereusually confined to their specificmod-
els. Thus, wedecided to develop a tool thatwould allow researchers
and practitioners to include uncertainty analysis and sensitivity
analysis in their experimental design. It could help the commu-
nity to better understand the inter-individuals variability for tDCS
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applications and yield useful insights about the confidence in EEG
source reconstruction.

This was the starting point of the project and that is what I spent
the last four years working on.

. Thesis plan
Considering the central role of the electric conductivity of the

tissues in the electric current flow simulations, the lack of accurate
non-invasive measurement technique of this property currently
forces researchers and practitioners to make assumptions on their
values. Unfortunately, the variability of these parameters have
been shown to yield considerable variations in the reconstructed
EEG sources and the computed current density for tDCS.

While numerous published studies performeduncertainty quan-
tification (UQ) and sensitivity analysis (SA) on these exact simula-
tions, they usually focused on a obtaining results, not on making
the process of obtaining themeasier for future analyses. Moreover,
performing UQ and SA on such computationally expensive simula-
tions is complex, both in terms of the time needed to obtain the
values of interest (this time depends on several parameters such
as the available hardware to run the process, the number of simu-
lations required or the model complexity, just to name a few) and
of the number of methods involved in the process. Still, these tech-
niques yield valuable insights and should be part of any analysis
with uncertain inputs.

To facilitate the adoption of thesemethods in the context of EEG
and tDCS, we decided to develop a Python package called Shamo,
which, in contrast to other EEG/tDCS simulation tools such as SimNIBS
andROAST, is built from the ground up to support UQ and SA and to
provide a unified application programming interface (API) for anal-
yses that require a single simulation or more, thus allowing people

5



Introduction

to use the same tool and syntax for either a single electric current
simulation in biological tissues, or a whole sensitivity analysis on
such simulations.

In the present work, I demonstrate how to accuratelymodel the
head, account for the uncertainty in the parameters andderive sen-
sitivity metrics with regard to these said parameters through the
development of Shamo. The thesis is divided in three main parts.

First, the introduction gives a theoretical overview of the cov-
ered topics. Since Shamo is aimed toward neuroscientists but built
by an engineer, it starts with a primer on neuroscience in Chap-
ter 2 where the basics of neuroanatomy and neurophysiology are
presented (See Section 2.1). Then, I introduce electroencephalogra-
phy (Section 2.2) and transcranial direct current stimulation (Sec-
tion 2.3), which are at the heart of this thesis. I finish with a short
explanation of two ever evolving topics: head tissue segmentation
and cortex parcellation in Sections 2.4 and 2.5 respectively. The
process of segmenting the different tissues composing the head is
of main interest for the simulation since it provides the geometric
information required to build the head models. Due to the experi-
ence and time needed tomanually delineate the tissues from struc-
tural images, automated tools have been developed and are readily
available in toolboxes (e.g., “unified segmentation” in SPM, CAT12,
freesurfer, FSL...) [Ashburner and Friston, 2005; Perdue and Dia-
mond, 2014; Huang and Parra, 2015; Mahmood et al., 2015; Huang
et al., 2019; Puonti et al., 2020; Taberna et al., 2021]. Subsequently,
most of the available simulation tools dedicated to EEG and tDCS
have built their model generation method upon a specific auto-
mated segmentation algorithm. Indeed, developing a unique pipe-
line that performs both the segmentation and the model creation
facilitates the process. Still, this comes at the cost of limiting the set
of tissues that can be included in the geometry and, more impor-
tantly, it prevents the user from studying heads other than those of
healthy adults, withwhich the automated segmentation algorithms
only work. It also forces the user to work with potentially heavy
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dependencies that might not be portable, or might not be free and
open source. Another aspect of brain segmentation is gray matter
parcellation, which provides practical methods to extract specific
brain regions based on their function or structure. These regions
are used as priors for analysis or as targets for stimulations. In this
thesis, parcellation was mainly used in the context of tDCS, where
certain brain areas are studied and stimulated.

After that, Chapter 3 focuses on the modelling aspects of the
project. It opens with an introduction to the methods used to actu-
ally simulate the current flow in conductivematerials in Section 3.1
where I describe how, under the quasi-static conditions, Maxwell’s
equations can lead to the definition of the generalised Poisson dif-
ferential equation. Then, I explain how to solve this equation for
a complex geometry using the finite element method, which is the
most popular approach in simulation tools dedicated to EEG/tDCS.
Afterward, I present the physical property we are most interested
in: the electric conductivity (Section 3.2). In this section, I discuss
the high variability of that property, as well as some methods used
to model its anisotropy in certain tissues. Next, I introduce the
main concepts of uncertainty quantification (UQ) and sensitivity
analysis (SA) in Section 3.3. I also define the first and total order
Sobol indices that are the sensitivity measurements used through-
out the applications. Indeed, due to their ease of interpretation,
these indices are widely used in the literature [Vallaghe and Clerc,
2009; Schmidt et al., 2015; Iooss and Lemaître, 2015; Ye and Hill,
2017; Saturnino et al., 2019; Razavi et al., 2021]. Still, because of
theirmathematical definitions, they require a tremendous amount
of model evaluations in order to be accurately computed. To solve
this problem, I discuss the commonly used surrogate modelling
approach in Section 3.4. This method aims at building a simpler
model that can be evaluated in place of the actual simulations. The
technique I discuss relies on Gaussian process regressors.

With all the required theory in hand, I then present Shamo, be-
ginning by an overview of some of its main features without dis-
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cussing their respective implementation in Chapter 4. Following
the same steps as a user of the package, I show how the initial ge-
ometry of the models is built directly from an arbitrary segmenta-
tion (Section 4.1), thusmaking the tool agnostic of the segmentation
method. In the process, I show how this approach also removes
the need for a surface generation step and, thus, allows for more
complex geometries. Thanks to these two specificities, I present
how this approach easily generalises to other organic geometries
and scales up to the whole body. Then, in Section 4.2, I quickly de-
scribe the different electrode models and compare them. Finally,
in Section 4.3, I present how Shamo can account for the anisotropy
of the tissues and discuss how this feature, if combined with accu-
rate conductivity measurement techniques, could further simplify
the model generation part by almost removing the need for seg-
menting the tissues initially or, at least, reducing the number of
compartments included in the model.

Afterwards, I build upon these features to demonstrate the use
of the tool in the two main applications it was built for: EEG in
Chapter 5 and tDCS in Chapter 6. In the EEG application which is
part of our first published article (See Appendix A), we study the in-
fluence of the conductivity parameters on the computed leadfield
matrix while comparing different skull models. On the other hand,
the application focusing on tDCS is the core of a manuscript cur-
rently in preparation (See Appendix B) and evaluates the electric
field measured in different regions of interest and induced by six
stimulation electrode montages in order to find an explanation to
the high inter-subject variability reported in the literature.

Finally, in Chapter 7, I discuss the added value of Shamo, po-
tential further investigations and features that could be added to
extend the field of applications of the tool. Then, in Chapter 8, I
complete the thesis with an overall conclusion.

The pipeline on the next page presents how the different pro-
cesses interact with each other in the workflow implemented in
Shamo (below thedashed line)with the corresponding sectionswhere
they are discussed.
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ROIs

Atlas

Parcellation

Voxel based
– SPM, FSL...
Surface based
– FreeSurfer

See 2.5

Electrodes
Electrodes specs.

Position
– International
system
Shape
– Point, disk, rect-
angle

See 2.2, 2.3

Tissues

Structural MRI

Segmentation

Voxel based
– SPM, FSL...
Surface based
– FreeSurfer

See 2.4

Physical properties

DWI

CTI

DTI
– Dipy, FSL...
DTI to CTI
– Wang-constraint,
volume fraction...

Distributions

See 3.2

Model
Mesh generation

Labels to mesh
– CGAL
Groups definition
– Gmsh

See 4.1

Electrode addition

Nodes extraction
– Gmsh
Groups definition
– Gmsh

See 4.2

Tensor embedding

Elems. extraction
– Gmsh
View definition
– Gmsh

See 4.3

Surrogatemodel
Space sampling

QR Halton seq.
– Chaospy

Model fitting

GPR
– Scikit-learn

See 3.4

Fields estimation
Compute

Problem def.
– GetDP
Solver
– GMRES
Preconditioner
– ILU

See 3.1

Data extraction

View to NII
– Gmsh, Nibabel
Masking
– Numpy, Nibabel

Sobol indices
Sensitivity analysis

QR Sobol seq.
– SALib
GPR prediction
– Scikit-learn
Sobol indices cal-
culation
– SALib

See 3.3



Introduction

. Scientific contributions
The main original contributions of the thesis are:
— A general methodology to perform uncertainty and sensitiv-

ity analyses on computationally expensive simulation-based
models. Thisworkflow is general enough to be applied to dif-
ferent application fields and study model parameters rang-
ing from physical properties to experimental design settings
such as electrode placement. In thismanuscript and the sub-
sequent papers, it is successfully applied to both EEG and
tDCS. This makes it more versatile than other similar tools
that also propose toolboxes to perform UQ/SA. For instance,
SimNIBS [Saturnino et al., 2019] is dedicated to stimulation
simulations (tDCS/TMS).

— Theuse ofGaussianprocess regressors for the surrogatemod-
elling step, which have the added advantages over the more
traditional generalised polynomial chaos approach that they
allow to easily compute confidence metrics about the esti-
mated values [Owen et al., 2017] and are more flexible.

— The first tDCS simulation study investigating the three main
sources of variability, namely head geometry, tissues prop-
erties and electrode placement onmultiple experiments (dif-
ferent electrode montages targeting different regions of in-
terest) using a single modelling approach.

— The development of a tool that is agnostic of the segmenta-
tion pipeline by design. This makes it more flexible than the
competing software [Ziegler et al., 2014; Huang and Parra,
2015; Thielscher et al., 2015; Nielsen et al., 2018; Huang et al.,
2019] that enforce a specific number and configuration of
tissues. This feature allows Shamo to be used for a wider
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range of models such as, but not limited to, non-standard
heads (i.e., other than healthy adults) and people with im-
plants, prosthetics, or deformities.

— Froma technological point of view, the reliance on a reduced
set of dependencies, chosen based on the following criteria:
they are all alreadypublished andvalidated, lightweight, work
on most of the commonly used operating systems (both for
personal computers and larger infrastructures such as HPC)
and published under open source licenses. Thanks to these
four conditions, Shamo has been successfully containerised,
thus improving the portability and reproducibility of the re-
sults obtainedwith it. Hence, compared to SimNIBS andROAST
that both, at some point in their pipelines, rely either on SPM
[Ashburner and Friston, 2005] or on heavy and non-portable
dependencies such as Freesurfer [Destrieux et al., 2010; Li
et al., 2013] or FSL [Jenkinson et al., 2012] (most of which
are required only for the segmentation), Shamo can easily be
ported onto HPC or cloud computing infrastructures. This is
what allowed us to tackle a project as computationally ex-
pensive as the one described in Chapter 6.

These contributions have led to the following journal articles:
1. M. Grignard, C. Geuzaine, and C. Phillips. Shamo: A Tool for

Electromagnetic Modeling, Simulation and Sensitivity Anal-
ysis of the Head, Neuroinformatics, Mar. 2022. ISSN 1559-
0089. url: https://doi.org/10.1007/s12021-022-09574-7.
(See Apendix A).

2. M. Grignard, C. Geuzaine, M. Hansenne, S. Majerus, and C.
Phillips. Why tDCS models cannot be trusted yet? — A sim-
ulation study, preprint. url: https://hdl.handle.net/
2268/294662 (See Appendix B).

Part of this work has also been presented in the following inter-
national conferences:
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1. M. Grignard, C. Geuzaine, and C. Phillips. Global sensitiv-
ity analysis of the EEG forward problem. Poster session pre-
sented at OHBM 2020, Online. url: https://hdl.handle.
net/2268/250120.

2. M.Grignard, C. Geuzaine, andC. Phillips. Shamov1.0 - Stochas-
tic electromagnetic head modelling made easy. Poster ses-
sion presented at OHBM 2021, Online. url: https://hdl.
handle.net/2268/263309.

3. M. Grignard, C. Geuzaine, and C. Phillips. Shamo: A tool for
electromagnetic modeling of the head. Oral presentation at
ACOMEN 2022, Liège, Belgium. url: https://hdl.handle.
net/2268/294695.

The source code of Shamo is available on Github 1 as well as the
documentation 2 and tutorials 3.

1. https://github.com/CyclotronResearchCentre/shamo
2. https://cyclotronresearchcentre.github.io/shamo/index.html
3. https://github.com/CyclotronResearchCentre/shamo-tutorials
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2.
Neuroscience

Electroencephalography and transcranial direct current stim-
ulation are the two applications that Shamo is currently aimed at.
Considering that theyboth rely on the biological and electricalmech-
anisms underlying brain activity, it is important to first introduce
how the brain actually works. Then, based on this primer on neu-
rophysiology, I give an overview of both EEG and tDCS.

In addition, I discuss the techniques used to segment structural
images into multiple tissue classes and to extract specific cortex re-
gions. Indeed, thesemethods are part of either themodel definition
process or the analysis of the results.
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2.1. Brain activity
In this section, I first give an overview of the brain anatomy and

functioning to provide sufficient information for the reader to un-
derstand the upcomingmodelling chapter. Then, using a top-down
approach, I focus on the microscopic scale to discuss the mecha-
nisms of neurons and synapses.

2.1.1. Brain architecture
The brain is composed of three distinct parts: the cerebrum,

cerebellum and brainstem, as shown inFigure 2.1a [Snell, 2010;Mtui
et al., 2021].

The largest part, the cerebrum, is responsible for most higher
functions, fromsensory integration to emotion regulation and learn-
ing. It is further split into left and right hemispheres connected
together by the corpus callosum, which transmits information bidi-
rectionally. Even though the cerebrum looks symmetrical on a struc-
tural level, both hemispheres do not share all their functions.

The second part, located under the cerebrum, is called the cere-
bellum and is in charge of functions like balance and movement
coordination. The cerebellum is connected to the cerebrum and to
the spinal cord by the brainstem, which controls autonomic func-
tions. Among other things, it takes part in the regulation of the
sleep-wake cycle, and is in charge of respiration and cardiac aciv-
ity.

The whole brain as well as the spinal cord are surrounded by
cerebrospinal fluid (CSF). It is produced by the choroid plexus, lo-
cated inside cavities of the brain called ventricles that are depicted
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(a)

1

2

3

1 Cerebrum
2 Cerebellum
3 Brainstem

(b)

12

3

1 Lateral ventricles
2 Third ventricle
3 Fourth ventricle

Figure 2.1 (a) A sagittal view showing the different parts of the brain, and
(b) the same viewwith visible ventricles.

in Figure 2.1b. This fluid helps to absorb shocks and prevents in-
juries.

Frontal lobe
Temporal lobe
Parietal lobe
Occipital lobe

Figure 2.2 The functional lobes
presented on the left hemisphere.

The surface of the cere-
brum, the cortex, is folded in
order to increase its surface
area. The ridges are referred
to as gyri, while the fissures
are called sulci. Based on
these sulci, the hemispheres
have been divided into four dis-
tinct lobes: frontal, temporal,
parietal, and occipital (See Fig-
ure 2.2).

Located above and behind
the eyes, the frontal lobe is
responsible for emotions, per-
sonality, judgement, concen-
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tration, etc. It also contains Broca’s area which handles language
production and themotor strip controlling movements. The occip-
ital lobe, at the back of the brain, mainly handles vision. The tem-
poral lobe manages memory and hearing. It also shares language
interpretation with the parietal lobe through Wernicke’s area. Fi-
nally, the parietal lobe processes signals from different senses and
controls spatial perception. It also embeds the sensory strip, pro-
viding sense of touch and pain.

2.1.2. Neuron anatomy and functioning

1

2

3 4 5

6

7

Axon

1 Dendrites 2 Nucleus 3 Soma 4 Schwann cell
5 Node of Ranvier 6 Myelin sheath 7 Axon terminals

Figure 2.3 The anatomy of a neuron.

The cerebrumand cerebellumare respectively composed of around
16 billion and 70 billion neurons arranged in layers. Neurons are
composed of two main parts: the cell body and the axon (See Fig-
ure 2.3).

The cell body, called soma, contains the nucleus, but also themi-
tochondria and all the other common components of any cell. Its
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role is to keep the neuron functioning properly [Luengo-Sanchez
et al., 2015]. This part is responsible for the colour of the grey mat-
ter. The dendrites are short processes of the soma that transmit
impulses, also known as afferent signals, from other cells to the cell
body [Malmivuo andPlonsey, 1995]. Impulses are transferred from
the soma to other cells by a long nerve fibre, the axon. It may be
coveredwith a discontinuous insulating layer calledmyelin sheath.
The disjunctions of this coating are named nodes of Ranvier and
mark the separation between two Schwann cells. The axons com-
pose the white matter.

Synapse

(a) (b)

Figure 2.4 The anatomy of a synapse (a) at rest and (b) activated.

At its end, the axon splits into branches terminated by small
rounded swellings containing the neurotransmitter substance, the
synaptic vesicles or terminal buttons, that connect with other nerve
cells to form synapses.
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Impulses travel across synapses in only one direction, i.e. from
the presynaptic terminal to the postsynaptic terminal, thanks to the
anatomy of the synapse and to its biochemicalmechanism. Indeed,
between the two terminals lies a small gap of a few tens of nanome-
tres, the synaptic cleft, that no current actually crosses (See Fig-
ure 2.4a. The presynaptic terminal has to release chemical trans-
mitter to activate the postsynaptic terminal via its receptors, as pre-
sented in Figure 2.4b [Purves, 2004].

Cell membrane

Figure 2.5 The cell membrane
composed of two layers of
phosphoglycerides and a
macromolecular pore.

The nerve cells are enclosed
by a thin membrane mainly
constituted of fatty acids, the
phosphoglycerides.

Those molecules are com-
posed of a phosphoric acid at-
tracted by water or hydrophilic
and of glycerides repelled by
water or hydrophobic. These
opposed behaviours lead to the
formation of a double layer of
lipid with hydrophobic tails on

the inside when placed in water, which forms the structure of the
cell membrane (See Figure 2.5) [Thompson and Tillack, 1985].

Macromolecular pores in the membrane, the ionic channels, al-
low chloride (Cl–), sodium (Na+) and potassium (K+) ions to flow
through the membrane. These ions cause a difference of potential
between the inside and the outside, the trans-membrane potential
denoted by um = vin − vout [Bullock, 1959]. Its value is typically be-
tween −60 and −70mV and is regulated by Na+ and K+ ion pumps
inside the membrane.

This resting potential is described by the Goldman-Hodkin-Katz
(GHK) voltage equation [Reuss, 2008]. Under zero flux condition,

18



Brain activity

this equation provides the membrane voltage as a function of the
concentration of the permeant ions (Na+, K+ and CL–) and the per-
meabilities,

um = − ¯
RT

¯
F

ln
pNam

(in)

Na+ + pKm
(in)

K+ + pClm
(out)
Cl–

pNam
(out)

Na+ + pKm
(out)

K+ + pClm
(in)
Cl–

Eq. 2.1

where
¯
R is the gas constant (8.314 Jmol−1 K−1), T is the absolute

temperature (K),
¯
F is the Faraday constant (96 485.332Cmol−1), pi is

the permeability of the membrane to element i (molm−1 s−1 Pa−1)
andm

(j)
i is the concentration of ion i in solution j (molm−3).

Excitability

Once neurotransmitters reach the postsynaptic receptors, the
permeability of the membrane changes depending on the effect
of the emitted neurotransmitters [Vanrumste, 2002; Schomer and
Lopes da Silva, 2011]. The flow of ions and the membrane poten-
tial thus change. Neurotransmitters can produce stimulations of
two types.

Excitatory stimulations are depolarising and result in a higher
membrane potential due to an inflow of positively charged Na+
ions. This depolarisation is referred to as the excitatory postsynap-
tic potential (EPSP).

On the other hand, inhibitory stimulations are hyper-polarising
and lead to an increase of the membrane potential correlated with
an inflow of negatively charged ions (or an outflow of positively
chargedK+ ions). It is called an inhibitory postsynaptic potential (IPSP).

If the result of the numerous EPSPs and IPSPs occurring at a
postsynaptic neuron, referred to as net depolarisation, is higher
than a certain threshold, the membrane produces the nerve im-
pulse that flows along the axon. Otherwise, it remains inactive as
presented in Figure 2.6.
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In this process, the global electrical potential can be split into
two sources. Postsynaptic potential (PSP) is the potential of the
membrane of the postsynaptic terminal resulting from all the EP-
SPs and IPSPs and action potential is the potential resulting from
the excitation of the cell and corresponding to the propagation of
the nerve impulse. The latter has a very short lifespan.

t

(mV)

−70

−55

0

30

Resting

Threshold

1 2 3 4 1

1 Resting state 2 Depolarisation 3 Repolarisation 4 Hyperpolarisation

Figure 2.6 A plot of the trans‑membrane potential showing the action
potential. If the stimulus potential does not reach the threshold, no pulse is
emitted. Otherwise, a pulse where four phases are differentiated is emitted.
The depolarisation where Na+ ions enter themembrane, the re‑polarisation
where K+ ions exit themembrane, leading to the hyper‑polarisation. Finally,
the resting state is reached once the equilibrium is recovered.
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2.2. Electroencephalography
Electroencephalography (EEG) is a non-invasive brain activity

measurement technique [Schomer and Lopes da Silva, 2011]. It
consists in measuring the electric potential on the scalp of a sub-
ject induced by the inner activity of the brain using electrodes, or
channels, and a digital voltmeter (See Section 2.2.2). The resulting
signal is called an electroencephalogramwith normal amplitude up
to 100µV with frequencies ranging from under 1Hz up to 150Hz
(See Figure 2.7) [Synigal et al., 2020].

Figure 2.7 An example of an electroencephalogram [Scher, 2011].

As explained by Schaul [1998] and Schomer and Lopes da Silva
[2011], the electrodes used for EEG can only detect the potential re-
sulting from the sum of the PSPs occurring at numerous neurons
(See Section 2.1). Indeed, due to their short duration, action poten-
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tials are very unlikely to fire synchronously. On the other hand,
even though their amplitude is lower, PSPs can last up to 30 times
longer than action potentials. Thismeans that the activity of neigh-
bouring neurons can add up and gets recorded by the electrodes.

Once acquired, the recorded signal is preprocessed to remove
artefacts resulting fromnon-physiological andphysiological sources.
Indeed, there are several factors that can deteriorate the quality
of the signal, ranging from practical issues such as broken elec-
trodes or a bad contact between the electrode and the skin to sub-
ject movements and cardiac pulses. These artefacts are usually re-
moved from the data by visual inspection. However, the increas-
ing volume of data to be processed has lead to the development
of automated tools to achieve this task [Coppieters’t Wallant et al.,
2016a,b]. One of the papers I participated in aimed at validating
such a tool [Chylinski et al., 2020].

After cleaning the EEG data, it can be used for different analysis
(e.g., time-frequency based analysis). The one we are interested in
for this thesis is the source reconstruction, also referred to as source
imaging. The goal of this process is to retrieve the electrical brain
sources which induced the recorded signal and is further detailed
in Section 3.1.

2.2.1. Applications
Since its invention, EEG has been applied to a variety of both

medical and nonmedical applications.
One major medical application of EEG is the identification and

prediction of seizures in epileptic patients [Noachtar andRémi, 2009;
Chen and Koubeissi, 2019], but it has also been investigated to de-
tect other brain disorders such as Alzheimer’s and Parkinson’s dis-
eases [Cassani et al., 2018; Geraedts et al., 2018; Ando et al., 2021;
Miladinović et al., 2021], brain tumours and strokes [Hetkampet al.,
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2019; Shreve et al., 2019; Vatinno et al., 2022] or to assess traumatic
brain injury [Rapp et al., 2015; Ianof and Anghinah, 2017].

EEG also helps better understanding fatigue [Tran et al., 2020b;
Jing et al., 2020] and sleep cycles and disorders [Cox and Fell, 2020;
Berthomier et al., 2020; Zhao et al., 2021]. It can even be used to
study mental states and emotions [Liu et al., 2021; Rahman et al.,
2021; Perrottelli et al., 2021] or to evaluate cognitive load [Anto-
nenko et al., 2010; Friedmanet al., 2019; TamannaandParvez, 2021].

The high frequency signature of the electric activity of the brain
that EEG captures has also been evaluated as a brain-computer in-
terface in the rehabilitation of subjects using brain controlled video
games [Remsik et al., 2016; Baniqued et al., 2021] or to help people
suffering from locked-in syndrome communicating or controlling a
wheelchair [Al-qaysi et al., 2018; Wang et al., 2021a]. While first in-
tended for medical aiding devices, these interfaces were also used
for nonmedical applications such as controlling drones or video
games [Kerous et al., 2018; Al-Nuaimi et al., 2020; Villegas et al.,
2021].

2.2.2. Electrodes

Typical EEGelectrodes have adiameter of approximately 10mm
but somemanufacturers provide electrodeswith diameters as small
as 7 or 4mm [Hajare and Kadam, 2021]. Theway they aremodelled
is discussed in Section 4.2.

For standardisation purposes, various electrode placement se-
tups have been proposed. Using such a guide to place the scalp elec-
trodes for both EEG and tDCS (See Section 2.3) increases the quality
of the recording by making it more reliable and reproducible.
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Anatomical landmarks

To define a consistent and repeatable placement process, eas-
ily identifiable reference anatomical landmarks, also referred to
as fiducials, have been selected.

1 2

3

4

1 LPA/RPA 2 LEC/REC
3 LHS/RHS 4 LHJ/RHJ

Figure 2.8 Themost
commonly used ear
anatomical landmarks.

First, the nasion (NZ) locates the
junction between the bridge of the
nose and the forehead. At the oppo-
site, the inion (IZ) is the highest point
of the external occipital protuberance.
Those two points define the anterior
to posterior axis.

The choice for the left and right
fiducials is not as straightforward.
Indeed, there are several commonly
used landmarks (See Figure 2.8). The
default is to use left and right pre-
auricular points (LPA/RPA) but, while
they are palpable during an acquisi-
tion session, they are hard to identify
in structural images.

This is the reason why laborato-
ries tend to use other standards such
as the ear canal (LEC/REC), the helix-
scalp junction (LHS/RHS) or the helix-

tragus junction (RHJ/LHJ). The latter is preferred since it is better
defined in anatomical images.

Note The notations for the different ear anatomical land-
marks are sometimesmixed, which can lead to erroneous po-
sitioning of the electrodes in computer analysis. It is thus rec-
ommended, when sharing a dataset, to clarifywhich fiducials
were actually used during the acquisition.
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10‑20 international system

The 10-20 international system is the most commonly used elec-
trode placement scheme. The guide relies on splitting the distance
between pairs of fiducials (i.e., the two ears or the nasion and inion)
using 10% and 20% ratios, as shown in Figure 2.9.

(a)

Nz

Cz

RHJ

T4

C3C4

T3

LHJ

20%

20%

20%

20%

10% 10%

(b)

Nz

Iz

Fpz

Fz
Cz

Pz

Oz10%

20%

20%
20%

20%

10%

Figure 2.9 The EEG 10‑20 international system ratios shown from (a) the
front and (b) the side of the head.

In the proposed placement system, each sensor is labelled based
on the brain hemisphere and lobe located directly underneath. La-
bels are composed of two parts, the lobe identifier and the posi-
tion index. The 10-20 system defines notations for pre-frontal (Fp),
frontal (F), parietal (P), central (C) and temporal (T) channels. For
the numbering, left (respectively right) hemisphere electrodes use
odd (respectively even) numbers, while those on the central line
are indexed with “z” for zero.

To increase the spatial resolution of the recorded signal, other
setups havebeen createdbyplacing additional electrodes in-between
those of the 10-20 system using ratios of 10% and 5% for the 10-10
and 10-5 systems respectively. Figure 2.10 provides a description
of both the 10-20 and 10-10 systems.

25



Neuroscience

AF7 AF8

AFz

C1 C2C3 C4C5 C6

CP1 CP2CP3 CP4CP5 CP6CPz

Cz

F1

F10

F2F3 F4F5 F6
F7 F8

F9

FC1 FC2FC3 FC4FC5 FC6FCz

FT10

FT7 FT8

FT9

Fp1 Fp2Fpz

Fz

I1 I2
Iz

LPA

Nz

O1 O2Oz

P1

P10

P2P3 P4P5 P6
P7 P8

P9

PO10

PO7 PO8

PO9

POz

Pz

RPAT10T7 T8T9

TP7 TP8

C3 C4Cz

F3 F4

F7 F8

Fp1 Fp2Fpz

Fz

LHJ

Nz

O1 O2Oz

P3 P4

P7 P8

Pz

RHJT7 T8

Iz

Figure 2.10 The international EEG 10‑10 electrode labels and positions with
electrodes from the 10‑20 system and fiducials highlighted.
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2.3. Transcranialdirectcurrent
stimulation

Figure 2.11 An example
of electrodemontage for
tDCS.

Transcranial direct current stimula-
tion (tDCS) is a non-invasive brain stim-
ulation technique [Woods et al., 2016].
It consists in injecting a small amount
of direct electric current, generally be-
tween 1 and 2mA through the head of a
subject, by the mean of large electrodes
(around 5× 5 cm2) placed on the scalp us-
ing the EEG International system (See Sec-
tion 2.2.2).

The stimulating electrode, the anode,
is placed above the target brain region of
interest. On the other hand, the refer-
ence electrode, the cathode, is located ei-
ther above the same region from the op-
posite hemisphere in a bipolar electrode
montage, on the contralateral orbit region in a unipolar montage
or on a silent zone of the body such as the deltoid muscle, the chin,
or the neck [Nitsche et al., 2008; Kropotov, 2016].

Note Transcranial direct current stimulation has been
shown to be safe to use and well tolerated for both adults
[Nitsche et al., 2003; Brunoni et al., 2011] and younger indi-
viduals [Buchanan et al., 2021].

The large electrodes used in traditional tDCS make simultane-
ous EEG recording very difficult since they interfere with the EEG
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channels located around the stimulation electrodes [Spitoni et al.,
2013]. In addition, they produce a diffused electric field, thus they
are not suitable for precise target stimulation. To try solving these
issues, high definition transcranial direct current stimulation (HD-
tDCS)has been investigated [Datta et al., 2009; Borckardt et al., 2012;
Edwards et al., 2013; Roy et al., 2014; Parlikar et al., 2021]. This
method uses electrodes of size comparable to the ones used for
EEG (i.e., around 10mm in diameter) arranged in a circle forma-
tion, with the stimulating electrode in the centre and multiple ref-
erence electrodes around. It has been shown to induce increased
current density during the stimulation and to have a better spatial
resolution [Dmochowski et al., 2011; Villamar et al., 2013].

Since the beginning of the century, both methods have received
increased interest, mostly due to their affordability, their simplic-
ity and their wide range of applications. For instance, searching
for “tDCS” on PubMed yields 83 between 2001 and 2005 1 and 4059
between 2016 and 2020 2.

2.3.1. Applications
As described in the previous section, tDCS is an easy to per-

form, portable and affordable neuromodulation technique. Conse-
quently, it has been investigated in a wide variety of applications.

For instance, it has been considered as a treatment for some
neurological conditions such as Parkinson’s disease, stroke [Hum-
mel et al., 2005; Fregni et al., 2005; Boggio et al., 2007] and refractory
epilepsy [San-Juan et al., 2015; Yang et al., 2019], but also for pain
conditions like fibromyalgia [Fagerlund et al., 2015; Lloyd et al.,
2020] and traumatic spinal cord injury [Ngernyam et al., 2015; Li

1. https://pubmed.ncbi.nlm.nih.gov/?term=tDCS&filter=years.
2001-2005

2. https://pubmed.ncbi.nlm.nih.gov/?term=tDCS&filter=years.
2016-2020
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et al., 2021]. It has also been tested on psychiatric indications such
as depression [Boggio et al., 2008; Jog et al., 2019; Razza et al., 2020],
bipolar disorder [Dondé et al., 2018], addiction [Lapenta et al., 2018;
Chen et al., 2020], schizophrenia [Agarwal et al., 2013] or anxiety
disorders [Stein et al., 2020]. In addition to that, it has been evalu-
ated as an enhancement device for healthy subjects [Ke et al., 2019;
Weller et al., 2020].

The sheer volume of work relying on tDCS that is published ev-
ery year and the wide variety of applications clearly indicates that
there is a great interest in the method.

2.3.2. Physiological effects
Transcranial direct current stimulation cannot produceneuronal

action potentials due to the low range of the generated static fields.
Thus, it is often referred to as a neuromodulation technique rather
than neurostimulation. Indeed, its main physiological mechanism
is themodulation of the restingmembrane potential of the pyrami-
dal neurons composing the cortical surface, depending on their rel-
ative orientation [Nitsche and Paulus, 2000; Stagg et al., 2018]. If it
yields a depolarisation of the membrane, it is supposed to increase
the excitability of the neuron by lowering the afferent activity re-
quired to induce action potential. On the contrary, the neuronal
activity is reduced if the electric fields results in a hyperpolarisa-
tion of the membrane [Cambiaghi et al., 2010; Zaghi et al., 2010;
Stagg and Nitsche, 2011; Pelletier and Cicchetti, 2015].

The alteration of the membrane potential induced by tDCS is
proposed to be approximately 0.2 to 0.5mV [Radman et al., 2009;
Opitz et al., 2016] which seems negligible in comparison to the rest-
ing state potential of the membrane of around −70mV and to the
action potential threshold of −55 to −50mV (See Section 6.10 for
a more in-depth analysis of the induced trans-membrane poten-
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tial resulting from tDCS). Moreover, this induced potential does not
outlast the stimulation.

Still, after-effects of tDCS have been observed in the following
minutes up to the next 24 hours after the stimulation [Nitsche and
Paulus, 2000, 2001; Jamil et al., 2017]. Some repeated protocols are
even considered expanding the duration of these long-lasting ef-
fects to several weeks [Boggio et al., 2008; Reis et al., 2009]. Such
long-termeffects havebeenattributed toneuro-plasticity. Formore
information on the topic, I redirect the interested reader to the re-
cent work of Stagg et al. [2018].

2.3.3. Variability
Whilst more and more research projects focused on tDCS in the

last years, twomajor issues rose up: the inter-subject variability in
the responses to the stimulation and the lack of reproducibility of
some published results in follow-up studies.

” Themain conclusion is that the after-effect of this type of tDCS
on corticospinal excitability is highly variable.

—Wiethoff et al. [2014]

Indeed, the effects of tDCS are highly variable, with subject re-
sponses to the same protocol ranging from the expected one to its
opposite to no response at all. The most concerning fact being the
percentage of expected response, which is generally lower than
50% for protocols targeting the motor cortex and even smaller for
cognitive tasks [Müller-Dahlhaus et al., 2008; Jacobson et al., 2012;
Wiethoff et al., 2014]. In their systematic review, Horvath et al.
[2015] showed that, over 30neurophysiologicalmeasurements, tDCS
only had a reliable effect on motor evoked potential (MEP) ampli-
tude.
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These variable results gave birth to numerous studies investi-
gating different factors of variability such as anatomical features,
age, sex or genetics [Laakso et al., 2015; Rudroff et al., 2020]. For a
good overviewof the variability induced by these factors andmore,
refer to the review of Li et al. [2015].

” This work raises questions concerning the mechanistic foun-
dations and general efficacy of this device – the implications of
which extend to the steadily increasing tDCS psychological lit-
erature.

—Horvath et al. [2015]

Themain solutionbeingworkedon currently to reduce the inter-
subject variance is to tailor the protocol for each subject (e.g., set
the current intensity) based on individual measurements [Albizu
et al., 2020]. Unfortunately, the recent work from Sallard et al.
[2021] shows that this approach might not improve the efficacy of
tDCS over the primary motor cortex.

2.4. Head tissue segmentation
The human head, like any other part of the body, is composed of

several tissues. Unfortunately, extracting the spatial distribution
of those tissues from anatomical images (e.g., MRI and CT) is not
an easy task. It is referred to as segmentation and has been stud-
ied for the past decades. New methods are still being developed
nowadays. This problem is part of the family of the classification
problems.

We denote the volume of the head by Ωhead ⊂ R3 and its bound-
ing surface by Γhead [Darbas and Lohrengel, 2018]. The goal of the
segmentation is to divideΩhead into distinct subdomainsΩi bounded
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(a) (b)

Figure 2.12 (a) A zoomed in view of a T1‑weighed image and (b) the
resulting segmented tissue classes. These images are based on data provided
by the BrainWeb dataset [Aubert‑Broche et al., 2006b].

by Γi where i = 1, . . . , ntissues, such that

Ωhead = ∪ntissues
i=1 Ωi,

Ωi ∩ Ωj = ∅ ∀ i ̸= j.

The anatomical images provide a discrete representation of the
head, i.e. the data is acquired for small regular volumes called vox-
els. Based on the number of different modalitiesm, each voxel can
be represented as a vector x = [x1, . . . , xm]. The segmentation pro-
cess associates these vectors with a tissue class y ∈ [0, ntissues] by
minimising the intra-class variance andmaximising the inter-class
variance, as shown in Figure 2.12.

One of the main parameters of this operation is the number of
tissues to classify. Indeed, the human head is composed of a wide
range of biological tissues that can be hard to differentiate using
only non-invasive techniques (See Figure 2.13).
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2.4.1. Manual segmentation

One of the existingmethods to segment the head is to do it man-
ually, meaning classifying each and every voxel of the volume by
hand. This is generally used when subjects present deformities, or
to segment non-healthy tissues such as tumors or lesions.

1

2

3

4

5

6

7

8

9

1 WM 2 GM 3 CSF 4 Scalp
5 Blood vessels 6 Dura 7 Fat
8 Bone (Compact) 9 Bone (Spongy)

Figure 2.13 A subset of the biological
tissues composing the human head.

To help increase the effi-
ciency of this slow task, tools
have been developed such as
ITK-SNAP [Yushkevich et al.,
2006]. It makes it easier to
produce binary masks for the
tissues in 3D by providing use-
ful features such asmask visu-
alisation and flood filling wiz-
ard.

Nevertheless,manually seg-
menting the whole head of
a subject remains inefficient
and time-consuming. More-
over, by solely relying on
the mastery of the tools and
knowledge about the specific
tissues classes of the operator,
this method is highly error-
prone and lacks of reproducibility, which are two major concerns
in the field of neuroimaging.

Nowadays, manual segmentation is only required for tasks that
automated segmentation tools are not able to perform, such as seg-
menting heads with abnormal or specific tissue classes.
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2.4.2. Automated segmentation
To solvemost of the issues raised bymanual segmentation, fully

automatedwhole head segmentationpipelines havebeenproposed
[Ashburner and Friston, 2005; Perdue and Diamond, 2014; Huang
and Parra, 2015; Mahmood et al., 2015] and new ones are still be-
ing published [Huang et al., 2019; Puonti et al., 2020; Taberna et al.,
2021]. The benefits of using such techniques are an increased re-
producibility and a lower processing time since multiple subjects
can be worked on in parallel.

Unfortunately, it also comes at a cost: the number of tissues is
fixed for each method and their usage is usually limited to healthy
adults. Moreover, some of these tools are only able to segment the
upper part of the head, while others can segment the whole head
and neck. Depending on the end goal of the segmentation, these
limitations might be important.

As an example, Figure 2.14 shows the result of the segmenta-
tion of a T1-weighted image from the IXI dataset using MR-TIM
[Taberna et al., 2021].

For a good overview of the different techniques involved in au-
tomated segmentation, I recommend the reviewofDespotović et al.
[2015].

2.4.3. Validity
One of themain issueswith tissue segmentation, be itmanual or

automated, is the lack of ground truth. Indeed, without dissecting
the head of the subject, it is impossible to verify the exactness of
the generated masks.

As discussed later in Section 3.2, the physical properties of the
different tissues vary widely. Thus, changing their geometry can
affect the outcome of any process relying on both the shape and
properties of the head compartments (See Section 3.1).
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WM GM CSF Skull (Compact)
Skull (Spongy) Muscle Fat Eye Scalp

Figure 2.14 A T1w image segmentedwith MR‑TIM [Taberna et al., 2021].
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2.5. Cortex parcellation

Figure 2.15 A cut of the MNI
structural atlas providedwith FSL.

While segmenting the dif-
ferent tissues can provide in-
formation about the overall
structure of the head of a sub-
ject, a further step is required
when studying a specific region
of interest (ROI) of the cortex.
Indeed, since different areas
of the brain handle different
functions (See Section 2.1), re-
searchers often need to extract
data related to a single func-
tional or anatomical region, be
it a lobe or a smaller part. As

described in the tDCS application in Chapter 6 and in the corre-
sponding paper (See Appendix B), this process is particularly use-
ful to evaluate if the stimulationmanaged to induce an electric field
with the expected magnitude in the ROI.

As the segmentation step focused on minimizing the intra-class
variability, it is clear that one cannot rely on the same algorithms
to differentiate those ROIs from structural data. Therefore, meth-
ods have been developed to achieve this exact task. They usually
depend on a preliminary coregistration between the subject and a
template.
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Note The process of coregistering one ormultiple image on a
reference one consists in aligning them. When the target im-
age is a standardized space such asMNI [Grabner et al., 2006],
the coregistration step is referred to as normalisation. The
coregistration is said to be linear when either rigid (6 degrees
of freedom) or affine (12 degrees of freedom) transformation
are used. On the other hand, non-linear coregistration rely
on a displacement field.

For cortex parcellation, two families of techniques coexist. The
first uses volumetric atlases or ROI masks (See Figure 2.15), which
are labelled structural images. An atlas, just like for the earth, is
a map containing different regions. They are generally provided
in the MNI template space [Grabner et al., 2006]. ROI masks can
also be derived from functional tasks activation maps. This volu-
metric approach is the preferred one for people working with the
SPM toolbox [Ashburner, 2000], FSL [Jenkinson et al., 2012] orAFNI
[Cox, 1996].

The second family, made possible by the development of
FreeSurfer [Dale et al., 1999], uses cortical surfaces atlases. This
representation requires a computationally intensive surface recon-
struction step, which results in the creation of a subject specific cor-
tical surface and a template coregistered sibling. Atlases provided
on such a template surface can then be mapped onto the subject
surface. With the advent of computer speed, this approach has
gained increased interest. This technique was used to determine
the ROIs in Section 6.7.
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Modelling

After this introduction on the basics of brain anatomy and ac-
tivity, I can now present the methods used to model the electric
current flow through the head.

I first describe the mathematical tools involved in the simula-
tions and the physical properties that themodels account for. Then,
I give an overview of sensitivity analysis and how surrogate mod-
elling can help achieve it for computationally heavy models.

These techniques are further investigated in the applications
presented in Chapters 5 and 6.
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3.1. Electroquasistaticheadmodel
In this section, I provide a quick introduction to the mathemat-

ical model used to simulate electric current flow in the head of a
subject. This model relies on Maxwell’s equations which, in the
case I am focusing on here, reduce to a generalised Poisson equa-
tion.

After presenting these equations, I discuss the finite element
method used to solve them. Finally, I explain how these simula-
tions can be used in the context of neuroimaging to reconstruct
brain activity from scalp recording of the electric potential or to
assess the electrical effect of a stimulation.

3.1.1. Poisson’s equation
Maxwell’s equations govern the behaviour of any static or time-

varying electromagnetic field. They require the definition of four
vector fields: the electric field e (Vm−1), the electric displacement d
(Cm−2), the magnetic field h (Am−1) and the magnetic flux density
ormagnetic induction b (T).

These equations read as follows [Hämäläinen et al., 1993; Grif-
fiths, 2017; Gratiy et al., 2017; Darbas and Lohrengel, 2018]:

∇× e = −∂b

∂t
, Eq. 3.1a

∇× h = jf +
∂d

∂t
, Eq. 3.1b

∇ · d = ρf, Eq. 3.1c
∇ · b = 0, Eq. 3.1d
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where ρf is the free charge density (Cm−3) and jf the free current
density (Am−2). Equations 3.1a, 3.1b and 3.1c are respectively re-
ferred to as Faraday’s law, Ampère-Maxwell’s law and Gauss’s law.

Since all the materials can be considered as linear (See Defini-
tion 3.1) in the case of bio-electromagnetism, we have the following
constitutive laws,

d = εe, Eq. 3.2a
b = µh, Eq. 3.2b

in which ε is the electric permittivity of the material (Fm−1) and
µ its magnetic permeability (Hm−1). The latter can be assumed as
equal to that of the free space

¯
µ0 (12.556× 10−7Hm−1) in biological

tissues.

Definition 3.1 A material is considered as linear if its phys-
ical properties are constant and independent of the charac-
teristics of the sources and fields applied to it.

By using the constitutive laws from Equations 3.2a and 3.2b in
Maxwell’s equations, we get

∇× e = −
¯
µ0

∂h

∂t
,

∇× b =
¯
µ0

(
jf + ε

∂e

∂t

)
,

∇ · e =
ρf
ε
,

∇ · b = 0.

In addition, Ohm’s law provides a relation between the current
density and the electric field,

jf = jp + [κ]e, Eq. 3.3

with jp the primary current density (i.e., the neural induced current
density) and [κ] ∈ R3×3 the electric conductivity positive definite
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tensor (Sm−1). Formore information on the electrical conductivity
of biological tissues, refer to Section 3.2. The [κ]e term is sometimes
called return current.

Quasi‑static conditions

By combining Equations 3.1b and 3.3, we get

∇× b =
¯
µ0

(
jp + [κ]e+ ε

∂e

∂t

)
.

The frequencies of physiologically induced fields are low (i.e., less
than a few thousand hertz). Given the typical values of the electri-
cal conductivity, displacement currents (the time-derivative term)
can be neglected compared to the ohmic current, i.e.,∣∣∣∣ε∂e∂t

∣∣∣∣≪ |[κ]e| ,

and Ampère-Maxwell’s law reduces to

∇× b =
¯
µ0

(
jp + [κ]e

)
. Eq. 3.4

Thus, the capacitive effect of the biological tissues can be ne-
glected [Plonsey and Heppner, 1967], meaning that no charge can
build up. Moreover, if the eddy currents created by the time varia-
tion of the magnetic field are also neglected, which is again a good
approximation given the frequencies of interest, Faraday’s law 3.1a
becomes

∇× e = 0. Eq. 3.5

In other words, even though the sources change over time, the
resulting fields behave as if they were stationary. This means that
at a time t, the fields can be computed as if the sources were static.
This is referred to as quasi-static conditions.
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Generalized Poisson equation

Under the quasi-static conditions, Equation 3.5 implies that the
electric field derives from a scalar potential v which is the electric
potential (V),

e = −∇v. Eq. 3.6

On the other hand, no charge can be piled up and Equation 3.4
implies

∇ · jf = 0. Eq. 3.7

By combining Equations 3.3, 3.6 and 3.7 [Darbas and Lohrengel,
2018], we obtain

∇ · ([κ]∇v) = ∇ · jp,

where the right-hand side term∇·jp is known as the current source
density (Am−3) [Hallez et al., 2007] and will be denoted by f in the
rest of this chapter. The final form of Poisson’s differential equation
is

∇ · ([κ]∇v) = f. Eq. 3.8

Boundary conditions

Ωi Ωj

Γi,j

un

Figure 3.1 Interface between
compartments of the
conductive volume.

As explained in Section 2.4, the
domain determined by the head vol-
ume Ωhead, bounded by Γhead, can be
divided in several compartments Ωi

bounded by Γi and interconnected by
interfaces Γi,j . Conditions set on Γhead
are called boundary conditions, while
those set on interfaces Γi,j are re-
ferred to as transmission conditions.
At those interfaces and boundaries,
two types of conditions are encoun-
tered.
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First, let us consider the interface between two subdomains.
Since we use the quasi-static approximation, the current leaving
the compartment Ωi through the interface Γi,j must enter the com-
partment Ωj . We denote by [κ]i and [κ]j the electrical conductivity
of the subdomains and by un the normal unitary vector of the in-
terface. This condition reads as

ji · un = jj · un

⇔ ([κ]i∇vi) · un = ([κ]j∇vj) · un.
Eq. 3.9

When considering an interface between a domain Ωi and the air
Γi,air, no current can cross the boundary. Thus, the right-hand side
of Equation 3.9 is equal to 0. It gives the homogeneous Neumann
boundary condition:

ji · un = 0

⇔ ([κ]i∇vi) · un = 0.
Eq. 3.10

For the boundaries Γi,j , the second boundary condition states
that the electric potential is continuous across the interface,

vi = vj . Eq. 3.11

In the special case of an interface between a domain and an elec-
trode where an electric potential is imposed, it is referred to as a
Dirichlet boundary condition.

3.1.2. Current dipole
As discussed in Section 2.2, the macroscopic brain activity mea-

sured while performing an electroencephalography results from
the sum of the synchronised activation of several neurons. This
electrical behaviour can be modelled as a point electric current
dipole [Hallez et al., 2007; Darbas and Lohrengel, 2018].
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Generally, a current dipole can be thought of as a conductive
wire carrying electric current characterised by its position in space
rd, set to the centre of the two mono-poles, and its dipole moment
vector p ∈ R3 (Am) such that

p = p ud = i · d ud, Eq. 3.12

where i is the injected or removed amount of current (A), d is the
distance between the twomono-poles (m) andud = [ux, uy, uz] is the
direction vector going from the current sink to the current source.
A point dipole is the special case where d → 0 and i → ∞ while p
remains finite.

Figure 3.2 The electric potential
induced by a current dipole oriented
along the horizontal axis shown as
equipotential lines. The dashed lines
correspond to negative potential.

The primary current den-
sity introduced in Equation 3.3
due to a single point electric
current dipole and calculated
at a point r is

jp(r) = pδ(r − rd),

with δ the three-dimensional
Dirac delta distribution (m−3),
meaning that the primary cur-
rent density is equal to 0 every-
where, except at the position of
the dipole rd.

Thanks to the superposition principle (See Definition 3.2), the
primary current density resulting from nd point electric current
dipoles can be calculated with

jp(r) =

nd∑
m=1

pmδ(r − rm), Eq. 3.13

where
rm ̸= rl, ∀ m ̸= l

pm ̸= 0, ∀ m ∈ {1, . . . , nd}.
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Definition 3.2 The superposition principle states that, for a
linear system, the output due to the sum of two different in-
puts is equal to the sum of the outputs due to each input taken
separately.

This principle is generally used to decompose the current dipoles
into three separate ones oriented along the Cartesian axes. Equa-
tion 3.12 becomes

p = pxux + pyuy + pzuz,

with px, py and pz the dipole components along each axis, equal to
the orthogonal projections of p.

Using this sourcemodel, and introducing thenotation δ(r−rd) =
δrd(r), the right-hand side of Equation 3.8 becomes

f = ∇ · jp =

nd∑
m=1

∇ · pmδrm ,

which is to be interpreted in the sense of distributions [Darbas and
Lohrengel, 2018; Vorwerk et al., 2019b; Kovacevic et al., 2021].

3.1.3. Finite elementmethod
While severalmethods exist to solve the forwardproblem [Hallez

et al., 2007], only two can account for the anisotropic conductivity
of the tissues (Formore information on anisotropy, see Section 3.2):
finite element method (FEM) and finite difference method (FDM).

Both techniques rely on a discretisation of the volume conduc-
tor. Finite element models consist of an unstructured grid (here,
composed of tetrahedron), also known asmesh, whereas finite dif-
ference models splits the volume on a regular grid. The projects I
conducted duringmy thesis all use FEM. In the following sections, I
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introduce the concept of mesh and the formulation of the forward
problem developed for it.

3.1.4. Mesh
To solve the generalized Poisson equation using the finite ele-

ment method, the volume conductor (e.g., the head in the context
of EEG or tDCS) must be discretised into small elements (e.g., tetra-
hedron or hexahedron). While this step, referred to as meshing,
can be performed in several ways, the goal is usually to produce a
good quality conforming mesh (See Definition 3.3).

Note Meshes are composed of vertices linked together by
edges. A closed edge loop defines a face, and a closed set of
faces define an element (in the case of a 3D mesh).

Definition 3.3 In a conforming mesh, two arbitrary ele-
ments ei and ej either do not intersect or share a vertex, an
edge or a face.

The quality of a mesh can be evaluated with different metrics
such as elements aspect ratio, skewness, orthogonality or smooth-
ness. Those metrics determine how much an element differs from
a reference one. In the case of tetrahedral meshes, the reference
element is an equilateral tetrahedron.

While these metrics are helpful for quality assessment, they do
not determine if the mesh is actually suitable to serve as a support
for the simulation. Indeed, an important factor is the mesh size.
While it is true that reducing the size of the elements leads to a
more accurate and stable solution, it increases the size of the mesh
and thus computational load of the simulation. Consequently, build-
ing a proper mesh requires maximising the quality of the elements
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while limiting their count. For this purpose, the density of themesh
is usually increased in the regions where the gradient of the com-
puted field is high (See Figure 3.3).

Figure 3.3 A 2D triangular
meshwith refined top right
corner.

Since meshing the head of a sub-
ject is not a trivial task, tools dedi-
cated to electromagnetic simulation of
the head usually provide automated
workflows to generate a mesh from
structural images. In Section 4.1 I
present the approach implemented
during this thesis and compare it to
other available methods.

Weak formulation

The generalized Poisson equation
as expressed in Equation 3.8 is known

as the strong formulation. A solution v to this formulation, also re-
ferred to as classical solution, only exists under assumptions (e.g.,
continuous conductivity [κ] and regular source term f ) that are too
restrictive for the considered problem.

Hence, a so-calledweak formulationmust bederived fromEqua-
tion 3.8 [Bronzino, 1999; Hallez et al., 2007; Darbas and Lohrengel,
2018]. This new formulation can be obtained with the Galerkin
method. Solving it amounts to finding v such that the expression

⟨∇ · ([κ]∇v), v̂⟩Ωhead = ⟨f, v̂⟩Ωhead Eq. 3.14

is verified for all v̂, which are called test functions. The notation
⟨x, y⟩Ω ≡

∫
Ω xy dΩ is the inner product.

Assuming that the test functions v̂ are differentiable, Green’s
theorem can be applied and leads to

− ⟨[κ]∇v, ∇v̂⟩Ωhead + ⟨un · ([κ]∇v), v̂⟩Γhead = ⟨f, v̂⟩Ωhead . Eq. 3.15
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WhenDirichlet or homogeneousNeumannboundary conditions
are applied on Γhead (See Equation 3.11 and 3.10), the second term
vanishes and the weak form becomes

− ⟨[κ]∇v, ∇v̂⟩Ωhead = ⟨f, v̂⟩Ωhead , Eq. 3.16

which must hold for all the test functions v̂.

x
0 1 2 3

0

1
s1 s2

Figure 3.4 An example of a
linear basis function for a 1D
domain.

As explained in the previous sec-
tion, Ωhead is approximated by a set
of small elements. The approximate
solution vh ≈ v is obtained by ex-
pressing vh in terms of a finite num-
ber of shape functions, or basis func-
tions, si, e.g. associated to the nvert
vertices of these elements (see Fig-
ure 3.4):

vh(r) =

nvert∑
i=1

vi si(r). Eq. 3.17

The scalar coefficients vi, i = 1, . . . , nvert, then become the un-
knowns of the problem.

Choosing the same functions si as test functions, and injecting
Equation 3.17 into Equation 3.16, one obtains a linear system of
equations of the form

[a] · v = f , Eq. 3.18

with [a] ∈ Rnvert×nvert a matrix with entries ai,j = −⟨[κ]si, sj⟩ (which
is called the stiffness matrix), v ∈ Rnvert the unknown vector, and
f ∈ Rnvert the source right-hand side with entries fi = ⟨f, si⟩. With
piecewise linear basis functions associated with the vertices of the
mesh (so-called first order Lagrange functions), the basis functions
are non-zero only in the elements sharing the corresponding ver-
tices, leading to a sparsematrix [a]. The resulting linear system can
then be solved efficiently using either sparse direct solvers or iter-
ative linear solvers (conjugate gradients, multigrid...).

49



Modelling

3.1.5. Forward and inverse problems

When simulating current flow in theheadof a subject, researchers
try to solve either the forward problemor the inverse problem. While
the former is useful for both EEG and tDCS, the latter is of main in-
terest for EEG.

Solving the forward problem consists in simulating the effect of
known sources (e.g., current dipoles or electrodes). It results in the
definition of the different fields in the conductive volume. In bio-
electromagnetism, the computed scalar field is generally the elec-
tric potential v, from which the electric field e and current density
j can be derived.

On the other hand, the goal of the inverse problem is to infer the
sources based onmeasured field values. This process is referred to
as source reconstruction and is an important topic in functional
imaging.

For tDCS, the forward problem amounts to solving Equation 3.8
for v. For EEG, on the other hand, the forward problem is used to
define the so-called leadfield matrix [l].

The computation of this matrix is achieved by calculating the
electric potential at an acquisition site (generally an electrodeplaced
on the scalp) located at racq resulting from a single electric dipole
at rdip characterised by a dipole moment p. This electric potential
is denoted by

v(racq, rdip,p) = l(racq, rdip) · p⊤, Eq. 3.19

where l = [lx, ly, lz] is called the leadfield (VA−1m−1). This equation
is linear so it follows the superposition principle. It means that, for
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Figure 3.5 The representation of themapping from 4 source sites and 4
electrodes to the leadfieldmatrix for a simple 2D example. Sources define
the columns, while electrodes correspond to the rows.

nacq acquisition sites and ndip dipoles, the system becomes

v = [l] · p⊤ v1
...

vnacq

 =

 l1,1 . . . l1,ndip
... . . . ...

lnacq,1 . . . lnacq,ndip

 ·

 pT1
...

p⊤
ndip

 .
Eq. 3.20

A representation of the leadfield matrix is given in Figure 3.5 for a
2D example with four source sites and four electrodes.

Since the acquired data is usually noisy, an error term ϵ (V) is
often added to the right-hand side of Equation 3.20, giving the final
expression of the system

vacq = [l] · p+ ϵ. Eq. 3.21

This definition of the forward and inverse problems identifies
three key criteria which have an impact on the solution: the geom-
etry of the volume conductor (See Sections 2.4 and 4.1), the electric
conductivity of the tissues (See Section 3.2) and the position of the
electrodes (See Section 4.2).
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In this thesis, I focus on the forward problem. For the interested
reader, the review of the methods available to solve it by Hallez
et al. [2007] provides a good introduction and overview. For the
inverse problem, the review from Grech et al. [2008] describes and
compares several techniques for EEG source reconstruction.

Reciprocity principle

While building the leadfield matrix one column at a time by
computing the electric potential measured on the electrodes due
to a single source is possible for a simple geometry and a reduced
number of sources, it quickly becomes time-consuming and com-
putationally expensive for more realistic models.

For instance, in the case of high resolution finite element mod-
els, the number of source sites (columns) can be several orders of
magnitude larger than the number of electrodes (rows). To solve
this issue, Weinstein et al. [2000] proposed two methods relying
on the reciprocity principle [Plonsey and Heppner, 1967]. The first
evaluates sources at the centre of the mesh elements, it is referred
to as the element basis method, while the second, the node basis,
considers source sites at the coordinates of the nodes of the mesh.
In this work, I only consider the element basis one.

This principle states that if one wants to measure the electric
potential difference between two points located at ra and rb due to
a single electric current dipole characterised by a dipole moment
p, only the electric field at the dipole location rdip resulting from a
unit current injection between points a and b is required:

e · p
i

= va − vb. Eq. 3.22

The a-th row of [l] can thus be built by setting an electrode as
the ground while injecting a current of 1A through the a-th one
and computing the electric field e in each element of the model.
The three Cartesian components of the electric field recorded in
the n-th element correspond to the components of lm,n.
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For a 3D finite element model, this method allows the computa-
tion of the leadfield matrix in nelectrodes− 1 iterations while, before,
it required 3ndip iterations.

3.2. Head tissues electric con‑
ductivity

In Section 3.1, I stated that [κ] ∈ R3×3 is the electric conductiv-
ity positive definite tensor (See Definition 3.4) and is expressed in
Sm−1. This property of the tissues and, more generally, of any ma-
terial, defines its ability to carry electric current.

Definition 3.4 A symmetric square matrix [x] ∈ Rn×n is pos-
itive definite if the scalar resulting from y⊤[x]y is strictly pos-
itive for any non-zero vector y ∈ Rn.

The tensor can be split into its eigenvectors

[u] =

u1

u2

u3

 , Eq. 3.23

and eigenvalues which, for electric conductivity, correspond to the
electric conductivity along each eigenvector κ = [κ1, κ2, κ3], such
that

[κ] =

κ1 0 0
0 κ2 0
0 0 κ3

 ·

u1

u2

u3

 =

κ1u1

κ2u2

κ3u3

 . Eq. 3.24

It is often modelled as an ellipsoid, as shown in Figure 3.6.
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x
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κ1u1

κ2u2

κ3u3

Figure 3.6 An ellipsoid
representing an electric
conductivity tensor.

An important concept to introduce
about tensor fields is the difference
between isotropy and anisotropy. The
first refers to a material with constant
conductivity in all directions, while
the latter would conduct current dif-
ferently based on the direction of the
current flow.

In the case of an isotropicmaterial,
Equation 3.24 becomes

[κ] =

κ 0 0
0 κ 0
0 0 κ

 ·

1 0 0
0 1 0
0 0 1

 ≡ κ,

and [κ] is reduced to a single scalar κ
(i.e. the ellipsoid becomes a sphere). In simulations, most of the
tissues are actually considered as isotropic.

Using a single value to characterise the electric conductivity across
the whole volume of a tissue makes the choice of the value very
important. This is why some tissues are recommended to be mod-
elled as anisotropic. I discuss the different methods used to derive
the conductivity tensors of the white matter and the skull in Sec-
tion 3.2.2.

3.2.1. Reported values
Being ofmain interest for electromagneticmodelling of thehead,

the electric conductivity of the biological tissues has been studied
since the last century [Burger andMilaan, 1943; Geddes and Baker,
1967; Gabriel, 1996; Gabriel et al., 1996a,b,c; Baumann et al., 1997;
Oostendorp et al., 2000; Latikka et al., 2001; Akhtari et al., 2002;
Goncalves et al., 2003] and newmethods to acquire it are still being
proposed [Akalin Acar et al., 2016].
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Recently,McCannet al. [2019] published a reviewof the reported
electrical conductivity of the human head tissues. The summary
they extracted from 56 studies (filtered out of 211 articles) is shown
in Figure 3.7 for the tissues we are interested in for this thesis. For
each of these tissues, they provide the upper and lower bounds,
the standard deviation and two mean values. They refer to these
“means” as the “averagemean”, computedby giving an equalweight
to all the reported measures, and as the “weighted average mean”,
where each record was weighted with regard to the quality of the
study to which it belongs. They recommend using the weighted av-
erage mean for the tissues, so we only consider these throughout
the whole thesis.

Note The weights used to compute the weighted average
means resulted in some of the means being out of the inter-
vals defined by the lower and upper bounds.

3.2.2. Anisotropy

As explained above, the physical properties of the tissues can
be considered either isotropic or anisotropic. While it may seem
reasonable to consider tissues such as the scalp as isotropic, it is less
convincing tomodel the whitematter, which can be seen as a set of
insulated conductivewires, as a uniformly conductive volume. The
same goes for the skull, which can be divided in sub-compartments
(See Section 2.4).

Therefore, different models have been proposed to account for
the variability of [κ] in these tissues.
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Figure 3.7 The distributions of the electrical conductivity of the different
tissues composing the head as reported by [McCann et al., 2019].

Whitematter anisotropy

As described in Section 2.1, white matter is composed by the ax-
ons of the neurons. These axons aremyelinated, meaning that they
are electrically insulated to help increase the propagation of action
potentials along their main axis. Hence, the electric current, be it
induced by an external stimulation or by neuronal activity, flows
more easily along these axons. Knowing this, researchers have de-
veloped different methods to obtain the conductivity tensor [Wu
et al., 2018].
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Electrical impedance tomography (EIT) [Koessler et al., 2017; Sajib
et al., 2015] and magnetic resonance EIT (MREIT) [Liu et al., 2009;
Chauhan et al., 2018] both consist in injecting a small low frequency
current through the head of the subject and measuring the result-
ing scalp potential. This information is then used to solve an in-
verse problem in order to reconstruct the conductivity tensor. In
MREIT, additional information about the induced magnetic field is
recorded.

Bothmethods suffer from the presence of the skull, which plays
the role of an insulator, and thus struggle to image the conductivity
of the tissues located inside. Moreover, the resulting inverse prob-
lem is ill-posed, making it hard to solve for the anisotropic conduc-
tivity of the white matter.

The most promising approaches rely on the acquisition of diffu-
sion weighted images (DWI) which are processed to perform diffu-
sion tensor imaging (DTI) [Huisman, 2010]. This operation results
in the generation of a tensor providing information about the mi-
crostructure of the tissues. Just like the conductivity tensor pre-
sented earlier, it can be represented by ellipsoids.

Tuch et al. [2001] were the first to propose a direct link between
the diffusion tensor and the electrical conductivity tensor in the
white matter. They proposed a linear relationship between the
two, meaning that both tensors share the same eigenvectors. The
derived linear relation is given by

κi =
κout
dout

di, Eq. 3.25

where κi and di are respectively the electric conductivity and the in-
tracellular diffusion coefficient (m2 s−1) along the i-th eigenvector
and κout and dout are the extracellular conductivity and diffusion
coefficient. In their paper, Tuch et al. [2001] found a conversion
coefficient of 0.844± 0.0545 S smm−3.

Unfortunately, the extracellular properties are difficult to ob-
tain. Hence, the linear model is difficult to use in practice. To solve

57



Modelling

this problem, other solutions, more aimed toward simulation, have
been published.

The easiest methods to use are Wang-constraint [Wang et al.,
2001] and volume constraint [Wolters et al., 2006] models. Both,
just like the linear model proposed by Tuch et al. [2001], keep the
eigenvectors of the diffusion tensor and use the empirical value of
the conductivity of the white matter κWM and the anisotropy ratio
κ
(rad)
WM /κ

(tan)
WM , where κ

(rad)
WM and κ

(tan)
WM are respectively the conductiv-

ity perpendicular and in the direction of the axon, to derive the
eigenvalues of the tensor.

The Wang-constraint model (See Figure 3.8) reads as

κ
(rad)
WM κ

(tan)
WM = κ2WM, Eq. 3.26

while the volume constraint model is defined by

4

3
πκ

(rad)
WM (κ

(tan)
WM )2 =

4

3
πκ3WM. Eq. 3.27

Skull anisotropy

Modelling the electric conductivity of the skull is another issue.
Indeed, as shown in Section 2.4, it is composed of tissues of dif-
ferent densities (and physical properties). Since the skull acts as
an insulator, due to its low conductivity, and surrounds the whole
brain, it is very important to accurately model it. Two approaches
have been studied in the past decade to account for the anisotropy
of the skull.

The first and most straightforward one relies on an accurate
segmentation of the compact and spongy compartments. Once those
compartments are defined, one can give themdifferent sets of prop-
erties (See Figure 3.9a). Unfortunately, until recently, it was hard
to automatically delineate the different compartment of the skull
from structural magnetic resonance images due to the low signal
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Figure 3.8 A slice of a conductivity tensor processedwith the
Wang‑constraint model for a whitematter conductivity of 0.14 S/m.
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acquired in this region. People focusing on this approach often re-
lied on CT scans to get better information about the different layers.
Thework ofMontes-Restrepo et al. [2014] provides a good overview
of the different models that can be generated using different seg-
mentation techniques.

The other method is comparable to the one used to model the
anisotropy of thewhitematter. Based on empirical measurements,
it was determined that the conductivity of the skull differed when
acquired tangentially or orthogonally of its surface. Thus, the aniso-
tropy of the skull can be modelled by a conductivity tensor using
the same constraints as for white matter (See Equations 3.26 and
3.27) as presented in Figure 3.9b.

In their paper, Sadleir and Argibay [2007] conclude that the dif-
ference between the two approaches is not negligible due to the
fact that modelling the different layers with a conductivity ratio of
1 : 10 is drastically different from modelling a single compartment
with anisotropy ratio of 1 : 10. This is why we considered the mul-
tilayer model in our first paper (See Chapter 5 and Appendix A).

3.3. Sensitivityanduncertainty
analysis

In his book, Saltelli [2008] defines sensitivity analysis (SA) as:

” The study of how uncertainty in the output of a model (nu-
merical or otherwise) can be apportioned to different sources
of uncertainty in the mode input.

— Saltelli [2008]

while he states thatuncertainty analysis (UA)oruncertainty quan-
tification (UQ) are performed to quantify the uncertainty on the
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(a) (b)

Figure 3.9 Skull conductivity: the conductivity tensor resulting from (a)
the 3 layers approach using the conductivity values recommended by
McCann et al. [2019] and (b) the tensor approach using theWang‑constraint
model and an anisotropy ratio of 1:10.

output of a model. These processes are of main interest when con-
clusions or diagnostics are drawn from the results of a model, like
it is the case for EEG source reconstruction. They are also useful to
explain the variation in some published results (e.g., for tDCS).

Before going further, I have to define the difference between lo-
cal and global sensitivity analysis. Local sensitivity analysis studies
the variation of the output of the model at a specific point in the in-
put parameters space due to a small variation in the input. Even
though such information can be interesting, in the context of elec-
tromagnetic modelling, we are more concerned about the big pic-
ture, i.e., the influence of an input parameter on the output across
the whole input space. This is referred to as global sensitivity. Gen-
erally, local sensitivity and global sensitivity are respectively used
to study the result of a model and the model itself.

In this section, I focus on global sensitivity, and more precisely
ononemethod: the computation of Sobol indices [Sobol, 2001; Saltelli
et al., 2010].
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3.3.1. Sobol indices
Sobol indices are used to determine the sensitivity of amodel to

its input parameters. To explain how they are calculated, let

Y = f(X),

be amodel, with Y a randomscalar output andX = [X1, X2, . . . , Xn]
the vector of n independent random scalar input factors, where
Xi ∈ [0, 1].

Sobol [2001] proposed a decomposition of this model into

f = f0 +

n∑
i=1

fi +

n∑
i=1

∑
j>i

fi, j + · · ·+ f1, 2, ..., n, Eq. 3.28

where each term only depends on the parameters present in its
index (i.e., fi = fi(Xi), fi, j = fi, j(Xi, Xj)). While this decomposition
always yields 2n terms, the choices of possible values for each of
these terms is infinite. Still, Sobol proved that, if the mean of each
term is equal to zero, they are all orthogonal. This means that they
can be determined by

f0 = EX(Y ), Eq. 3.29
fi = EX\i(Y |Xi)− f0, Eq. 3.30

fi, j = EX\i, j (Y |Xi, Xj)− fi − fj − f0, Eq. 3.31

whereX\i denotes the parameters space minus the i-th dimension
and EX\i(Y |Xi) is the expected value of Y conditioned on the value
of Xi.

Consequently, the variance of the terms of the decomposition
are measures of importance. This leads to the definition of the so-
called first-order Sobol indices

si =
VXi(EX\i(Y |Xi))

VX(Y )
. Eq. 3.32
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These indices describe the main effect of each input parameter
to the overall variance of the model. Following the decomposition
of the model from Equation 3.28, it comes that

n∑
i=1

si ≤ 1.

Indeed, the first order indices alone do not account for any in-
teraction between the input factors.

Note Interacting factors are factors whose effect on Y can-
not be expressed as the sum of their respective main effects.

If the sum of the first order indices is much smaller than 1, then,
the interactions are non-negligible. While any order index could
be computed based on the previous decomposition, the number of
terms grows exponentially. Thus, Sobol proposed the total order
Sobol indices

s
(t)
i =

EX\i(VXi(Y |X\i))

VX(Y )
= 1−

VX\i(EXi(Y |X\i))

VX(Y )
, Eq. 3.33

which measure the total effect of a factor, meaning the sum of all
its indices of order 1 to n. As opposed to si, the sum of s(t)i can be
greater than 1.

The total Sobol indices are of main interest since they point out
the parameters that could be fixed to any value in their range with-
out affecting the outcome of the model. Indeed, if s(t)i ≈ 0, the i-th
factor can be considered as having no effect on the output. Thus,
any reasonable value of this parameter could be used.

Considering thenumerators of these indices, Jansen [1999] refers
to VXi(EX\i(Y | Xi)) as the top marginal variance which is the ex-
pected reduction in variance induced by fixing Xi and to
EX\i(VXi(Y |X\i)) as the bottommarginal variance, i.e., the expected
variance that would remain after fixing all the parameters but Xi.
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(a)

(b)

(c)

Figure 3.10 The function values and computed first and total order Sobol
indices for (a) a function with no factors interaction, (b) a function with only
factor interactions and (c) a functionwith bothmain effects and interactions.
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Tobetter explain the two types of indices, Figure 3.10 gives three
examples. First, the function f(x, y) = x + 0.5y. There is no inter-
action between the parameters, thus, the first and total orders are
the same. Since y has a lower coefficient, its indices are lower than
those of x. Next, the function f(x, y) = x · y only has interaction
terms. Hence, the first order indices are negligible. Finally, the
function f(x, y) = x+0.5y+ x · y has both main effects and interac-
tions, the values of s(t)i are thus greater than those of si.

3.3.2. Computation
The computation of si and s

(t)
i both require to evaluate themodel

on a set of points of the parameters space. To limit the number
of evaluations, Saltelli et al. [2010] proposed a method to compute
both the first and the total order indices simultaneously.

This technique considers two sampling matrices [a] and [b] ∈
Rm×n where each of the m row contains the coordinates of a point
in the parameters space. These matrices are used to build [a

(i)
b ]

which is a copy of [a] where the i-th column is from [b] and, con-
versely, the matrix [b

(i)
a ] where the i-th columns comes from [a].

Using either [a] and [b
(i)
a ] or [b] and [a

(i)
b ], one can compute si and

s
(t)
i . Indeed, considering that

V(Y ) = E(Y 2)− E(Y )2, Eq. 3.34

one can demonstrate that

VXi(EX\i(Y |Xi)) =
1

m

m∑
j=1

f([b]j)f([a
(i)
b ]j)− f2

0 , Eq. 3.35

VX\i(EXi(Y |X\i)) =
1

m

m∑
j=1

f([a]j)f([a
(i)
b ]j)− f2

0 . Eq. 3.36
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Here, I develop thedemonstration for si. Applying Equation 3.34
to VXi(EX\i(Y |Xi)), it gives

VXi(EX\i(Y |Xi)) =

∫
E2
X\i

(Y |Xi)dXi −
(∫

EX\i(Y |Xi)dXi

)2

,

Eq. 3.37
where the second integral reduces to E(Y )2 ≡ f2

0 . Regarding the
first integral, we can write

E2
X\i

(Y |Xi) = EX\i(Y |Xi) EX′
\i
(Y |Xi)

=

∫
f(X1, X2, . . . , Xi, . . . , Xn)dX\i

×
∫

f(X ′
1, X

′
2, . . . , Xi, . . . , X

′
n)dX

′
\i

=

∫∫
f(X1, X2, . . . , Xi, . . . , Xn)

× f(X ′
1, X

′
2, . . . , Xi, . . . , X

′
n)dX\idX

′
\i.

Hence, the integral becomes∫
E2
X\i

(Y |Xi)dXi =

∫∫
f(X1, X2, . . . , Xi, . . . , Xn)

× f(X ′
1, X

′
2, . . . , Xi, . . . , X

′
n)dXdX′

\i.

The matrices [b] and [a
(i)
b ] defined above share the same values

of Xi and, thus, allow the computation of the integral in a discrete
manner ∫

E2
X\i

(Y |Xi)dXi ≈
1

m

m∑
j=1

f([b]j)f([a
(i)
b ]j). Eq. 3.38

This solution coupled with the one for s
(t)
i require 2m evalua-

tions of the model to determine [a] and [b] and mn evaluations to
determine [ab]. In total, (2 + n)m evaluations of the model have to
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be computed, where m must be large enough. Saltelli et al. [2010]
recommends values ofm higher than 500.

During this thesis, the implementation provided in SALib [Her-
man and Usher, 2017] and relying on the presented method was
used.

3.3.3. Parameters space sampling
As explained above, the computation of Sobol indices require

several evaluations of the model for different sets of values of the
input parameters. While one could use random samples, this is
not suitable for high dimensional parameters space, and it does not
ensure a proper coverage of the space.

To solve this issue, several quasi-random sequences, or
low-discrepancy sequences, have beenproposed [Halton, 1960; Sobol,
1967]. As opposed to the randomsampler, quasi-randomsequences
drawnewpoints of the space based on those that have alreadybeen
evaluated in order to maximize the coverage. Figure 3.11 shows a
comparison of different sampling sequences on a 2D parameters
space for three sample sizes.

During this thesis, both Halton [Halton, 1960] and Sobol [Sobol,
1967] sequences are used for various means.

3.4. Surrogatemodelling
As described in the previous section, the computation of Sobol

indices requires numerous evaluations of the model of interest.
Unfortunately, when each evaluation is expensive to acquire, be
it in terms of computational time or, for wet science, in terms of
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Figure 3.11 A comparison of the samples drawn from a 2D parameters space
with different sampling sequences (rows) and different sample sizes
(columns). The colour of the points determine in which order they are
drawn. Yellow points are the latest.
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material or acquisition time, it is not feasible to obtain the recom-
mended (2 + n)m samples where m ≥ 500 and n is the number of
factors of the model.

A solution is to use a low number of evaluations to build a so-
called surrogate model f̂ , which, as opposed to the real model f , is
cheap to evaluate. This model is built such that

f̂(x) ≈ f(x),

for any given parameters set x, and can then be used to compute
the Sobol indices in place of the real model.

In the context of a scalar output model, a surrogate model is
nothing more than a regressor. Depending on the research fields,
several techniques have been proposed and successfully used to
construct such an emulator. Generalised polynomial chaos (gPC)
and Gaussian process regressors (GPR) [Rasmussen and Williams,
2006] are the two most represented.

While bothmethods can yield fast, good quality and determinis-
tic surrogate models [Owen et al., 2017], the GPR approach, thanks
to its stochastic nature, has some additional advantages, such as
its abilities to be updated by increasing the sample size without
needing to rebuild the whole model, and to provide a measure of
the confidence on the predicted results. This is very interesting be-
cause, when using a GPR, all the results are actually random vari-
ables that account for the uncertainty lying in themodel itself. That
can help to draw more educated conclusions on the computed in-
dices. Moreover, this uncertainty can be used as the convergence
criterion mentioned above. Finally, Gaussian processes are very
versatile and can model a wider range of behaviours. Indeed, gen-
eralised polynomial chaos has been shown to be a special case of
GPR [Schobi et al., 2015]. For this reason, I use GPR throughout my
thesis.

In the next paragraphs, I give an overview of howGaussian pro-
cesses work and can be used to build a surrogate model.
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Figure 3.12 An example of five possible functions fitting the given six data
points.

3.4.1. Gaussian process regressor

When dealing with a regression problemwhere onewants to fit
a model to some previously acquired data, there are potentially an
infinite number of possible functions that could represent the data
as presented in Figure 3.12.

The traditional parametric approach (e.g., linear or polynomial
regression) would only yield one possible function out of this in-
finite number of possibilities that it considers “the best fit”. Since
all those functions are fitting the given data, what would make one
of them be better than the others. In other words, what makes the
unique solution of a polynomial regression the only valid option?
Nothing.

Gaussian processes solve this problem. Indeed, they are often
referred to as probability distributions over all the possible func-
tions [Rasmussen, 2004; Görtler et al., 2019], but before I can ex-
plain why they are presented like so, I first need to introduce the
basics.
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(a) (b) (c)

Figure 3.13 Examples of 2Dmultivariate Gaussian distributions for
different covariancematrices.

Multivariate Gaussian distribution

The main building block of the Gaussian processes is the mul-
tivariate Gaussian distribution. Such a distribution is defined by
two parameters: its mean vector µ = [µ1, . . . , µn]

⊤ and its covari-
ance matrix [σ].

Each component of µ determines the expected value of the cor-
respondingdimension. On the other hand, the elements of the diag-
onal of [σ] correspond to the variance σ2

i of the i-th dimension and
the off-diagonal elements σi, j give the correlation factor between
the i-th and j-th dimensions. This matrix shapes the distribution as
shown in Figure 3.13.

If a random variable X = [X1, . . . , Xn]
⊤ follows a multivariate

Gaussian distribution, it is denoted by
X ∼ N (µ, [σ]),

and the covariance matrix is given by

[σ] = C(X,X) = E
(
(X − µ)(X − µ)⊤

)
.

One important characteristic of the multivariate Gaussian dis-
tribution is that it is closed under marginalisation and condition-
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ing, meaning that these operations also yield Gaussian distribu-
tions. To better explain what they both are, let a probability dis-
tribution be defined as

PX, Y =

[
X
Y

]
∼ N

([
µX

µY

]
,

[
[σX,X ] [σX, Y ]
[σY ,X ] [σY , Y ]

])
. Eq. 3.39

First, marginalisation allows the extraction of partial probabil-
ity distributions ofX and Y such that

X ∼ N (µX , [σX,X ]),

Y ∼ N (µY , [σY , Y ]),

implying that the marginal distribution of X (or Y ) is the proba-
bility distribution ofX (or Y ) when the values of Y (orX) are not
considered. The probability of this marginal distribution of X be-
ing equal to x is obtained by computing the average conditional
probability over all the possible values of Y

pX(x) =

∫
y
pX | Y (x | y)pY (y)dy = EY (pX | Y (x | y)).

Next, conditioning is used to compute the probability of a ran-
dom variable depending on another

PX | Y ∼ N (µX | Y , [σX | Y ]), Eq. 3.40

with

µX | Y = µX + [σX, Y ][σY , Y ]−1(Y − µY ),

[σX | Y ] = [σX,X ]− [σX, Y ][σY , Y ]−1[σY ,X ],

whereµX | Y only depends on the conditionedvariable, while [σX | Y ]
is independent of it.

These two operations are at the core of GPR.
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Gaussian processes

Now, we have all the tools we need to explain how Gaussian
processes work. In fact, GPR are nothing more than multivariate
Gaussian distributions. Their goal is to determine the underlying
distribution based on training data Y in order to predict function
values on test dataX .

Similarly to what is described in Equation 3.39, the joint distri-
bution PX, Y is a multivariate Gaussian distribution spanning all
the possible values of the function to model. Using Bayesian infer-
ence, we want to update the model with the training data and find
PX | Y (See Equation 3.40).

If we want to predict the value of n test points, each of them
is considered as a random variable. Thus, the resulting distribu-
tion PX | Y has n dimensions. Sampling this distribution yields a n
dimensional vector in which each element correspond to a func-
tion value. Hence, the distribution itself spans over a functional
space and encapsulates all the possible function outputs for the n
test points.

The last two things to explain are the methods used to deter-
mine both µ and [σ]. The first, referred to as the regression term, is
often set to 0 [Chen et al., 2016]. Indeed, it is easy to centre the data
(i.e., removing the mean) before fitting the model and add it back
after predicting. The latter, on the other hand, is defined using a
covariance function, or kernel k(xi, xj).

This function ultimately defines the characteristics of the func-
tions that are considered by the model. The explanation of the role
of the kernel, as well as the different types and combinations of
kernels that are available, is beyond the scope of this thesis and I
recommend reading the work of Rasmussen and Williams [2006].
For the purpose of thiswork, it is only important to understand that
the kernel gives an idea of the similarity between two points. Thus,
it yields a high value for points that are close from each other and
low values for points that are far from each other.

In the present work, I followed the recommendations of [Chen
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et al., 2016] and used a composite kernel built by adding a constant
kernel and a Matérn kernel which is one of the most used kernels
with the radial basis function (RBF) and is defined by

k(xi, xj) =
1

γ(ν)2ν−1

(√
2ν

l
d(xi, xj)

)ν

bν

(√
2ν

l
d(xi, xj)

)
,

Eq. 3.41
where d(xi, xj) is the Euclidean distance between the two points
and bν and γ are respectively a modified Bessel function of the sec-
ond kind and the gamma function.

The main difference between these two kernels is that, while
the RBF constraints the possible functions to be infinitely differen-
tiable, theMatérn kernel uses the value of its parameter ν to control
the smoothness of the resulting functions. In our case, it is set to
2.5, yielding twice differentiable functions. This choice is justified
by the fact that the difference between the solutions of two current
simulations configured with parameters sets that are close to each
other is expected to be small. Consequently, the smoothness of the
modelling function is supposed to be high. Still, constraining the
functions to be infinitely differentiable seemed to be a big prior.
Thus, we settled on the Matérn kernel.

The output of a Gaussian process regressor using the parame-
ters described above and applied to the example from Figure 3.12
is presented in Figure 3.14. As expected fromaBayesian technique,
the credibility interval is narrow close to the training points, while
it gets wider the further from it.

Gaussian processes for uncertainty and sensitivity analysis

Towrap up this section, it is interesting to get back to its starting
point: the computation of Sobol indices. Indeed, a surrogatemodel,
in the context of sensitivity analysis, is useful only if the number of
samples required to build it is small compared to the number of
samples required to compute the sensitivity indices. Moreover, I
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Figure 3.14 A Gaussian process regressor built on 6 training points. The
light area corresponds to the 95% credibility interval, while the darker area
shows the 68% credibility interval.

stated that Gaussian processes could be used to propagate the un-
certainty lying in the model up to the computed Sobol indices.

Whilemathematicalmethods specific toGaussianprocesses have
been proposed to achieve this [Oakley and O’Hagan, 2004; Marrel
et al., 2009], I find it easier to explain themost straightforward tech-
nique.

Considering a GPR built on a few model evaluations, the mean
posterior distribution is generally used as a regressor. This goes
against the Bayesian approach, since there is no reason to think
that the mean of the posterior is better than any other possible
function lying in the posterior.

Thus, to leverage the uncertainty encapsulated in the GPR in
order to picture the uncertainty in the resulting Sobol indices, one
simply has to compute these indices for several (potentially a large
number) samples drawn from the posterior distribution. Doing
so, the indices can be considered as random variables Si and S

(t)
i .

Hence, we have

si = E(Si), Eq. 3.42

s
(t)
i = E(S(t)

i ), Eq. 3.43

and the variance of the random variables indicates the accuracy of
the indices.
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In Figure 3.15, I applied this method to the examples presented
in the previous section. A GPR is built using only 10 samples drawn
using a Halton sequence. This model is then used in place of the ac-
tualmodel to compute the Sobol indices using 128 samples from the
posterior distribution (including the mean). The error bars span
over 95% of the estimated values. With as few as 10 samples, this
technique is able to compute Sobol indices comparable to the real
ones with a reasonable accuracy for the different functions.

One downside of the GPR is that, since the model is
non-parametric, each evaluation of themodel relies on all the train-
ing data. Consequently, the more training data is used, the heavier
the model is. This has to be considered for problems with high di-
mensionality, since the number of evaluations of the actual model
required to build the surrogate model grows with the number of
input parameters.
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(a)

(b)

(c)

Figure 3.15 The function values and computed first and total order Sobol
indices based on Gaussian processes built on 10 samples for (a) a function
with no factors interaction, (b) a function with only factor interactions and
(c) a function with bothmain effects and interactions.
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4.
Shamo

The main goal of Shamo is to provide an easy way to run uncer-
tainty quantification and sensitivity analysis on computationally
expensive problems like EEG leadfield computation and tDCS sim-
ulation. In order to provide an end-to-end solution to the users, go-
ing frommesh generation to sensitivity analysis, some useful func-
tionalities were developed.

In the following sections, even though building the code base
took most of my time, I do not get into the details of the implemen-
tation (I redirect the interested reader to the Github repository 1 of
the project and its documentation 2). In order to improve themain-
tainability and overall quality of the tool, I decided to build upon
already published and validated tools and focused on providing a
unified interface.

With this in mind, the surrogate modelling with Gaussian pro-
cesses is achieved with Scikit-learn [Pedregosa et al., 2011b] and

1. https://github.com/CyclotronResearchCentre/shamo
2. https://cyclotronresearchcentre.github.io/shamo/index.html
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Shamo provides tools to easily extract the training data from a se-
ries of simulations. The same way, the sensitivity indices are com-
puted with SALib [Herman and Usher, 2017]. Thus, I do not de-
scribe how these functionalities are implemented in the package.

Instead, I focus on some interesting functionalities that are part
of Shamo and the decisions that lead to their creation. These char-
acteristics of Shamo are mainly concentrated on the generation of
the finite element models, since it is the most sensitive part of the
simulation. Indeed, since this is the starting point of all the further
analyses, building a bad model can only yield bad results.

4.1. Mesh generation
As explained in Section 3.1, the finite element method used to

solve Poisson’s equation relies on a discretisation of the conductor
volume into small elements. This process, referred to as meshing,
is a key step in the modelling of current in the head of a subject (or
in any conductive medium).

The traditional approach tomesh awhole head is inherited from
the boundary element method. Indeed, it consists in generating
the interfaces of the different tissues and then filling the space in-
between with volume elements. Unfortunately, it is not trivial to
generate proper non-intersecting manifold surfaces (See
Definition 4.1) for each tissue class. To ensure that all the surfaces
are manifolds, they often require post-processing using tools such
asMeshFix [Attene, 2010] to remove self-intersecting polygons and
fill holes.

Definition 4.1 A manifold surface is a surface that com-
pletely encloses a volume and, thus, presents no hole.
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Due to the complexity of generating a mesh, most of the tools
available to simulate current in the head rely on a specific segmen-
tation andmeshing pipeline, where both steps are intertwined and
cannot be performed separately. Following what is mentioned in
Section 2.4, the fact that automated segmentation pipelines often
fail at segmenting non-standard heads (e.g., non-healthy tissues,
deformities…) is a major limitation of this all-in-one approach.

To solve this issue, Shamo provides a meshing tool that takes as
input a segmented volume (or a series of binary masks), irrespec-
tive of how it was generated or its shape. Generating the mesh di-
rectly froma labelled image is performedwithCGAL [Project, 2020]
andGmsh [Geuzaine and Remacle, 2009] tools. These are industrial
grade software that are already used in other similar applications
such as SimNIBS [Thielscher et al., 2015] or ROAST [Huang et al.,
2019].

With this technique, theuser canperform the segmentationwith
any tool of his choice, even manually if needed. It means that the
number of tissues included in themodel is only limited bywhat tis-
sue masks the user is actually able to produce. In Figures 4.1 and
4.2, I show two different meshes built from two labelled images
containing different numbers of tissue classes, 5 and 10 respec-
tively. Both labelled volumes are derived from the MIDA model
[Iacono et al., 2015].

While a model as complex as the one presented in Figure 4.2
is still not the norm in research and clinical applications, having
a tool that can build such a fine-grained model could be of great
interest for more specific studies. For instance, this model includes
blood vessels, meaning that, potentially, their conductivity could be
accounted for in the simulations.
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(a) (b)

(c)

Figure 4.1 (a) A 5 tissues labelled image, (b) themesh built from this
labelled image and (c) the surfaces of the different tissues composing the
mesh built with Shamo.
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(a) (b)

(c)

Figure 4.2 (a) A 10 tissues labelled image, (b) themesh built from this
labelled image and (c) the surfaces of the different tissues composing the
mesh built with Shamo.
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Figure 4.3 The surfaces
of the soft tissues and
skull built from the Visible
Human project using
Shamo.

Moreover, this also allows one to use
Shamo to simulate current in any conduc-
tor with an organic shape, not limited to
the head. The tool could eventually be
used for a whole body simulation, or to
study specific organs or regions. In ad-
dition, it gives the ability to include pros-
thetics or foreign bodies in the models.

To better emphasise the flexibility that
this pipeline brings, I used Shamo tomesh
a segmented version of the Visual Human
Project where bones and soft tissues are
differentiated (See Figure 4.3). It shows
that the method can be applied to larger,
not just head related, models.

The last thing to mention while dis-
cussing the mesh generation in Shamo is
that the size of the element can also be ex-
plicitly specified for each tissue. This al-
lows to better refine regions of interest if
needed or, conversely, to coarsely mesh
regions that are far from the effect to be
modelled (e.g., the shoulders in a tDCS
simulation where the model includes the
whole upper body).

4.2. Electrodes
Shamo was mainly developed for EEG and tDCS applications,

both of which rely on a set of electrodes placed on the scalp of the
subjects. In the real world, as described in Sections 2.2 and 2.3, the

84



Electrodes

electrodes usually have two main types of geometries: small cir-
cular electrodes for EEG and HD-tDCS or large rectangular patches
for tDCS.

There are three common ways to model these real world ob-
jects in simulations. The first and most detailed one meshes the
electrodes as 3D objects, including the added gel and casing. This
method is not implemented in Shamo.

Starting from the realistic model, the first possible simplifica-
tion is to consider only the contacting surface of the electrodes.
Two methods exist to model this surface. One is to use conform
surfaces, i.e. the contact surface is computed exactly with respect
to the support, and the other relies on the already performed dis-
cretisation. The conform approach, even thoughmore realistic, re-
quires editing the mesh of the support surface and its underlying
volume. The second one, implemented into Shamo and inspired
by the work of Ziegler et al. [2014], uses the already generated sur-
face mesh and extracts the elements that are inside the expected
interface (i.e., their barycentre lies inside the contact surface).

Model Included

Point

Surf. (Not conform)

Surf. (Conform)

Volume

Table 4.1 The electrode
models included in Shamo.

Finally, and this can only be consid-
ered for small circular electrodes, the
surface of contact can be reduced to a
single point in its centre. For the rest
of this work, I refer to the electrodes
produced by the non-conform approach
as surface electrodes and those resulting
from the pointwise method as point elec-
trodes. An illustration of the difference
between these three methods is shown in
Figure 4.4.

Table 4.1 shows which of these models are included in Shamo.
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(a) (b) (c)

Figure 4.4 An illustration of (a) a point electrode, (b) a surface electrode
built using the non‑conformmethod and (c) the same electrode using the
conform approach.

4.2.1. Comparison
To assess these different electrode models (i.e., point electrode,

surface electrode and conform electrode), I computed the magni-
tude of the current density induced by the injection of 1A into an
isotropic cube with edge length of 20 cm. The anode and the cath-
ode were placed in the middle of opposite faces. This simple sim-
ulation was repeated for two electrode sizes (i.e., radius) and the
relative difference

d =
|j1| − |j2|

|j1|
between each pairs of the three electrode models was computed.
The obtained results are presented in Figures 4.5 and 4.6 for circu-
lar electrodes with diameters of 1 and 5 cm respectively.

Apart from some numerical artefacts in the corners of the cube
(See the note below), the regions where the differences between
the models is not negligible are really close to the electrodes them-
selves. The point electrode is the one yielding the highest differ-
ences with the conform model.
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Note The magnitude of the current density close to the cor-
ners of the cube on is very low, since almost no current passes
through these regions. Thus, even though the relative error
is higher there, the absolute error remains negligible.

As expected, when compared to a small conform electrode, the
regions where the difference is high remain close to the electrodes.
This is not the case when the electrodes to model become larger.
Consequently, point electrodes canbeused tomodel EEGelectrodes
but should not be considered for larger patches such as those em-
ployed in tDCS.

On the other hand, the non-conform electrodes are comparable
to the conform ones for small and large electrodes. Indeed, when
simulating current flow through the head of a subject, the regions
of interest are located in the brain (possibly deep) which is sur-
rounded by the skull playing the role of an insulator. Thus, the fact
that both the point and non-conform surface electrodes induce al-
most the same current density as the conform surface in such re-
gions allowed us to use these simpler models (Point electrodes for
EEG or HD-tDCS and surface electrodes for tDCS). In Shamo, point
and surface electrodes are interchangeable and can even bemixed
in a single model if needed.
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Figure 4.5 A comparison of the current density induced in a cube resulting
from the injection of a 1 A current through electrodes with 1 cm diameter.
The diagonal figures show themeasured current density while the
off‑diagonal ones show the relative difference between the corresponding
pairs.
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Figure 4.6 A comparison of the current density induced in a cube resulting
from the injection of a 1 A current through electrodes with 5 cm diameter.
The diagonal figures show themeasured current density while the
off‑diagonal ones show the relative difference between the corresponding
pairs.
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4.3. Tissues properties
As discussed in Section 3.2, the electric conductivity of the bio-

logical tissues can be considered as either isotropic or anisotropic.
While, most of the time, researchers and practitioners use isotropic
properties to solve the EEG forward problem and simulate tDCS, it
has been shown that anisotropy of both the white matter and the
skull influence these processes [Marin et al., 1998; Haueisen et al.,
2002; Wolters et al., 2006; Bangera et al., 2010; Güllmar et al., 2010;
Vorwerk et al., 2014].

Figure 4.7 A slice of amodel
including a tensor for whitematter
anisotropy. The conductivity across
the corpus callosum appears greater
than in the rest of the tissue.

Consequently, Shamo pro-
vides different ways to embed
anisotropic fields into finite el-
ement models that can then be
used to define the properties of
the tissues during the simula-
tions. This opens some possi-
bilities, since isotropic proper-
ties can also be modelled using
a conductivity tensor with or-
thogonal eigenvectors and
equal eigenvalues.

To better explain all the im-
plications of this functionality,
I built two spherical models
that only share the mesh of
their outer surface (i.e., the sur-
face of the scalp). The first
model contains the five main

tissue classes composing the head, namely white matter, gray mat-
ter, cerebrospinal fluid, skull and scalp, modelled as concentric
spheres. Thismodel can be though of as a boundary elementmodel
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inwhich the volumes between the tissue interfaces have beenfilled
with tetrahedron. On the other hand, the second model was ob-
tained by keeping only the outer surface of the first one and filling
it with tetrahedron. We refer to those models as the model 5t and
model 1t respectively.

Both models were edited to add two point electrodes on oppo-
site sides of the spheres. This is why they share their external sur-
face mesh, since it ensures that the nodes on which the electrodes
are placed are located at the exact same coordinates. Figure 4.8
presents the two meshes and the boundaries of the different com-
partments, as well as a cut of the resulting meshes.

Tissues κ (Sm−1)

Scalp 0.4137

Skull 0.0160

CSF 1.7100

GM 0.4660

WM 0.2167

Table 4.2 The values
of electrical
conductivity used in
the simulations.

First, let us consider the casewhere all the
tissues are isotropic. In this case, the tradi-
tional approach would be to build a model
similar to 5t and to set the electric conduc-
tivity of each compartment during the simu-
lation. Another option would be to define a
tensor that encapsulates the isotropic prop-
erties of the different tissues and spanning
over the whole volume and to embed it in a
model composed of only one compartment,
such as 1t. We compared the values of the
magnitude of the current density resulting from the injection of an
electric current of 2mA between the two electrodes for both meth-
ods. The results are presented in Figure 4.9a and the conductivity
values used in these simulations are given in Table 4.2.

The relative difference between the magnitude of the current
density computed with the different models is negligible almost
everywhere in the sphere, apart from around the interfaces. In-
deed, in model 5t, the interfaces are modelled by smooth spheres.
In opposition, model 1t does not contain any smooth interface and,
consequently, in those regions, the difference between the models
is greater. Nevertheless, it seems that the error around the central
sphere representing the white matter is negligible.
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(a) (b)

(c) (d)

Figure 4.8 The boundaries of the compartments from (a) model 5t and (c)
themodel 1t and their respective finite elementmodels (b) and (d).
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Now, it is also possible to consider anisotropic tissues. For this
example, I set the conductivity of the white matter to be 10 times
higher along the y-axis than along the other axes. Using the same
method as in the previous simulations, the conductivity of the iso-
tropic compartments is set during the simulation formodel 5twhile
it is encapsulated in the tensor for model 1t. The results of these
simulations are shown in Figure 4.9b.

Similarly to the previous simulations, the relative difference is
greater around the interfaces. The difference is that, this time, the
interface between the isotropic gray matter and the anisotropic
white matter is higher. The reason for that is the same (i.e., the
difference of smoothness of the interfaces), but it is amplified by
the difference between the conductivity of the two media.

Being able to model the conductivity of different tissues using a
mesh that only contains a single compartment can be useful for
multiple reasons. First, meshing the whole head without need-
ing the boundaries of the different compartments could reduce the
complexity of the mesh generation process. While the previously
presented meshing method already tackles this problem, using a
single compartment could also be useful in cases where no previ-
ous segmentation is needed. For instance, using MR-EIT, one could
provide a continuous field of conductivity across the whole head
without specifying the number of tissues and their respective dis-
tribution.

Still, building such amesh yieldsmore noisy interfaces between
the compartments, meaning that, for convoluted tissues of interest
such as gray matter, this method could produce non-negligible er-
rors. In the previous examples, I only considered either as many
compartments as tissues or a single one. However, a hybrid ap-
proach could be implemented. In such approach, the traditional
model composed of only five tissue classes could be enhanced by
virtually increasing the number of tissues embedded using differ-
ent tensors for each compartment. For instance, the soft tissue
compartment usually contains the skin, fat, muscles, and blood ves-
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(a)

(b)

Figure 4.9 A comparison of the current density resulting from the injection
of a 2mA induced in amulti‑shell sphere, with conductivity set as a single
value for each compartment, and a single‑shell sphere, with conductivity
determined as a tensor. The conductivity of the central sphere is defined as
(a) isotropic and (b) anisotropic in bothmodels. Themiddle figure represents
the relative difference between (left)model 5t and (right) model 1t. The cut
is along the xz‑plane.
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sels. While modelling the blood vessels using a tensor would re-
quire to set a very small mesh size, it would be easy to differentiate
fat, muscles and skin.

This technique, as explained in Section 3.2, was mainly consid-
ered for the skull in order to separate the compact and soft bone,
butwith Shamo, nothing prevents the user to apply it to other tissue
classes.
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While the development of Shamo is at the heart ofmy thesis, it is
not the actual goal. Indeed, the question that first lead to the devel-
opment of Shamo concerned the reported inaccuracies in the de-
termination of the sources (localisation andmagnitude) of the EEG
signal recorded due to the uncertainty in the electric conductivity
of the biological tissues. Researchers studied the influence of these
parameters andof othermodel choices, such as skullmodelling and
tissues anisotropy, and showed that it induces erroneous electric
field and potential estimations [Haueisen et al., 1995, 1997, 2002;
Vallaghe and Clerc, 2009; Jochmann et al., 2011; Dannhauer et al.,
2011; Lanfer et al., 2012; Akalin Acar and Makeig, 2013; Montes-
Restrepo et al., 2014; Cho et al., 2015; Akalin Acar andMakeig, 2013;
Wolters et al., 2006; Vorwerk et al., 2019a; Saturnino et al., 2019].

As described in Section 2.2, the source reconstruction is per-
formed in two steps: solving the forward then the inverse prob-
lems. Since Shamo is dedicated to the forward simulations, we de-
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cided to study the influence of the conductivity parameters on the
computed leadfield matrix for a single subject.

In addition to these physical parameters, we compared three
skull models. Indeed, skull acts as an electrical insulator. Thus,
different representation of this tissue have been proposed [Sadleir
andArgibay, 2007; Dannhauer et al., 2011; Lanfer et al., 2012;Montes-
Restrepo et al., 2014]. Usually, a single compartment is used to
model the skull. This is partly due to the fact that further segment-
ing it into spongy and compact bone is not trivial and not included
in most of automated segmentation pipelines. Still, recently, meth-
ods havebeenpublished to differentiate the two tissue classes [Puonti
et al., 2020; Taberna et al., 2021]. An anisotropic model, where the
radial and tangential conductivity differ, have also been studied by
Fuchs et al. [2007]. In the present application, we compared only
models differing in geometry, with isotropic conductivity in each
tissue compartment, and did not consider the tensor approach.

The results of this application are partly available in our pub-
lished work (See Appendix A).

5.1. Dataset
For this study, we considered a single subject based on the mul-

timodal imaging-based detailed anatomical model of the human
head and neck (MIDA) [Iacono et al., 2015]. This model consists of a
350×480×480magnetic resonance imagewith voxels of 0.5×0.5×0.5
mm3 segmented into 116 different tissue classes.

No other image is providedwith it (e.g., the original T1-weighted
or diffusionweighted images). Thus, themodelswe derived did not
include an anisotropy tensor for the white matter.

98



Finite elementmodels

5.2. Finite elementmodels
In order to evaluate the effect of different skull models on the

EEG forward problem, we derived 3 different finite element mod-
els with distinct skull structure. The first step to build these geome-
tries was to merge the structures of the MIDA model into the main
tissue classes we were interested in, namely, white matter (WM),
gray matter (GM), cerebrospinal fluid (CSF), the different compart-
ment of the skull and the remaining tissues that we classified as
soft (SFT). Then, the most complex FEM was built using Shamo. It
defines a four compartments skull. The lower part, common to all
three models (SKL), the inner and outer tables (respectively SKL
ICPT and SKL OCPT) and the spongy (SKL SPG). This model, which
considers 3 different skull volumes for the upper part, is referred
to asmodel 3.

The resulting mesh was composed of 1.355× 106 tetrahedra. To
make sure that the results producedwith the differentmodelswere
comparable, we then used this initial geometry to define model 1
andmodel 2which respectively used a single compartment for the
whole skull (SKL) and a three compartments skull comprising the
lower part (SKL), the spongy (SKL SPG) and the compact (SKL CPT)
bone (i.e., 2 skull volumes for the upper part). This was achieved
using Gmsh [Geuzaine and Remacle, 2009].

The three different skull representations and themesh ofmodel
3 are shown in Figure 5.1.
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(a) (b) (c)

(d)

Figure 5.1 A sagittal cut of (a) the segmented images for model 1 where the
skull is a single isotropic compartment, (b) for model 2 with spongy and
compact bone differentiated (upper part only), (c) for model 3 where the
outer and inner tables of the skull are differentiated (upper part only) and
(d) themesh corresponding tomodel 3. In (a), (b) and (c), the lower part of
the skull is the same.
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5.3. Electrode placement

Figure 5.2 The electrodes
from the international 10‑10
EEG system used to build the
leadfieldmatrix.

After building these finite ele-
mentmodels, 63 point electrodeswere
added (See Section 4.2) based on the
international 10-10 EEG system, in-
cluding the fiducials for the nose, left
and right ears, and inion (See Sec-
tion 2.2.2). For the simulations pre-
sented below, the latter serves as the
reference, while the other fiducials
are not considered in the building pro-
cess of the leadfield matrix. Thus, 59
electrodes were included, as shown in
Figure 5.2.

5.4. Electricconductivityof the
tissues

As discussed in Section 3.2, the review of the electric conductiv-
ity measurements of the different tissues composing the head from
McCann et al. [2019] leads to truncated normal distributions of this
property for most of the tissue classes, as summarised in Table 5.1.
These informed probability distributions were used for a first set
of models, based on the 3 meshes described in Section 5.2, that we
refer to asmodel 1A,model 2A andmodel 3A.

In addition to these empirical distributions, we defined a uni-
form distribution spanning the whole range of the reported con-
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Tissues Parameters (Sm−1) Model
Name Abbr. Col. Min. Max. Mean Std. 1 2 3

Scalp SCP 0.1370 2.1000 0.4137 0.1760

Skull (Whole) SKL 0.0182 1.7180 0.0160 0.0190

Skull (Spongy) SKL SPG 0.0012 0.2890 0.0497 0.0735

Skull (Compact) SKL CPT 0.0024 0.0079 0.0046 0.0016

Skull (Outer table) SKL OCPT 0.0008 0.0078 0.0049 0.0029

Skull (Inner table) SKL ICPT 0.0028 0.0129 0.0068 0.0036

Cerebrospinal fluid CSF 1.0000 2.5100 1.7100 0.2981

Gray matter GM 0.0600 2.4700 0.4660 0.2392

White matter WM 0.0646 0.8100 0.2167 0.1703

Extended EXT - 0.0008 2.5100 - - - - -

Table 5.1 The tissues and their respective electric conductivity parameters
used for the differentmodels.

ductivity values for all the tissue classes considered. We called it
the extended distribution (EXT). It represents a worst case scenario
where no prior information on the electric conductivity of the tis-
sues would be available. We applied this distribution to all the tis-
sues of a second set of models further referred asmodel 1B,model
2B andmodel 3B.

5.5. Leadfieldmatrices
Following the reciprocity principle applied on element basis,

described in Section 3.1.5 and implemented in Shamo, the com-
puted leadfield matrix resulting from a single simulation, referred
to as [l]fullwas too large for practical use (e.g., source reconstruction
or, in this case, sensitivity analysis). Indeed, given that the cur-
rent sources should only appear in the gray matter, that the mesh
for this particular tissue is made of about 368000 tetrahedra, and
that we have considered 59 active electrodes, the size of [l]full was
59× 3× 368000.
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Figure 5.4 The leadfieldmatrix computed formodel 3 using themean
conductivity values for all the tissues.

Figure 5.3 The remaining 2127
potential source sites embedded in
the generated leadfieldmatrices.

A solution is to reduce the
spatial resolution. In their pa-
per, Michel and Brunet [2019]
state that the definition of the
spatial resolution is a sensi-
tive problem but that increas-
ing it, i.e., lowering the mini-
mum distance between two po-
tential source sites, does not
lead to a linear increase in the
accuracy of the reconstructed
sources. Actually, this accu-
racy has a limit due to the fact
that the amount of information
provided to the inverse prob-
lem remains constant since the
number of electrodes is fixed.

Therefore, we fixed the minimum source-to-source distance to
7.5mm. This yielded a total of 2127 sources (See Figure 5.3) and,
thus, a leadfieldmatrix [l] ∈ R59×6381 which was waymoremanage-
able than [l]full. The reduced leadfield matrix computed for model
3 with the mean conductivity values is shown in Figure 5.4.
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5.6. Uncertaintyquantification
and sensitivity analysis

The goal of this studywas to assess the influence of the different
skull models and of the uncertainty on the electric conductivity of
the tissues on the computation of the forward model. As explained
in Section 3.3, the expressions for the Sobol indices require a single
scalar output. Therefore, we chose to investigate the uncertainty
and the sensitivity of the whole matrix to the values of the conduc-
tivities κ = [κWM, . . . , κSCP] by considering a distance metric m(κ)
relative to the leadfield matrix computed for the mean conductiv-
ity values [l]ref = [l(κ̄)]

m(κ) = ||[l(κ)]− [l]ref||F, Eq. 5.1

where [l(κ)] is the leadfield matrix computed with the electric con-
ductivity of the tissues set to κ and || . . . ||F is the Frobenius norm.

For both the uncertainty quantification and sensitivity analysis,
101 simulations were performed for each of the 6models. The first
simulation was built with κ̄ (and are the same for models A and B)
while the 100 others used electric conductivity values determined
by sampling the parameters space with a Halton sequence. Thus,
we used a total of 603 simulations.

5.6.1. Uncertainty quantification
The results from these simulations allowed us to compute the

above-mentioned metric for the different models. The distribu-
tions we obtained are shown in Figure 5.5. The unit of the metric
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Models A Models B

Figure 5.5 The distributions of themetric computed for the different
models.

is not interpretable, since it depends on the number of elements in
the matrix, but it still allows us to directly compare the different
models.

5.6.2. Models comparison
To compare the outputs of the models pairwise, we used multi-

ple Bayesian linearmodelswith Bambi [Capretto et al., 2020]which
is based on PyMC3 [Salvatier et al., 2016]

Y ∼ N (µ, σ2), Eq. 5.2

where Y is dependent variable (i.e., the metric) and

µ = α+ β ·X + ϵ, Eq. 5.3

with α the intercept, β the slope, X the independent variable (i.e.,
the model) and ϵ the error term. For all the models below, weakly
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informative priors were set [Westfall, 2017] and they were fitted
using the no-u-turn sampler (NUTS) [Hoffman and Gelman, 2011].

To assess the significance of the effect of the independent pa-
rameter on the metric, we used the 95% highest density interval
(HDI) and the region of practical evidence (ROPE) [Kruschke and
Liddell, 2018]. In this method, the ROPE represents a range of val-
ues that are considered equivalent to the null value. If the 95%HDI
lies completely inside of the ROPE (or if they intersect formore than
97.5%), one can conclude that the parameter is null. Conversely, if
the 95% HDI does not intersect with the ROPE (or if they intersect
for less than 2.5%), the parameter can be considered non-null. The
boundaries of the ROPE were set to ±0.1 · std(Y ).

Ref. Comp. β (95% HDI) ROPE

1B 1A [−45 119.7, −44 163.3] ±2800.2
2B 2A [−41 468.7, −40 971.3] ±2235.2
3B 3A [−41 881.5, −41 159.2] ±2459.7

Table 5.2 The 95%HDI and ROPE of the
slopes computedwhen comparing the results
of different conductivity priors.

First, we compared
the results from themod-
els A and B. To do so, the
values of X were set to
0 for metrics computed
with models B and to 1
for those resulting from
models A. This way, the

slope represents the expected reduction of the metric when mov-
ing from setting very weak priors on the conductivity of the tissues
to setting more constrained priors. The 95%HDI computed for the
different β are presented in Table 5.2. For all three models, using
themore informed probability distributions for the conductivity of
the tissues yields a large reduction of the metric.

Ref. Comp. β (95% HDI) ROPE

1A 2A [−1151.1, −745.1] ±749.5
1A 3A [ 585.1, 1054.3] ±831.2
2A 3A [ 1546.2, 2003.8] ±804.0

1B 2B [−4860.1, −3871.6] ±1759.1
1B 3B [−2835.5, −1738.9] ±1980.4
2B 3B [ 1686.0, 2456.6] ±1363.3

Table 5.3 The 95%HDI and ROPE of the
slopes computedwhen comparing the results
of different skull models.

Then, we compared
the skull models two-by-
two (i.e., 1-2, 1-3 and 2-3).
The results are displayed
in Table 5.3. The greyed
out rows show the cases
where the 95% HDI of
the slope intersects with
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the ROPE for more than 2.5% and less than 97.5%. For those, we
cannot conclude whether there is, or not, a difference. Still, for
both 2A-3A and 2B-3B, the slope is positive.

5.6.3. Sensitivity analysis
After building Gaussian process regressors for each of the six

models, we computed the first and total order Sobol indices as de-
scribed in Section 3.3. They are presented in Figure 5.6.

5.7. Discussion
As we would have anticipated, Figure 5.5 and the results from

Table 5.2 show that the variability and average of the samples of
models A are lower than the ones of their corresponding models B.
Indeed, as explained earlier, using the extended uniform distribu-
tion is equivalent to having a very weak prior on the electric prop-
erties of the tissues. This yieldswider distributions of the computed
metric with larger discrepancies on average than the outputs of the
models with more constraining priors. Thus, using more informed
probability distributions for the electric conductivity reduces the
intrinsic variability of the output of the models.

Still, we would have expected a reduction of the variability be-
tween models 1A and 2A/3A and an increase between models 1B
and 2B/3B. Indeed, the skull models include an increasing num-
ber of compartments from models 1 to 3. For those considering
the constrained probability distributions of κ from McCann et al.
[2019], since the ranges of these distributions is orders of magni-
tude smaller for compact skull, outer and inner tables than for
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(a)

Models A Models B

(b)

Models A Models B

(c)

Models A Models B

Figure 5.6 The computed first (left) and total (right) order Sobol indices for
(a) models 1A and 1B, (b) models 2A and 2B and (c) models 3A and 3B.
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the whole skull, the uncertainty lying in the model inputs is lower
in models 2A/3A than in model 1A. Consequently, one could ex-
pect a reduction of the uncertainty in the output metric. Similarly,
models B employ the extended distribution for all of their tissues.
Hence, increasing the number of tissues in the model increases
the uncertainty in the inputs of the simulations and should yield
a higher uncertainty on the output.

The computed Sobol indices provide an explanation to this
counter-intuitive behaviour. In Figure 5.6, the computed si and s

(t)
i

corresponding to any skull related tissue (SKL, SKL SPG, SKL CPT,
SKL OCPT and SKL ICPT) are so close to 0 that they are all negligi-
ble. It means that the variance of the computed metric is not ex-
plained by the uncertainty stemming from their electric conduc-
tivity. Moreover, the comparison of the skull models shows that
differentiating the compact and spongy bone compartments could
yield a lower average metric and thus a smaller difference with
the reference matrix. Yet, further dividing the compact skull into
its inner and outer tables increases the uncertainty in the model
output.

On the other hand, the conductivity of gray matter alone ex-
plains about 90% of the overall variance of the metric for all the
models. Since the extent of the range of the conductivity proba-
bility distribution for this tissue is one of the largest reported, and
considering the related Sobol indices, our results indicate that, in
order to obtain a better accuracy in the EEG forward solution, re-
searchers should focus on acquiring more accurate values of κGM.

5.8. Conclusion
In this first application, we assessed the influence of the uncer-

tainty of the tissues electric conductivity and of different skullmod-
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els on the computed EEG forward solution for a single subject. The
goal was to demonstrate the functionalities of Shamo while, first,
performing an experiment similar to what we would like to be-
come the norm in EEG source reconstruction and, second, hinting
at which tissue models and conductivity one should focus on.

The interest of Shamo for such study is discussed in Chapters 7
and 8. Here, I focus on the application itself.

The results presented above confirm that the uncertainty on the
tissues electric conductivity induces variability in the computed
EEG forward solution, and that improving the accuracy of these
parameters reduces the variation in the output. For our specific
case, the process revealed that adding the spongy bone compart-
ment to the model could reduce the variability of the output, but
that this is not one of the key parameters for improving the accu-
racy. While such claim goes against the results of Vorwerk et al.
[2019a], this can be explained by the difference in the input distri-
butions used. Indeed, those considered here are much wider for
gray matter, while much tighter for the different skull compart-
ments. Our results also corroborate those from Van Uitert et al.
[2004] and Saturnino et al. [2019] which conclude that the tissues
closer to the dipoles have more influence than those far away.

To conclude, this EEG application shows that it is important to
determine accurately the electric conductivity of the tissues com-
posing the head of a subject in order to compute an accurate EEG
forward solution.
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Another important question that Shamo tries to address is to de-
termine the source of variability in reported results from transcra-
nial direct current stimulation. Indeed, the ever-increasing num-
ber of tDCS papers tend to show that tDCS suffers from two major
issues: the high inter-subject variability in the response to the stim-
ulation and the lack of reproducibility of some published results in
follow-up studies.

With a percentage of expected response generally lower than
50%[Müller-Dahlhaus et al., 2008; Jacobson et al., 2012], themethod
reliability is questionable. Wiethoff et al. [2014] concludes that the
after-effect of tDCS on corticospinal excitability is highly variable,
and the systematic review of Horvath et al. [2015] rose questions
about the efficacy of such device and the underlying mechanisms.

In our paper (See Appendix A), Shamowas also applied to tDCS:
as for the EEG forward problem, the key question was the sensi-
tivity to tissue conductivity in a single head model. These results
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are briefly summarized in Section 6.1. The following sections then
tackle tDCS and its sensitivity in a broader sense (The related paper
in available in Appendix B).

6.1. Preliminary results
(a) (b)

Figure 6.1 (a) The electrodemontage used for the simulations and (b) the
electric potential measured on the scalp resulting from the reference
simulation, where the electric conductivity was set to the reference value for
each tissue.

In this experiment, we simulated a HD-tDCS experiment where
electrode P3 was set as a 4mA injector and electrodes TP9, C3, P1
and O1 were set to ground. We used the mesh and conductivity
distributions from model 3A as presented in Sections 5.2 and 5.4.
Figure 6.1a presents the electrode montage used for this analysis,
while Figure 6.1b shows the electric potentialmeasured on the scalp
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for a simulation using this montage andwhere the electric conduc-
tivity of the tissues was set to their respective reference value.

Figure 6.2 The distribution of the
outputmetric.

To study the sensitivity of
the model to the conductiv-
ity parameters, we defined the
metric of interest as the aver-
age of the norm of the current
density ¯|j| (Am−2) in an arbi-
trary small region of 368mm3

located 22.6mm under CP3.
Similarly to the EEG ap-

plication, we sampled the in-
put parameters space using 100
samples drawn from a Halton
quasi-random sequence [Hal-
ton, 1960], performed a simulation for each of these and extracted
the metric of interest (See Figure 6.2 for an overview of the distri-
bution of the output metric).

First order Total order

Figure 6.3 The computed first and
total order Sobol indices.

Then, we computed both
the first and total order Sobol
indices for this metric. The
results are displayed in Fig-
ure 6.3. From these sensitiv-
ity indices, we can see that the
metric is most sensitive to the
electric conductivity of both the
scalp and the soft compartment
of the skull (by order of impor-
tance). This comes as no sur-
prise, since all the electrodes
are placed relatively close to
each other on the surface of the
scalp. Consequently, most of the current remains concentrated in
this compartment since it follows the path of least resistance. More-
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over, si and s
(t)
i are almost equal for each tissue class. Thus, we

can conclude that, in this particular configuration, there is almost
no interaction between the different parameters and that regions
not located directly under the stimulating electrode are weakly af-
fected by the stimulation.

6.2. tDCS experimental setups

After these preliminary results, we decided to focus on tDCS
rather thanHD-tDCS since the current is supposed to cross thewhole
head, and should thus be more sensitive to the different tissues
electric conductivity. As for the EEG application, we did not want
to focus solely on the conductivity of the tissues.

Hence, we first identified three sources of variability in tDCS ex-
periments designs: the subject head geometry, the physical proper-
ties of the tissues, and the electrode placement. To evaluate the ef-
fect of these parameters, we performed a simulation study by com-
puting the electric field induced in four different regions of interest
(ROI) of the left hemisphere by the injection of 2mA with six elec-
trode montages (See Table 6.1) and calculated the induced trans-
membrane potential (ITP) on different head geometries (i.e., 20 syn-
thetic subjects). Previous studies reported ITP values between 0.2
and 0.5mV [Radman et al., 2009; Opitz et al., 2016].

In the process, we account for an error of 1 cm on the anode
placement in four directions relative to the reference EEG 10-20 po-
sition and for the uncertainty on the electric conductivity of the
biological tissues.
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Anode Cathode ROI Bipolar Unipolar

C3 C4
MC

C3 Fp2

F3 F4
dlPFC

F3 Fp2

F7 F8 vmPFC

P3 P4 IPS

Table 6.1 The electrodemontages considered and the regions of interest
they target.

6.3. Dataset

As opposed to the previous applications, we wanted to include
multiple subjects in the analysis. For this purpose, we used the
dataset of 20 simulated normal healthy adults (10 males and 10 fe-
males) made available by BrainWeb 1.

For each subject, this dataset provides a structural T1-weighted
generated based on a SFLASH sequence (TR =22ms, TE =9.2ms,
flip angle =30° and 1mm isotropic voxel size), 12 fuzzy tissue prob-
ability maps and a discrete segmented volume with 0.5 × 0.5 × 0.5
mm3 voxels [Aubert-Broche et al., 2006a,b].

From these images, we only used the T1-weighted and discrete
models converted into NIfTI files using Nibabel [Brett et al., 2020]
and sorted following BIDS specifications [Gorgolewski et al., 2016].

1. https://brainweb.bic.mni.mcgill.ca/
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6.4. Finite elementmodels
To generate the finite element models, we had to clean the la-

belled volumes in order to remove external objects and noise in
four consecutive steps (See Figure 6.4a).

First, subjects 18 and 42 included big objects adjacent to the
scalp label. Hence, we manually created binary masks using itk-
SNAP [Yushkevich et al., 2006] to remove these without deteriorat-
ing the surface of the scalp. Other subjects presented external ob-
jects, but they were separated from the head by at least one layer
of voxels, so we did not have to execute this manual step for them.

SEG-11 SEG-05

Tissue Label Tissue Label

WM 3 → WM 1

GM 2 → GM 2

CSF 1 → CSF 3

SKL 7 → SKL 4
MRW 11

FAT 4

→ SFT 5
MSL 5

SKN 6

BLD 8

FAT2 9

DURA 10

Table 6.2 Tissuemerging rules used
to convert the original SEG‑11model
into the SEG‑05 used in this work. The
tissues and abbreviations are white
matter (WM), graymatter (GM),
cerebrospinal fluid (CSF), skull (SKL),
bonemarrow (MRW), fat (FAT/FAT2),
muscle (MSL), skin (SKN), blood
vessels (BLD), duramatter (DURA) and
soft tissues (SFT).

Next, we computed whole
head binary masks. These
masks embedded some noise
in the form of small clusters,
mainly around the eyes and
the neck. To remove those,
we performed an iterative bi-
nary opening using SciPy [Vir-
tanen et al., 2020] until no dif-
ference between two iterations
was measured.

This step resulted in the def-
inition of some clusters (e.g.,
the head and external objects).
To remove every remaining
non-head object, we kept only
the largest cluster.

Finally, we performed mor-
phological operations to en-
force at least one layer of CSF
around the graymatter and one
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layer of soft tissues around the skull. This yielded the labelled im-
ages containing 11 tissues that we refer to as SEG-11.

While we could have directly used these 11 tissues to build the
finite element models (as explained in Section 4.1), we wanted to
use the most common model in research and clinical applications
and thus reduced its complexity. This simpler model only includes
the 5 usual tissue classes, namely, white matter (WM), gray matter
(GM), cerebrospinal fluid (CSF), skull (SKL) and soft tissues (SFT).
Therefore, we merged tissues from the SEG-11 models into these
and obtained the SEG-05 models. The merging rules are shown in
Table 6.2 and the resulting labels are presented in Figure 6.4b for
subject 41.

Finally, the SEG-05 images were processed with Shamo to gen-
erate the 20 subject specific finite element models. These models
contain more than 2 × 106 tetrahedra, and a sagittal cut of the one
produced for subject 41 is shown in Figure 6.4c.

6.5. Electrode placement
Since one of the goals of this study was to evaluate the effect

of an error on the placement of the electrodes, we considered 5
different positions of the anode for each experiment. These place-
ments are the reference one, where the anode is centred on the
international EEG 10-20 system position, and the other four result
from a displacement of 1 cm in central (C)/lateral (L) and anterior
(A)/posterior (P) directions. The central-lateral axis goes from the
ears toward the symmetry axis of the head, while the anterior-
posterior axis goes from the front to the back of the head.

To easily refer to the different stimulating electrodes, we named
them after their reference 10-20 position and their displacement.
For instance, the P3 anode displaced of 1 cm in the central direction
if referred to as “P3C”.
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(a) (b)

(c)

Figure 6.4 (a) The original segmented volume,(b) the SEG‑05 labels
obtained after cleaning andmerging and (c) the resultingmesh built with
Shamo for subject 41.
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The BrainWeb dataset does not include any electrode informa-
tion. Consequently, we first located manually the landmarks de-
scribed in Section 2.2.2, namely, the nasion (NZ), the inion (IZ), and
the left and right helix-tragus junctions (LHJ/RHJ) in subject space
coordinates usingMRIcron [Rorden et al., 2007].

Figure 6.5 The computed positions
of the EEG 10‑20 international system
electrodes for subject 41.

Based on these landmarks,
we followed the method pro-
posed by Jurcak et al. [2005]
to virtually place all the elec-
trodes of the EEG 10-20 sys-
tem. This technique starts by
the generation of a high defini-
tion surface mesh of the whole
head, which we produced us-
ing Shamo. The rest of the pro-
cedure relies on the extraction
of curves onwhich the geodesic
distance between two points is
evaluated, in order to follow
the distance ratios prescribed
by the standard and their dis-
placed counterparts. The re-
sulting positions for subject 41
are presented in Figure 6.5.

Finally, using the meshes described above and the computed
electrode positions, we produced a finite element model for each
electrode montage. The electrodes were modelled as 5 × 5 cm2

patches, which yielded 30 models per subject (i.e., a total of 600
models altogether). Examples of the built models are shown in Fig-
ure 6.6 for subject 41.
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(a) (b) (c)

(d) (e) (f)

Figure 6.6 The finite elementmodels of the reference electrodemontages
for (a) C3‑C4, (b) C3‑Fp2, (c) F3‑F4, (d) F3‑Fp2, (e) F7‑F8 and (f) P3‑P4
electrodes for subject 41.
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6.6. Electricconductivityof the
tissues

Just like for the EEG application and preliminary results, we
considered the electrical conductivity values published byMcCann
et al. [2019]. The electric conductivity for the soft tissues (SFT) was
set as the one reported for the scalp since its range encompasses the
ranges of fat, muscles and blood which are the three main classes
we merged into it.

Using a Halton quasi-random sequence [Halton, 1960], we drew
20 different conductivity profiles κ = [κWM, κGM, κCSF, κSKL, κSFT]
by sampling the 5D conductivity space defined by the probability
densities defined in Table 6.3.

In addition to these profiles, we also considered the reference
one, defined as the κ̄ = [ ¯κWM, ¯κGM, ¯κCSF, ¯κSKL, ¯κSFT]. Thus, a total of
21 conductivity profiles were used in the simulations.

Tissues Electrical conductivity (Sm−1)

Name Abbr. Col. Min. Max. Mean Std.

White mater WM 0.0646 0.8100 0.2167 0.1703

Gray matter GM 0.0600 2.4700 0.4660 0.2392

Cerebrospinal fluid CSF 1.0000 2.5100 1.7100 0.2981

Skull SKL 0.0182 1.7180 0.0160 0.0190

Soft tissues SFT 0.1370 2.1000 0.4137 0.1760

Table 6.3 The tissues and their respective electric conductivity parameters
as reported by McCann et al. [2019].
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6.7. Regions of interest
As explained in Table 6.1, each electrode montage targets a spe-

cific region of interest in the left hemisphere. To extract individual
binary masks of these brain areas for each subject, we relied on
three different cortical surface atlases (See Section 2.5: Brodmann
[Fischl et al., 2008], CP-MMP 1.0 [Glasser et al., 2016] andMarsAtlas
[Auzias et al., 2016].

Unfortunately, the latter is not available in fsaverage space (i.e.,
the standard space for FreeSurfer defined as a reference cortical
surface) [Mills, 2016]. However, it has been published in Colin27
space [Holmes et al., 1998]. To produce the proper labels in fsav-
erage space fromMarsAtlas, we first converted the segmented vol-
ume into labels in the native space of the subject. Next, we regis-
tered these labels onto fsaverage cortical surface with the surface
registration tools from FreeSurfer [Dale et al., 1999]. The resulting
labels for the four regions of interest are displayed on fsaverage in
Figure 6.7.

Once all the labels were extracted and projected on fsaverage,
we registered themon the cortical surfaces of each subject and con-
verted them into binary masks coregistered on the SEG-05 images.
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(a) (b) (c) (d)

MC dlPFC vmPFC IPS

Figure 6.7 The left hemisphere regions of interest considered in this study
and extracted from Brodmann [Fischl et al., 2008], HCP‑MMP 1.0 [Glasser
et al., 2016] andMarsAtlas [Auzias et al., 2016] atlases displayed on the
inflated surface of fsaverage.

6.8. Simulation results
Considering the 20 subjects, their respective 30 finite element

models and the 21 conductivity profiles, we ran a total of 12600 sim-
ulationswherewe computed the electric potential v (V), the electric
field e (Vm−1), and the current density j (Am−2) resulting from the
injection of a 2mA current by the anode.

To ease further processing, thesefieldswere converted intoNIfTI
images by sampling them on a regular 1× 1× 1mm3 grid with the
sameorientation as the SEG-05 image. Then, by applying theROI bi-
nary masks to these images, we extracted the values of these fields
for all the voxels of the regions of interest in each simulation and
stored it in a DuckDB database [Raasveldt and Mühleisen, 2019].
In addition, we computed both the components normal and tan-
gential to the cortical surface of e and j. Finally, we calculated the
average absolute values for all the previously describedmetrics for
each ROI and simulation.
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(a) (b)

MC (C3-C4) MC (C3-Fp2) dlPFC (F3-F4) dlPFC (F3-Fp2) vmPFC (F7-F8) IPS (P3-P4)

Figure 6.8 The average absolute value of (a) themagnitude of the electric
field and (b) its radial component for the ROIs targeted by the 6 different
experiments.

For the rest of this work, we mainly focused on the magnitude
of the electric field |e| and on the magnitude of its radial compo-
nent (i.e., the component normal to the cortical surface) |er|. An
overview of these two metrics, for the 6 different montages, is pre-
sented in Figure 6.8 and a more in-depth view of the results for the
different experiments is available in Section C.1.

Overall, the mean absolute magnitude of the electric field ¯|e|
ranges from 47.2 to 644.2mVm−1 and its component normal to the
cortical surface ¯|er| from 24.2 to 470.7mVm−1.

In order to better picture the results, I show the data obtained
for the C3-C4 electrodemontage targeting themotor cortex all along
the following sections. Figure 6.9 shows the results for this specific
montage, and the outcome of the other experiments are provided
in Annex C.
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(a) (b)

Figure 6.9 The average absolute value of (a) themagnitude of the electric
field and (b) its radial component for the C3‑C4 electrodemontage targeting
themotor cortex.

6.9. Models comparison
Just like we did for the EEG application in Section 5.6.2, we com-

pared the results fromdifferentmodels using Bayesian linearmod-
els defined with Bambi [Capretto et al., 2020]. The basic expression
for these is still

Y ∼ N (µ, σ2), Eq. 6.1

but the expression of µ was extended to include multiple slopes as

µ = α+ β ·X + ϵ, Eq. 6.2

where β = [β1, . . . , βn is the vector containing the different slopes
andX = [X1, . . . , Xn]

⊤ are the independent variables. We refer to
the models followings these expressions as pooled.

Indeed, as opposed to the EEG application, here, we considered
multiple subjects. Thus, we also evaluated mixed effect models to
account for the variability induced by the subjects themselves. The
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mixed effect models, referred to as hierarchic, have different ex-
pressions for µ, α and β for each subject

µi = αi + βi ·X + ϵ, Eq. 6.3

αi = α(com) + α
(sub)
i , Eq. 6.4

(βj)i = β
(com)
j +

(
β
(sub)
j

)
i
, Eq. 6.5

where α(com) and β
(com)
j are respectively the common intercept and

slopes and α
(sub)
i and

(
β
(sub)
j

)
i
are the subject specific contributions

to the intercept and slopes.
These models were also fitted using weak priors set automat-

ically [Westfall, 2017] and the NUTS sampler [Hoffman and Gel-
man, 2011]. The significance of a parameter was assessed using
the 95% HDI and ROPE method [Kruschke and Liddell, 2018] (See
Section 5.6.2 for an explanation of the method).

In the next paragraphs, I describe the different linear models
that we built in order to compare the results and their respective
outputs.

6.9.1. Anode placement

Figure 6.10 presents the results of the simulations obtained by
displacing the anode of the C3-C4 electrode montage and targeting
the motor cortex of 1 cm with regard to the reference EEG 10-20
position.

Wedefined themodels to assess the difference between themea-
surements computed for each of the 5 anode placements from Sec-
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(a) (b)

Figure 6.10 The average absolute value of (a) themagnitude of the electric
field and (b) its radial component for the C3‑C4 electrodemontage targeting
themotor cortex, grouped by anode placement.

tion 6.5 as

µ = α+
4∑

p=1

βp ·Xp + ϵ,

µi = αi +
4∑

p=1

(βp)i ·Xp + ϵ,

where p corresponds to a specific displacement of the anode (ante-
rior, central, lateral or posterior) and Xp is either 0 or 1 based on
the anode used to obtain the record.

Table C.2 presents the 95%HDI of the different slopes computed
for the hierarchic model. The gray cells show the intervals that in-
tercept at least 2.5%with the ROPE.Most of the calculated intervals
intercept with the ROPE, but none of them is fully included in it.
Consequently, we cannot state that a 1 cm displacement of the an-
ode has a significant effect on the electric field induced in the ROI
or not.

Still, by computing the ratio between the boundaries of the βp
and the intercept, we obtain that such a displacement can yield a
relative difference to the reference of up to 27.6% for ¯|e| and 27.1%
for ¯|er|.
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(a) (b)

Figure 6.11 The average absolute value of (a) themagnitude of the electric
field and (b) its radial component for the C3‑C4 electrodemontage targeting
themotor cortex grouped by conductivity profile.

6.9.2. Conductivity profile
Similarly to the anode placement, Figure 6.11 shows the results

computed for the C3-C4 electrode montage.
Using the same method as previously, we compared the values

of both |ē| and |ēr| calculated for the 20 conductivity profiles drawn
using the Halton sequence with the values obtained for the refer-
ence one. Thus, we transformed the linear models into

µ = α+
20∑
k=1

βk ·Xk + ϵ,

µi = αi +

20∑
k=1

(βk)i ·Xk + ϵ.

In these expressions, k refers to one of the 20 conductivity profiles
established using the quasi-random Halton sequence and Xk is 1
or 0.
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The computed 95%HDI for the different slopes of the hierarchic
models are shown in Tables C.3 and C.4. As opposed to the anode
placement, the majority of the 95%HDI fall completely outside the
ROPE, indicating that the uncertainty on the conductivity of the tis-
sues has a significant influence on the electric field computed in
the ROI.

Moreover, by calculating the same absolute ratio between the
different β and α, we found that some conductivity profiles could
induce a difference relative to the reference of up to 112.5% and
146.6% for ¯|e| and ¯|er| respectively.

6.9.3. Bipolar and unipolar electrode mon‑
tage

As shown in Table 6.1, we simulated a bipolar and a unipolar
electrodemontage to stimulate both theMC and the dlPFC. In order
to compare the values of |ē| and |ēr| computed for each pair, we
fitted the models with the following expected values,

µ = α+ βuni ·Xuni + ϵ,

µi = αi + (βuni)i ·Xuni + ϵ,

with Xuni equal either to 1 if the montage is unipolar or to 0 other-
wise. For the electrode montages targeting the motor cortex, Fig-
ure 6.12 presents the results of both the unipolar and bipolar mon-
tages.

The values of βuni are presented in Table C.1 for the hierarchic
model. Using the unipolarmontagewhen stimulating theMCyields
an electric field of up to 13.7% lower thanwith the bipolarmontage
(However, the significance of the effect on the normal component
of the electric field is undetermined). On the other hand, bothmon-
tages yield equivalent radial component of the electric field when
targeting the dlPFC.
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(a) (b)

Figure 6.12 The average absolute value of (a) themagnitude of the electric
field and (b) its radial component for the electrodemontages targeting the
motor.

6.10. Induced transmembrane
potential

The steady-state induced trans-membranepotential, denotedby
∆ui (mV), is the potential difference measured between the inside
uin and the outside uout of the cell membrane added to the resting
state potential ∆ur and due to an external stimulation,

uin − uout = ∆ur +∆ui.

While tDCS is not able to trigger action potentials, it is gener-
ally accepted that it generates an induced trans-membrane poten-
tial which hyperpolarizes the neuronmembranes under the anode
and depolarizes it under the cathode [Pelletier and Cicchetti, 2015;
Tanaka et al., 2020]. In the present work, we compute the ITP re-
sulting from the different simulations using analytical expressions
for both spherical and spheroidal cells.
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6.10.1. Spherical cell
The theoretical steady-state ITP resulting from an external elec-

tric field e (Vm−1) in a spherical cell of radius r1 (m) with a non-
conductive plasma membrane is described by Schwann’s equation
[Schwan, 1994]

∆ui =
3

2
|e|r1cos(θ), Eq. 6.6

with θ the angle between the electric field and the vector going from
the centre of the cell to the point of the membrane where the ITP
is calculated.

Consequently, the maximum value of ∆ui is obtained for θ = π.
To avoid using an arbitrary value for r1, we finally compute

max(∆ui)

r1
=

3

2
|e|. Eq. 6.7

6.10.2. Spheroidal cell
Pyramidal cortical cells are not spherical, thus we also consider

spheroidal cells r1 > r2 = r3 with a shape ratio γ = r1/r2 and elon-
gated along the normal to the cortical surface. For such cells, Valic
et al. [2003] gives the following expression of the ITP,

∆ui = |e|sin(φ)r2sin(θ)
1− lx

+ |e|cos(φ)r1cos(θ)
1− lz

, Eq. 6.8

where φ is the angle between the electric field and the main axis of
the cell and lx and lz are the depolarization factors

lz =
1− λ2

2λ3

(
log

(
1 + λ

1− λ

)
− 2λ

)
, Eq. 6.9

lx =
1

2
(1− lz), Eq. 6.10
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with λ =
√

1− (1/γ)2.
Since we already computed the tangential and radial compo-

nents of the electric field denoted by |et| and |er|, we have

∆ui = |et|
r2sin(θ)
1− lx

+ |er|
r1cos(θ)
1− lz

, Eq. 6.11

which is maximized when

θ = θmax = atan
(

|et|(1− lz)

|er|γ(1− lz)

)
. Eq. 6.12

Following what we did for the spherical cell, we derive the size
independent expression

max(∆ui)

r1
= |et|

sin(θmax)

γ(1− lx)
+ |er|

cos(θmax)

1− lz
. Eq. 6.13

6.10.3. Computed values
Using these two cellmodels, we calculated themaximum ITP ra-

tios for all the simulations (See Table C.5). As for themodel compar-
ison, I present the results calculated for the C3-C4 electrode mon-
tage in Figure 6.13.

Across all the experiments, the spherical and spheroidal cell
models respectively yield values ranging from 70.9 to 966.3mVm−1

and from 21.5 to 441.5mVm−1.

6.11. Discussion
First, the results pertaining to the anode placement error are

in line with the ones published by Ramaraju et al. [2018]. Indeed,
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(a) (b)

(c) (d)

Figure 6.13 The computed induced transmembrane potential for (a) the
spherical model, and (b), (c) and (d) the spheroidal models with shape ratios
of 10/8, 10/5 and 10/2 respectively.
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we find that the F3-Fp2 electrode montage is more sensitive to the
anode placement than the others. However, the 27.6% change in
the mean absolute electric field in the left dlPFC is on par with the
38% they measured in the left frontal lobe.

While such a difference is non-negligible, it results from a dis-
placement of 1 cm of the anode. Considering the work of Rich and
Gillick [2019] which showed that the inter- and intra-rater error
on the electrode placement is lower than 1 cm, the shift in the an-
ode position we studied can be regarded as an upper bound to the
plausible experimental deviation. As a result, the actual variation
of the electric field induced in the ROI due to a misplaced electrode
is expected to be smaller than what we calculated here.

On the other hand, the results of the models assessing the effect
of different conductivity profiles are concerning. As for the anode
placement, the F3-Fp2 electrode montage is the most influenced,
with a difference of up to 112.5% on ¯|e|. Still, it is interesting to
note that the direction of the electric field varies themost in the IPS
when using the P3-P4 electrode montage. Indeed, the maximum
relative difference can be up to 146.6% on ¯|er|.

These considerable variations lead us to question the informa-
tion we can extract by modelling tDCS. Until we can feed the mod-
els with more educated priors about the electrical conductivity of
the biological tissues, the randomness of the outputs makes it al-
most impossible to gain insights and draw conclusions about the
electric effect of the stimulation. Moreover, the conventional way
of modelling tDCS, which involves setting almost arbitrary values
to the electrical conductivity of the tissues based on the literature,
identical for each subject, appears as too big an assumption. Tech-
niques such as magnetic resonance electric impedance tomography
(MREIT) [Woo and Seo, 2008] and conductivity tensor imaging (CTI)
[Marino et al., 2021] could provide a better description of the elec-
tric properties of the tissues of each subject.

Finally, tDCS is expected to generate an induced transmembrane
potential of around 0.5mV if the neurons of the target region of in-
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terest [Radman et al., 2009; Opitz et al., 2016]. The values we ob-
tain analytically, considering r1 = 1 mm, are at most of the same
order of magnitude but can be smaller by up to a factor of 20. Once
again, this value relies heavily on the conductivity profile of the
models. Still, computing ITP values of 0.02mV, as compared to a
resting potential of−70mVand a reference action potential thresh-
old of−55mV, highlights the questionable validity of tDCS as a neu-
romodulation technique. This concern has already been raised by
other papers before (See Section 2.3).

Still, it is important tomention that, since the present study only
focused on simulations, we cannot draw conclusions on the func-
tional long-lasting effect of the different experiments.

6.12. Conclusion
In the present work, we studied the influence of an error of

placement of the anode and of the unknown conductivity profile
on the computed electric field resulting from 6 different tDCS ex-
periment targeting 4 regions of interest on 20 subjects using a sim-
ulation tool. A total of 12600 simulations were performed.

The models used in this paper show that a reasonable anode
placement yields a negligible tomoderate effect on the electric field
induced in the ROI. They also highlight that the uncertainty on the
electrical conductivity of the tissuesmakes it practically impossible
to assess the electrical effect of the stimulation in the ROI and that
using fixed standard values could potentially yield highly biased
results.

We also computed the induced trans-membrane potential in-
duced by the stimulation for different simple cellmodels. The over-
all size of the computed ITP is concerning. All those results corrob-
orate what was introduced in Section 2.3.
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While we did not perform functional experiments in parallel
to the modelling work, the overall results presented through this
application force us to call for caution when designing, modelling
and analysing a tDCS experiment.
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Discussion

In the introduction, I explained that the reproducibility crisis
and raising concerns about the high variability in reported results
initiated the development of Shamo. Thus my goal was to build
a tool that could be used on a subject basis to perform uncertainty
quantification and sensitivity analysis in order to better understand
the inter-subject variability and to allow researchers and practi-
tioners to draw more cautious and informed conclusions.

One of the main issues for simulation based studies like those
we performedwas the amount of computing power required to ac-
tually achieve UQ/SA. The combined usage of Gaussian processes
regressors to serve as surrogate models and of high performance
computing infrastructuresmade it possible in a timelymanner. In-
deed, usingGRP as ametamodel highly reduces the number of eval-
uations of the actual model required, which reduces the cost of the
final analysis while encapsulating the uncertainty in the surrogate
model itself due to its Bayesian approach. Consequently, the num-
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ber of evaluations performed becomes a user adjustable variable
and directly correlates with the width of the credibility interval of
the computed metrics (e.g., the Sobol indices for SA). In Section 6,
weusedBayesian linearmodels instead ofGaussianprocess regres-
sors to account for the hierarchical nature of the data. These linear
models, as their name suggests and just like GPR, provide informa-
tion about the uncertainty in the results. At the same time, this
application demonstrated the usability of Shamo for a study with
multiple subjects.

WhenperformingEEG source reconstruction or simulating tDCS,
constructing ameshwith appropriate properties is not a trivial task
and, as discussed in Section 4.1, researchers often rely on pipelines
where the segmentation step is intertwined with the meshing step.
BrainStorm [Tadel et al., 2011] provides an interface to those all-
in-one pipeline as implemented in Brain2Mesh [Tran et al., 2020a],
SimNIBS [Thielscher et al., 2015], ROAST [Huang et al., 2019] and
FieldTrip [Oostenveld et al., 2011]. By decoupling these two opera-
tions, Shamo opens up awhole newhorizon of possibilities. Indeed,
building a mesh directly from a segmented image solves many is-
sues. First, it removes the limitation on the number of tissues em-
bedded in the model and allows the user to generate the tissue
masks using the method of his choice. As demonstrated in our EEG
application (See Section 5), this feature is useful to compare differ-
ent geometries. Moreover, the separation of the segmentation and
mesh generation processes gives the ability to model non-standard
heads or even other parts of the body. This could be used, for in-
stance, tomodel peoplewith prosthetics or deformities or even just
to study a very complex model such as the MIDA model composed
of 116 tissues [Iacono et al., 2015]. Finally, the fact that Shamo
does not implement a segmentation pipeline limits the number of
dependencies and favours the portability of the tool. When com-
pared to competing software such as SimNIBS or ROAST that have
some common dependencies with the presented tool (i.e., Gmsh
andGetDP), Shamodoes not require heavy, non-portable third-party
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tools nor tools with restrictive licenses.
Another important difference between Shamo and the other cited

toolboxes is how meshes are built: while most tools build the 3D
mesh first by 2D meshing the compartment interfaces, i.e. build-
ing a boundary element model, and then by filling the volumes
with tetrahedral elements, the presented technique does not re-
quire building and cleaning the tissue surfaces. This cleaning step
can be complex and time-consuming, since it needs to make sure
that none of the independent surfaces intersect.

After building the geometry, adding the electrodes is the next
step. As discussed in Section 4.2, Shamo does not provide a method
to add conform electrodes (i.e., electrodes with exact shapes) and
uses the already generated triangular elements to define the con-
tacting surfaces. This yields some approximations in the computed
fields around the electrodes themselves, but hardly any difference
further away. This method, however, is inspired by the one imple-
mented in the work of Ziegler et al. [2014]. In addition to these sur-
face electrodes, Shamo also provides point electrodes that shipwith
the advantage that runningmultiple simulations for different stim-
ulating electrode while keeping the same reference only requires
to define the problem once. Adding the conform electrodes to the
package would make it complete and leave the choice of electrode
model to the user.

Finally, as shown in Section 4.3, another functionality of Shamo
is its ability to account for anisotropy. This also provides a method
to build a model with a single tissue class and to specify the prop-
erties of each element with a tensor or, with a hybrid technique, it
can virtually increase the number of tissues included in the finite
element models. This approach, coupled with techniques such as
magnetic resonance electric impedance tomography (MREIT) [Jahng
et al., 2021; Soullié et al., 2021], could potentially remove the need
to accurately segmentmore tissues than the current fivemost com-
mon oneswhile providingmore individualised results based on ac-
tual measurements. Indeed, while using a single compartment for
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the whole head might not be compatible with the usual methods,
one could imagine using a 5 tissues model where the properties
of each tissue are governed by tensors and thus encapsulate the
different subclasses just like Tuch et al. [2001] did for the soft and
compact bone, but applied to soft tissues composed of fat, muscles,
blood vessels and skin. Without planning for the future, account-
ing for the anisotropy of the white matter is becoming more and
more usual.

While themodel definition steps differ from other similar tools,
it is worth noting that the processing pipeline used in Shamo, based
onGmsh [Geuzaine andRemacle, 2009] andGetDP [Geuzaine, 2007],
is already the one powering SimNIBS [Thielscher et al., 2015] and
ROAST [Huang et al., 2019], twowell established pieces of software.
Furthermore, the implemented problem definitions have been val-
idated previously by Ziegler et al. [2014]. Makinguse of these indus-
trial grade tools ensures the quality and reliability of the solutions.
It also provides an easy way to extend Shamo with new applica-
tions such as TMS or MEG. Indeed, since the simulation part is per-
formed with GetDP, adding new simulation types only requires the
definition of the corresponding problem file and of the wrapping
Python classes that would store the input parameters. The prob-
lem file contains the corresponding weak formulation that, in the
case of TMS and MEG, have already been studied [Thielscher et al.,
2015; Piastra et al., 2018]. In addition, just like for EEG and tDCS
where the electrodes can be modelled in different ways, multiple
coil models could also be added by leveraging the available mesh
edition methods.

Recently, SimNIBS added a module for uncertainty quantifica-
tion and sensitivity analysis [Saturnino et al., 2019] based on gener-
alised polynomial chaos (gPC). This shows the importance of such
analysis in the context of the simulation of head current. As op-
posed to SimNIBS, Shamowas built directly for these types of analy-
ses. Consequently, running a single simulation using deterministic
conductivity values or performing an uncertainty analysis by spec-
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ifying the properties as random variables rely on the same inter-
face. Moreover, Shamo was created to be extended, meaning that
the users are not limited to evaluating the effect of the uncertainty
in the conductivity parameters but can actually define new param-
eters. A simple example where the injected current is specified as
a random variable is implemented. While both gPC and GPR can
be used to build fast, accurate and deterministic surrogate models,
choosing GPR provides more information on the outcome than the
gPC approach. Indeed, the output of this metamodel is a random
variable that encapsulates the uncertainty on the computedmetric.
Thus, the user not only obtains the metric he is interested in, but
is also informed of its confidence interval. Furthermore, the fact
that GPR uses a kernel to constrain the range of possible functions
makes it more flexible than gPC [Owen et al., 2017]. Still, it is well
known that GPR scales as O(n3), where n is the size of the train-
ing dataset. This means that for a large number of random input
parameters, when the number of evaluations of the actual model
increases, gPC can still be relevant. Possible alternatives would be
to use sparse Gaussian processes that scale asO(nm2), wherem < n
[Schirru et al., 2011; Bauer et al., 2016].

An interesting side effect of building a surrogate model to per-
form uncertainty quantification and sensitivity analysis is that it
can be used for a completely different purpose: optimising the in-
put parameters. Indeed, while the main application of Shamo is
to model and propagate the uncertainty lying in the physical prop-
erties of the tissues that cannot be optimised due to their random
nature, the same workflow could be used to study the effect of the
electrode placement, just like in Chapter 6. The obtained regressor
could then be used in order to find the electrode position that yields
the optimal effect (e.g., the highest mean electric field in a region
of interest). The literature on this topic is quite scarce and usu-
ally limited to simulation applications, but the reported increase in
the measured electric field in the ROI are high [Dmochowski et al.,
2011; Khorrampanah et al., 2020]. Still, this could help to improve
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the efficacy of tDCS on non-homogenous populations.
Now that the added value of Shamo has been discussed, what

are the perspectives of this package? As stated previously, per-
forming uncertainty quantification could highly improve the qual-
ity and understanding of simulation results. By providing a single
user-friendly interface to either run a single simulation or several
dozens, Shamo facilitates the adoption of those otherwise complex
analyses. Still, while the tDCS application in Section 6 shows that
the tool can be used for a study with multiple subjects, we limited
ourselves to simulations and thus could not correlate the outcomes
of our experiments with actual behavioural or physiological data.
Thus, the very next step of this project should be to focus on eval-
uating the actual benefit of such added information on a real-case
study.

From a more technical point of view, adding the conform elec-
trodes as discussed above would allow Shamo to be on par with
the standards of the field. To further ease its adoption, it would
be interesting to provide methods to convert the generated mod-
els to/from other competing software formats. This would allow
the users to build the finite element models with tools they already
know and master such as SimNIBS and to use Shamo to perform
the simulations and analyses or, the other way round, to use the
mesh generation method of Shamo and run the simulations with
other packages. One could also compare the results and perfor-
mances of the tools one-to-one with the exact same model. Adding
solution to other problem types, such as TMS and MEG, would nat-
urally broaden the potential user base.

Still, no matter the level of details of the model, the absence of
an actual method to determine the electrical conductivity of the
tissues prevents researchers from producing truly realistic and ac-
curate models. Indeed, the benefit of adding more tissues in the
geometry is limited by the uncertainty lying in the properties of
those additional compartments. In order to improve the accuracy
of the simulations, one should focus on reducing this uncertainty
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rather than on improving tissue segmentation. In this context, un-
certainty and sensitivity analyses can help make better informed
choices of parameters values and provide information on which
parameter really matter. Since the sensitivity of the simulations
to the conductivity of the tissues depends both on the geometric
model (i.e., number of compartments and electrode placement) and
on the problem to be simulated, we recommend using UQ and SA
to increase the understanding of the results sensitivity profile and
find out which parameters have little influence on the outcome.
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8.
Conclusion and
perspectives

The intent of this work was to investigate the uncertainty and
sensitivity of simulation-based analyses such as EEG and tDCS. It
led to the development of a tool to perform uncertainty quantifi-
cation and sensitivity analysis on such computationally expensive
modelling applications. Consequently, wepublished Shamo, a light-
weight and portable Python package which defines a user-friendly
programming interface to several well established pieces of soft-
ware, giving the user a single tool to go from finite element model
generation to sensitivity analysis.

We showed the usability of this tool on two applications, one
of which has already been published (See Appendix A) while the
manuscript for the other is available as a preprint (SeeAppendixB).
On the one hand, the EEG application highlighted the flexibility of
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the proposed pipeline in terms of model generation by studying
three different skull geometries on a single subject. On the other
hand, the tDCS application highlighted the scalability of the tech-
nique with regard to the number of subjects as well as to the num-
ber of factors of variability. Indeed, not only did it allow evaluat-
ing the effect of the uncertainty of the electric conductivity of the
tissues on several tDCS experiments, but also the effect of head ge-
ometry and electrode placement.

By releasing this extendable toolbox, we provide researchers
and practitioners with a practical method to include UQ and SA
in their experimental protocols. As a first “real world” test, the
workflow is slated to be soon used in a real cognitive experiment,
which is the very next step after the two simulation studies we per-
formed. It should be noted that, compared to other toolkits like
SimNIBS or ROAST, Shamo can easily handle non-standard head
models, which is of main interest for clinical applications, where
patients are not always healthy adults. Froma computational point
of view, Shamo can be used on any platform ranging from a laptop
to high-performance clusters, the latter obviously allows faster UQ
and SA calculation. Moreover, without needing to modify the code
base, the described approach can readily be used to optimise the
electrode placement for a tDCS experiment. For instance, based
on the results obtained in Chapter 6, we are already able to esti-
mate an optimal position for the anode in order to maximise the
induced electric field in the ROI based on a reduced set of simula-
tions. Thanks to its versatilemodel generation technique and prob-
lem solver relying on GetDP, it could also be used for electrocardio-
graphy (ECG) using the exact same methods.

In the near future, Shamo could easily be extended to adapt to
a wider range of applications by adding support for TMS andMEG,
those problems being the magnetic equivalent of tDCS and EEG,
or even electroconvulsive therapy (ECT) [Rojas et al., 2022] and fo-
cused ultrasound (FUS) neuromodulation [Kamimura et al., 2020].
Considering its extendability and flexibility, future additions could
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target problems that are relatively far from its initial head mod-
elling purpose. The scope of such applications could include the
investigation of the effect of extremely low frequency stimulation
on cellular processes [Collard and Hinsenkamp, 2015] or dosime-
try of radio frequency magnetic waves in biological tissues [Wang
et al., 2021b].

When considering living tissues, most of the fields relying on
simulations face the same issues as tDCS or EEG. Thus, Shamo could
serve as a framework providing the foundation required to build
sensitivity analysis pipelines. This could help better understand
the sources of variability, but could also provide a way to draw
more educated conclusions. Uncertainty quantification and sen-
sitivity analysis are powerful tools that could provide partial an-
swers to the reproducibility crisis. The developments that took
place during this thesis make them accessible for complex simu-
lation based models.

To conclude this thesis, I would like to cite these two quotes:

” All models are wrong, but some are useful.
— George E. P. Box [1978]

and

” The only good statistics is Bayesian statistics.
— Lindley [1975]

Bayesian statistics allow researchers to account for what they
do not know about their models, that are consequently “wrong”
and inexact, and to draw“useful” and educated conclusions. Shamo
adheres to this philosophy, and so do I. I am convinced that un-
certainty and sensitivity analyses are part of the solution to the re-
producibility crisis alongwith FAIR data sharing, tool containerisa-
tion and reproducible pipeline orchestration and that it is our role,
as engineers, to build tools that help to improve the way science
works.
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A.
Paper 1

This appendix contains the original text of the first paper writ-
ten in the context of this thesis, entitled ”shamo: A tool for electro-
magnetic modeling, simulation and sensitivity analysis of the head”
and published in Neuroinformatics in March 2022 1.

1. https://doi.org/10.1007/s12021-022-09574-7
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Paper 1

Shamo: Atool forelectromag‑
neticmodeling, simulationand
sensitivity analysis of the head

Martin Grignard 2, Christophe Geuzaine 3 and Christophe Phillips2

Accurate electromagnetic modeling of the head of a subject
is of main interest in the fields of source reconstruction and
brain stimulation. Those processes rely heavily on the qual-
ity of the model and, even though the geometry of the tissues
can be extracted from magnetic resonance images (MRI) or
computed tomography (CT), their physical properties such
as the electrical conductivity are difficult to measure with
non intrusive techniques. In this paper, we propose a tool
to assess the uncertainty in the model parameters, the tis-
sue conductivity, as well as compute a parametric forward
models for electroencephalography (EEG) and transcranial
direct current stimulation (tDCS) current distribution.

A.1. Introduction
Accurate electromagnetic modeling of the head is of main inter-

est for electrophysiological source reconstruction techniques
(EEG/MEG) and brain stimulation
(tDCS/tMS). Such modeling must capture both the spatial distribu-
tion of the tissues and their physical properties like their electrical

2. GIGA CRC In-Vivo Imaging, University of Liège, Belgium
3. Department of Electrical Engineering and Computer Science, University of

Liège, Belgium
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conductivity. The former can be extracted from different anatom-
ical imaging techniques as magnetic resonance imaging (MRI) and
computed tomography (CT) but the latter is very difficult to mea-
sure in vivo on a subject basis, even if some properties can be de-
rived fromspecificMRI sequences [Tuch et al., 2001;Wuet al., 2018].

Anatomically realistic models must therefore rely on values of
physical parameters reported in the literature. The electrical con-
ductivity of biological tissues have been studied since the last cen-
tury [Burger and Milaan, 1943; Geddes and Baker, 1967; Gabriel
et al., 1996b,c,a; Latikka et al., 2001; Goncalves et al., 2003] and
new methods are still published to measure them accurately for
each subject [Akalin Acar et al., 2016]. The reported values have
been shown to vary both inter- and intra-subject due to temper-
ature, health status, age, or depending on the acquisition method
and environment, e.g. in vivo vs. ex vivo [McCann et al., 2019].

Due to the variability in the published values, the influence of
the chosen parameters and geometric models on the results of the
simulations have been studied for the past decades and shown to
induce erroneous electric field andpotential estimations [Haueisen
et al., 1995, 1997; Vallaghe and Clerc, 2009; Jochmann et al., 2011;
Montes-Restrepo et al., 2014; Cho et al., 2015; AkalinAcar andMakeig,
2013; Wolters et al., 2006; Vorwerk et al., 2019a; Saturnino et al.,
2019]. Errors in the localisation of the reconstructed dipoles of up
to 20mmhave been reported for basal brain locations [Lanfer et al.,
2012; Akalin Acar and Makeig, 2013]. Indeed, inaccuracies on the
physical parameters directly result in errors in the forward mod-
els, and thus in the reconstructed sources localization or current
flow.

In order to mitigate the variability in the results, different mod-
els for the skull have been proposed [Sadleir and Argibay, 2007;
Dannhauer et al., 2011; Lanfer et al., 2012; Montes-Restrepo et al.,
2014] since it acts as an electrical insulator, in EEG and tDCS, due
to its low conductivity compared to the other tissues. While it is
generally modeled as a single compartment, partly due to the fact
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that further segmenting it into spongy and compact bone is still not
included in most of automated segmentation pipelines, models dif-
ferentiating these two compartments have recently been proposed
[Puonti et al., 2020; Taberna et al., 2021]. Conductivity tensors have
also been considered where the radial and tangential conductivity
differ [Fuchs et al., 2007].

The same approach applied to white matter lead to different
models of its anisotropy which have been first correlated with the
water self diffusion tensor derived from diffusionweightedMR im-
ages (DWI) [Tuch et al., 2001]. Later, the equilibrium, volume frac-
tion and electrochemical models have been proposed [Wu et al.,
2018]. The influence of such anisotropy on EEG forward and in-
verse problems have also been studied [Güllmar et al., 2010; Bashar
et al., 2010]. Conductivity tensor imaging is still an open topic with
promising advances [Ziegler et al., 2014; Sajib et al., 2016; Katoch
et al., 2019].

In the past, sensitivity analysis have been mainly conducted as
the final goal of the studies. However, quantifying uncertainty in
individualmodels could help better understand the observed inter-
subject variability in brain stimulation and source reconstruction
in broader studies. This is why we introduce shamo, a Python open
source package 4 dedicated to stochastic electromagnetic modeling
of the head and sensitivity analysis of the results.

This toolbox aims at providing a unique solution for electro-
magnetic head modeling in both source reconstruction and brain
stimulation problems. While tools already exist for each of these
fields separately, for exampleBrainstorm [Tadel et al., 2011] orMNE
[Gramfort et al., 2013] for EEG and SimNIBS [Thielscher et al., 2015]
or ROAST [Huang et al., 2019] for tDCS to only name a few, shamo
offers an integrated solution. Moreover shamo provides a single,
easily extendable, API to performmesh generation, simulation and
sensitivity analysis.

Tohighlight themechanisms involved in our package anddemon-

4. https://github.com/CyclotronResearchCentre/shamo
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Materials andmethods

strate its usability and flexibility on actual cases, we apply it to the
EEG forward problem and to trans-cranial direct current stimula-
tion (tDCS) simulation. Both analyses are performed on a realistic
finite element model (FEM) derived from the MIDA model [Iacono
et al., 2015]. To evaluate the impact of different geometries for the
skull, we build three different models, considering either one, two
or thee layers for the skull, with different electrical conductivity
values for the inner and outer tables for the latter.

The sensitivity is then assessed through the computation of Sobol
indices [Sobol, 2001]. The random input parameters considered are
the values for the electrical conductivity of the tissues. To model
their probability density functions, we use the truncated normal
distributionpublished in the recent review fromMcCannet al. [2019]
as well as a unique uniform distribution, in a worst case scenario.
In the process, we compute surrogate models that, for the EEG for-
ward problem, results in a parametric leadfield matrix that can be
used to generate new forward models for any set of electrical con-
ductivity and, for the tDCS simulation, generates a model that can
compute the current density in a region of interest for the same
ranges of electrical conductivity.

A.2. Materials andmethods

In order to simulate the current flow inside the brain, a math-
ematical model is required. It must account for both the geometry
of the tissues and their properties. This section covers the model
generation, its parametrization, and sensitivity analysis.
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A.2.1. Finite elementmodel generation
To begin with, we focus on the geometrical aspect of the mod-

els, for which several construction methods have been proposed
[Hallez et al., 2007]: going from a simple multi-shell sphere to a
fully fledged finite element model (FEM). Two key features of FEM
are its ability to capture complex shapes and to allow for anisotropic
conductivity (in the form of a finite element field). Pipelines have
been developed to help researchers produce these models [Wind-
hoff et al., 2013; Nielsen et al., 2018; Huang et al., 2019; Vorwerk
et al., 2018]. As described by Huang et al. [2019], most of the avail-
able solutions for automated segmentation rely either on Matlab,
through SPM’s “Unified Segmentation” tool [Ashburner and Fris-
ton, 2005] and its toolboxes or on FSL and FreeSurfer [Smith et al.,
2004; Fischl et al., 2004]. The ensuingmodel generation step is gen-
erally tied to this specific segmentationmethod. Unfortunately this
prevents geometries for atypical non-healthy subjects or simply to
include other tissue types.

In shamo, we consider a FEM approach and mesh generation
but eschew the segmentation step. In effect the mesh is produced
directly from a segmented volume, i.e. where voxels are labeled
as being of one of any number of tissue classes. This allows us
to work with more intricate structures and even to model atypi-
cal cases, e.g. with prosthesis or abnormal tissue distributions (le-
sions, tumor, resection,...), by using manually segmented volumes
or custom automated segmentation pipelines.

For this work, we start from the multimodal imaging-based de-
tailed anatomical model of the human head and neck (MIDA) [Ia-
cono et al., 2015]: a 350 × 480 × 480 matrix of 0.5 × 0.5 × 0.5 mm3

voxels including 116 different structures. Based on this model, we
define three geometries with 5 to 7 different tissues (see Table A.1),
differing in how the skull is modeled.

First we merge the structures of the MIDA model to keep only
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Tissue Parameters (Sm−1) Model
Name Abbr. Color Min. Max. Mean Std. 1 2 3

Scalp SCP 0.1370 2.1000 0.4137 0.1760
Skull (Whole) SKL 0.0182 1.7180 0.0160 0.0190
Skull (Spongy) SKL SPG 0.0012 0.2890 0.0497 0.0735
Skull (Compact) SKL CPT 0.0024 0.0079 0.0046 0.0016
Skull (Outer table) SKL OCPT 0.0008 0.0078 0.0049 0.0029
Skull (Inner table) SKL ICPT 0.0028 0.0129 0.0068 0.0036
Cerebrospinal fluid CSF 1.0000 2.5100 1.7100 0.2981
Gray matter GM 0.0600 2.4700 0.4660 0.2392
White matter WM 0.0646 0.8100 0.2167 0.1703
Extended EXT - 0.0008 2.5100 - - - - -

1
Table A.1 The tissues used in this workwith the parameters of the
corresponding electrical conductivity distributions fromMcCann et al.
[2019]. The last three columns showwhich tissues are included in each
model.

the main head tissues: white matter, gray matter, cerebrospinal
fluid, scalp and the different parts of the skull. Then inmodel 1, the
upper part of the skull is represented as a single isotropic volume;
for model 2, the upper part of the skull is separated into spongia
and compacta; for the model 3, the latter is further divided into
outer and inner tables. Note though that the lower part of the skull
is the same for all our models and is modelled as a homogeneous
tissue class. The resulting models are illustrated in Figure A.1.

To generate the FEM tetrahedral mesh, we use CGAL [Project,
2020] with the labeled image of model 3. The resulting mesh, with
1.355 × 106 tetrahedra, then serves as a base for the other 2 mod-
els that only require the merging of some skull sub-compartments.
Thismerging is performedwithGmsh [Geuzaine andRemacle, 2009],
which is also used to annotate the mesh by specifying the names of
the tissues and adding the electrodes on the scalp. For the EEG for-
ward problem we consider the 63 electrodes of the international
10-10 system [Nuwer, 2018] including the fiducial markers for the
nose, the left and right ears and the inion. The latter is considered
as the reference for the rest of this work. For tDCS, we use a subset
of these electrodes: P3, TP9, C3, P1 and O1) where P3 is the current
injector.
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(a) (b)

(c) (d)

1
Figure A.1 Sagittal cuts of (a) the segmented images for model 1 where
skull is a single isotropic compartment, (b) for model 2 with spongy and
compact bone differentiated, (c) for model 3 where the outer and inner
tables of the skull are differentiated and (d) themesh corresponding to
model 3. In (a), (b) and (c), the lower part of the skull is the same.
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A.2.2. Electromagnetic modeling
Since capacitive effects can be neglected in the brain tissues for

the frequency range involved in brain activity [Plonsey and Hep-
pner, 1967], the so called quasi-static approximation applies: the
electromagnetic fields at time t only depend on the active sources
at this time. In such conditions, Maxwell’s equations reduce to a
generalized Poisson equation [Malmivuo and Plonsey, 1995; Hallez
et al., 2007] that provides a relationship between the electric poten-
tial in any point of a volume conductor and the current sources. We
first define the current density j (Am−2) and the source volume cur-
rent density ρs (Am−3) [Schimpf, 2007]. They are linked together by
the expression

∇ · j = ρs. Eq. A.1

The current density j is linearly related to the electric field e
(Vm−1) through Ohm’s law

j = σe Eq. A.2

where σ, the conductivity, can be a tensor field. Anisotropy of the
white matter has been shown to influence source reconstruction
[Haueisen et al., 2002; Güllmar et al., 2010] and the pipeline allows
for anisotropic tissues yet, in thiswork, σ is considered isotropic be-
cause no diffusion weighted images (DWI) is available in the MIDA
data. The quasi-static conditions described above allow us to write
the relationship between the electric field and the electric potential
field v (V) as

e = −∇v. Eq. A.3

Then combining Equations Eq. A.1, Eq. A.2 and Eq. A.3 leads to the
generalized Poisson equation:

∇ · (σ∇(v)) = −ρs. Eq. A.4
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Finally a homogeneous Neumann boundary condition is set on
the interface between the conductor volume and the air, and a
Dirichlet condition is added to set the reference electrode. We use
GetDP [Geuzaine, 2007] as a solver for the finite element model de-
scribed in section A.2.1. GetDP is an industrial grade solver and is
at the heart of some popular tools for head electromagnetic mod-
eling [Huang et al., 2019] and our implementation of the forward
problem have already been analytically validated by Ziegler et al.
[2014].

A.2.3. Electrical conductivity of tissues
As stated in Equation Eq. A.4, electrical conductivity plays a ma-

jor role in the computation of the electric potential and the other
related fields. Unfortunately, determining the exact electrical con-
ductivity σ (Sm−1) of the biological tissues in a non-intrusive man-
ner is an open issue. Multiple methods have been developed to
measure it either in vitro, ex vivo or even in vivo but struggle to pro-
vide an accurate and reliable value [Burger andMilaan, 1943; Ged-
des and Baker, 1967; Gabriel, 1996; Gabriel et al., 1996a,b,c; Latikka
et al., 2001; Goncalves et al., 2003]. McCann et al. [2019] reviewed
the values acquired with different techniques and under specific
conditions and derived a realistic underlying probability distribu-
tion in the form of a truncated normal distribution for the main
tissues composing the head. We use these distributions with the
3 models described in Section A.2.1, which we label Models 1a, 2a
and 3a.

In addition, wedefine auniformdistribution spanning thewhole
range of the reported conductivity values for all the tissue classes,
and refer to it as the extended distribution (EXT). This represents
a worst case scenario with no prior information on the conductiv-
ity of the different tissues. This uniform distribution is also used
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with the 3 FEMs, which we label Models 1b, 2b and 3b. The range
and distribution of conductivity values for the tissues considered
in each model are summarized in Table A.1.

The goal of the sensitivity analysis, see Section A.2.5, is to deter-
mine the parameters that drive the variability in the results. Com-
paring the sensitivity to the two sets of conductivity values, realistic
and extended, will allow us to assess the effect of the prior knowl-
edge added by the truncated normal distributions, especially for
the tissues with the narrowest distributions.

For the sake of clarity, we use lowercase letters to indicate a
known deterministic value whereas uppercase letters refer to ran-
dom values. For instance, the tissues conductivities are denoted
by the vector σ = [σ1, σ2, . . . , σd] and Σ = [Σ1, Σ2, . . . , Σd] corre-
sponds to the vector containing the random parameters modeled
by the distributions. Thus for each geometry i, we consider two
sets of conductivity distributions: either those introduced in [Mc-
Cann et al., 2019], giving Σa = [ΣWM, ΣGM, . . . , ΣSCP], or the same
extended distribution for each of the tissues, i.e.
Σb = [ΣEXT, ΣEXT, . . . , ΣEXT] as shown in Table A.1.

A.2.4. EEG and tDCS forward problem
When carrying out EEG source reconstruction analysis, one at-

tempts to recover the underlying brain activity inducing the ob-
served signal at the scalp level. This electrical activity is generally
modeled by one or more equivalent current dipoles characterized
by their coordinates in space r = [rx, ry, rz] and their dipole mo-
ment p = [px, py, pz] (Am). In practice, a set of discrete sources is
considered rather than the full continuous volume of the graymat-
ter. This set is called a source space and defines potential dipole
locations.

The relation between the source space containing n sources and

161



Paper 1

the electric potential measured onm electrodes at the scalp level is
given by the expression

[l] · s+ ε = v, Eq. A.5

where s = [p
(x)
1 , p

(y)
1 , p

(z)
1 , . . . , p

(x)
n , p

(y)
n , p

(z)
n ]T is the source vector

and p
(k)
j is the dipole moment of the source located in the j-th site

along k-axis,
ε = [ε1, . . . , εm]T and v = [v1, . . . , vm]T are respectively the additive
noise component vector and the vector of electrode potentials (V),
and [l] is equally referred to as the ”leadfield” or gain matrix. This
matrix looks like this

[l] =


l
(x)
1,1 l

(y)
1,1 l

(z)
1,1 . . . l
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1,n l
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(y)
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(z)
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 , Eq. A.6

where each element l(k)i,j corresponds to the electric potential vmea-
sured on the i-th electrode due to a current dipole with unitary
dipole moment located on the j-th site and oriented along k-axis
(VA−1m−1). This model encompasses all the geometric information
and the physical properties of the head tissues. In the rest of this pa-
per, the notation [l(σ)] is used when highlighting the dependencies
of the leadfield matrix on the values set for the electrical conduc-
tivity.

Following themethod described byWeinstein et al. [2000] based
on the reciprocity principle, we actually have to solve the tDCS for-
ward problem in order to generate the EEG leadfield. Indeed, to
compute [l] on an element basis, the reciprocity principle states
that to estimate the voltage difference between two points due to
a single current dipole, one needs to compute the electric field e at
the coordinates of the dipole resulting from the injection of a 1 A
current i between the two points, which is the definition of a tDCS
forward problem.

v1 − v2 =
e · p
i

Eq. A.7

162



Materials andmethods

The technique then consists in setting a reference electrode, itera-
tively injecting a 1 A current through the m active electrodes, and
estimating the electric field on the source space in the i-th row of
thematrix [l]. This step of the process is achieved in GetDPwith the
generalized minimal residual method (GMRES) configured with a
tolerance of 10−8 and an incomplete factorization (ILU) precondi-
tioner.

Given that the current sources should only exist in the graymat-
ter, that themesh for that tissue ismade of about 368000 tetrahedra,
and that we have a setup of 59 active electrodes, the whole lead-
fieldmatrix [l]full would theoretically have a size of 59×(3×368000),
which is too large for practical use. Therefore we arbitrarily fix the
average interval between two sources at 7.5 mm, resulting in 2127
sources and a leadfieldmatrix [l] ∈ R59×6381 which is moremanage-
able. This source-to-source distance influences both the the compu-
tational resources required to perform the source reconstruction,
since it is directly linked to the size of the leadfield matrix, and the
number of potentially reconstructed dipoles. In their paper,Michel
and Brunet [2019] state that the definition of the spatial resolution
is a sensitive problem but that increasing it does not lead to a lin-
ear increase of the accuracy. In fact, the accuracy has a limit due
to the fact that the amount of information provided to the inverse
problem remains constant since the number of electrodes is fixed.

A.2.5. Sensitivity analysis
As defined by Saltelli [2008], sensitivity analysis is the study of

how variation in the input parameters of a process influences the
variation in the output. In this field, two cases are differentiated.
The local sensitivity focuses on the uncertainty at a specific coordi-
nate of the parameters space Ω whereas the global sensitivity cap-
tures the variation across the whole space.
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Oneof themost used and studied global sensitivity analysis tech-
niques is the computation of the so called Sobol indices [Sobol, 2001;
Saltelli et al., 2010]. Let us consider a model Y = Y (X) where Y is
the random output variable and X = [X1, . . . , Xnp ] is the vector of
np random input variables. The first and total order Sobol indices
for the i-th input variable, si and s(t)i are defined by

si =
VXi(EX\i(Y | Xi))

V(Y )
, Eq. A.8

s(t)i =
EX\i(VXi(Y | X\i))

V(Y )
, Eq. A.9

where X\i is the vector of all the random inputs but Xi, si corre-
sponds to the variance in the output explained by Xi alone,
VXi(EX\i(Y | Xi)) is the variance explained by the i-th parameter,
also referred to as its main effect, and s(t)i is the output variance ex-
plained by Xi and all its interactions with the other input parame-
ters.

To compute Sobol indices, we follow the method presented by
Saltelli et al. [2010] and implemented in the python package SALib
[Herman and Usher, 2017] that provides a way to compute both si

and s
(t)
i from the same set of evaluations of the model, thus reduc-

ing the amount of computation required. This technique relies on
nd observations {(y(d)i ,x(d)

i , i = 1, . . . , nd} where each y(d)i = y(x(d)
i )

is the output of the model for a set of inputs x(d)
i = [x(d)i,1 , . . . , x

(d)
i,np

].
Let us define y(d) = [y(d)1 , . . . , y(d)nd

]T the vector of outputs and [x](d) =

[x(d)
1 , . . . ,x(d)

nd
]T the matrix of inputs.

The matrix [x](d) is built of np + 2 sub-matrices: [a], [b] and the
matrices [ab]

(i) where all the columns are the same as in [a] ex-
cept the i-th one coming from [b]. All these matrices have nr rows
and np columns. The input vectors x(d)

i composing the independent
matrices [a] and [b] are drawn from the parameters space Ω using
the Saltelli extension of Sobol quasi-random sequence [Sobol, 1967,
1976]. Such sequences are described in section A.2.6.
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Based on these samples, the numerators of Equations Eq. A.8
and Eq. A.9 are computed with

VXi(EX\i(Y | Xi))

=
1

nr

nr∑
j=1

y([b])j

(
y([ab])

(i)
j − y([a])j

)
,

Eq. A.10

and

EX\i(VXi(Y | X\i))

=
1

2nr

nr∑
j=1

(
y([a])j − y([ab])

(i)
j

)2
.

Eq. A.11

A.2.6. Surrogatemodel
The computation of the sensitivity indices described in section

A.2.5 requires a large number of model evaluations. When the es-
timation of the actual model (here the computation of the leadfield
matrix) is computationally heavy, a simpler model, referred to as
the surrogate model, can be used instead. This simpler version
must behave almost like if it were the real one but its evaluation
should require less computing power.

Building such a model is the goal of all the supervised learn-
ing techniques. Those methods start from a set of nd observations
y(d) = [y(d)1 , . . . , y(d)nd

]T of the actualmodel at different points of the pa-
rameters space [x](d) = [x(d)

1 , . . . , x(d)
nd
]T where y(d)i = y(x(d)

i )with y(x)
the real model. From this relatively small amount of evaluations of
the model, the surrogate model ŷ(x) is built so that ŷ = ŷ(x) ≈ y(x)
for any vector x ∈ Ω that is not in the training set [x](d).

The first step for building the surrogatemodel is then to draw nd

vectors x(d)
i to build the matrix [x](d). This can be performed with

various methods but here we consider quasi-random sequences.

165



Paper 1

Those sequences, compared to real randomsequences, take into ac-
count the previous points that have been drawn. They are used to
cover the space as efficiently as possible. In section A.2.5 the Saltelli
extension of Sobol sequence is used to define the coordinates and
here, to produce the training set for the surrogate model, we use a
Halton sequence [Halton, 1960] as implemented in chaospy [Fein-
berg and Langtangen, 2015].

In shamo, the generation of the surrogate model is carried out
with “GaussianProcesses Regression” (GPR) [Rasmussen andWilliams,
2006]. Let us define the notation for a multivariate normal distri-
butionN (µ, [γ])whereµ = [µ1, . . . , µnp ] is the vector ofmeans along
each axis and [γ] is the covariancematrixwhere each γi,i is the vari-
ance of the i-th random parameter and the elements γi,j are the
correlation between the i-th and the j-th variables.

To predict the nt values y(t) = [y
(t)
1 , . . . , y

(t)
nt ]

T on the test points
[x](t), GPR handles the problem as Bayesian inference. Under these
conditions, the learning samples are treated as random variables
following a multivariate normal distribution
P (y(d) | [x](d) = N (µ(d), [γ](d)). Here, the mean of this distribution is
set to the mean of the learning outputs. To consider the test points,
this expression becomes

P (y(d),y(t) | [x](d))

= N
(
µ(d),

[
[γ](t) [γ](t,d)

[γ](d,t) [γ](d) + ϵ[i]

])
,

Eq. A.12

with ϵ an added noise.
Next, the conditional distributionP (y(t) | y(d), [x](d)) = N (µ∗, [γ]∗)

is obtained with

µ∗ = µ(d) + [γ](t,d)([γ](d))−1(y(d) − µ(d)), Eq. A.13

[γ]∗ = [γ](t) − [γ](t,d)([γ](d))−1[γ](d,t). Eq. A.14

Finally, the mean values µ∗
i and the standard deviation γ∗i = [γ]∗i,i

are obtained by the marginalisation of each random variable. The
values µ∗

i are the predictors corresponding to the test points.
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During the training step, the hyper-parameters of the kernel are
optimisedbymaximising the log-marginal likelihood (LML) [Schirru
et al., 2011]. When the model outputs more than one scalar, the
process can be applied separately to each of the outputs, giving
one Gaussian process by output variable. Here, we use the imple-
mentation of the GPR from scikit-learn [Pedregosa et al., 2011a] and
follow the recommendations from Chen et al. [2016]. Thus, the re-
gression part of the GPR is set to the mean of the output variable
and the kernel is obtained by the product of a constant kernel and
a stationaryMatérn kernel with the smoothness parameter ν = 2.5,
thus resulting in the covariance function

k(x1,x2) =

(
1 +

√
5

l
d(x1,x2) +

5

3l
d(x1,x2)r

)

· exp
(
−
√
5

l
d(x1,x2)

)
.

Eq. A.15

A.3. Applications
We demonstrate the application of shamo on EEG and tDCS for-

ward problems.

A.3.1. EEG forward problem
As described in section A.2.4, the computation of the EEG for-

wardmodel is ofmain interest in source reconstructionbut is highly
dependent on the geometry and the physical properties of the tis-
sues.
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To build the surrogate model, we generate a set of leadfield ma-
trices [l(σ(i))] for 100 conductivity vectors σ(i) drawn from the pa-
rameters space Ω using a Halton sequence. This step results in a
leadfieldmatrixwhere each element is actually aGaussian process,
which gives us the ability to quickly construct any newmatrix [l̂(σ)]
for a specific conductivity vector σ.

The sensitivity indices defined in Equations Eq. A.8 and Eq. A.9
are only valid for a model with a single scalar output. Therefore
we choose to study the sensitivity of the whole matrix to the values
of σ with a distance measurem(σ) relative to a reference leadfield
matrix [l]ref, obtained with a fixed σ = σref

m(σ) = ∥[l(σ)]− [l]ref∥F , Eq. A.16

whereσref is themean value for each tissue (See Table A.1) and and
∥. . . ∥F is the Frobenius norm.

A surrogate model m̂(σ) is thus built for this function based on
the same training data as the parametric matrix introduced above.
Next, the first and total order Sobol indices are computed from two
sets of 40000 evaluations of the Gaussian process for the six models
of this study, as defined in Section A.2.3. The resulting indices are
shown in Figure A.2.

Clearly, for both the truncated distributions and the extended
uniform ones, the parameter with the largest influence on themet-
ric is the gray matter conductivity σGM. Whether one uses the nar-
row truncatednormal (models 2a/3a) or the extendeduniform (mod-
els 2b/3b) distributions for the compact skull and the outer and in-
ner tables has little influence on the Sobol indices.

Another interesting point is the increasing influence of the CSF
conductivity when the uniform distribution is used. While both its
first and total order Sobol indices inmodels 1a to 3a are very small,
the value of s(t)CSF for models 1b to 3b are non negligible meaning
there are interactions between parameters.
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(d) Model 2b
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(e) Model 3a
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(f) Model 3b
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Figure A.2 First (%) and total order Sobol indices of themetricm(σ) for
each tissue of eachmodel. In the left column, the values forΣ are the
truncated normal distributions fromMcCann et al. [2019] and int the right
column, the extended uniform distribution is used.
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A.3.2. Evaluation of the electrode potential
To illustrate the actual effect of the sensitivity described in the

above application, we calculate the electrical potential measured
on the scalp due to a single left frontal source located 17.8mm un-
der F3. Model 3 with the σref was used as a reference (Figure A.3b)
then the conductivity of GM was also set to the minimal and maxi-
mal value found in the literature (See Table A.1) leading to slightly
modified electrical potential scalp maps (Figure A.3a, c). The scalp
map differences of the latter two with the reference one is shown
in Figure A.3 d, e.

170



Applications
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Figure A.3 (a) the scalp potential (V) computed for σGM = σGM,min = 0.06
(Sm−1), (b) the scalp potential (V) obtained for σGM = σGM,ref = 0.466 (Sm−1)
and (c) the scalp potential (V) measuredwith σGM = σGM,max = 2.47. (d) and
(e) show the difference between the computed scalp potential and the
reference one (V) respectively for σGM = σGM,min and σGM = σGM,max.
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A.3.3. Transcranialdirectcurrentstimulation
(tDCS) simulation

Using the same formulation as for the EEG forward problem, we
can model tDCS and obtain the current density, electric potential
and electric field accross the whole head.

To illustrate this aspect, we consider aHD-tDCS experimentwhere
electrode P3 was set as a 4 mA injector and electrodes TP9, C3, P1
andO1were set to ground. We used themesh frommodel 3 and the
truncated normal conductivity distributions as inmodel 3a for this
simulation. As a metric to assess the sensitivity of the model with
regard to the conductivity values, we chose the mean of current
density norm in a small region of 368 mm3 located 22.6mm under
CP3. The results of these simulations are shown in Figure A.4. As an
extra feature for researchers in neuroscience, the estimated fields
can also be directly exported as a standardmultidimensional NifTI
image.

As visible in Figure A.4, current density is highest in the scalp
tissue between the electrodes, but also spreads diffusely through-
out the head volume. The tissues with the highest Sobol index are
the scalp, followed by the spongy compartment of the skull. This
comes as no surprise, as electrical current follows the path of least
resistance.
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Figure A.4 (a) A view of the scalp potential induced by the set electrodes
surrounded in white, (b) the first (%) and total order Sobol indices of the
mean current density in the ROI for each tissue conductivity, (c) a cut of the
current density inside the head resulting from the injection of current inside
the referencemodel whereσ = σref and (d) the same information in the
form of a NifTI file with a representation of the small mask used to compute
themean of the norm of the current density.
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A.4. Discussion
Thepipeline presented in thisworkuses severalwell established

methods. Here, we discuss the added value of such tool and techni-
cal choices and compare it to established solutions such as SimNIBS
[Thielscher et al., 2015] or BrainStorm [Tadel et al., 2011].

First, the generation of a realistic subject specific head model
is generally a tedious task involving the segmentation of the head
volume, based on MR or CT images, then the delineation of the tis-
sue interfaces. This step often requires further ad hoc cleaning to
ensure the surfaces are two dimensional manifold, i.e. they are
completely closed and thus have an inside and an outside. Then,
those surfaces must be integrated into a single mesh and the so de-
fined volumes filled with tetrahedral elements.

Several automated pipelines are now available is themost com-
mon toolboxes [Thielscher et al., 2015; Huang et al., 2019; Nielsen
et al., 2018] using either SPM [Ashburner and Friston, 2005] or
FSL/FreeSurfer [Smith et al., 2004; Fischl et al., 2004] to segment the
structural images. While this greatly simplifies model generation,
since it takes care of both the segmentation and meshing steps, it
also prevents the user from using non standard segmentations.

Here the FEMmesh is directly built from a 3D image made with
labeled voxels. This approach not only provides more control on
the refinement of the final mesh but also allows the any number of
tissues, even with complex configurations. In practice, this opens
the path formore specific cases such asmodeling prosthetic, metal-
lic plates or any other unusual head geometry. Moreover one can
freely choose the segmentation tool to use or could even proceed
manually for difficult cases.

As explained previously, themodel presented in this paper does
not consider the anisotropy of white matter because no tensor in-
formation is provided with the original data. However any kind
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of field can be included in the model and handled by the solver,
GetDP, without extra burden from the point of view of the user. Be-
sidesGetDP alreadypowers other similar tools like SimNIBS [Thielscher
et al., 2015] and ROAST [Huang et al., 2019] and the forward prob-
lem implementation used in shamo have been validated by [Ziegler
et al., 2014].

Here we only considered two conductivity dependent electro-
static problems, EEG and tDCS. Nevertheless, thanks toGetDP’s sim-
ple formalism, shamo could be directly extended to electromag-
neticmodeling processes, includingMEGandTMS. Indeed this only
requires the definition of the equations related to the problem,which
are explicitly stored in a problem file for GetDP. Nowadays other
tools, like SimNIBS, also include modules for the quantification of
the effect of tissue conductivity uncertainty [Saturnino et al., 2019],
showing the importance of such analysis for tDCS applications. Still,
beyond electrical conductivity, the sensitivity analysis could also
focus on other parameters, e.g. the injected current in HD-tDCS,
through python classes available in shamo to expose the needed
parameters. Importantly, by definition, the Sobol indices rely on a
single scalar output function, whose choice is thus critical but also
lets the user focus on any feature of interest. Thereby shamo’s flex-
ible implementation allows one to define his own processes and
sensitivity analysis.

Regarding the surrogate models, we decided to use Gaussian
process because they provide information on the confidence over
the solution through the standarddeviation on eachpredictedpoint.
This canbeused to obtainmore in-depthunderstanding of themodel.
Such regressor also has the advantage of not requiringhuge amounts
of training data. Considering the fact that an evaluation of the ac-
tual model can take several hours, reducing the number of obser-
vations can drastically lower the computation time required. To
further reduce this time, the tool provides an easy way to evalu-
ate each sample point separately, thus allowing the use of high-
performance computing (HPC) equipment like computer clusters.
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In the present work, observations were computed by batches of
100, each on a single core on the CÉCI clusters 5.

Overall, the goal of shamo is to provide a single tool to perform
three major steps, namely FEM creation, model estimation, and
sensitivity analysis. This operated with few dependencies that are
all established, in an open source software working out of the box
on any major operating system or on HPC platforms.

A.5. Conclusion
In this paper, we presented a python pipeline for accurate elec-

tromagneticmodeling of the headwhich allows for sensitivity anal-
ysis and surrogate model building, bringing together similar fea-
tures as some established software, such as SimNIBS [Thielscher
et al., 2015] or ROAST [Huang et al., 2019] for tDCS and Brainstorm
[Tadel et al., 2011] or MNE [Gramfort et al., 2013] for EEG, unified
with a single API. This tool, called shamo [Grignard, 2021a], and the
full documentation [Grignard, 2021b] are available on Github un-
der GPL-v3 license. A set of examples are also available in the form
of jupyter notebooks.

We showed a use-case for the EEG forward problem where a
parametric leadfield matrix is computed and can then be used to
generate any new matrix for a specific set of tissue conductivity
values and another application to tDCS where the current density
in a certain region is obtained and can be studiedwith regard to the
electrical sensitivity. Those are only two possible applications but
shamo could easily be extended to magnetic stimulation or TMS.

Considering the abstraction level of the tool and the outcome
that can be obtained from it, one can use our tool to perform finite
element analysis and sensitivity analysis without having to dig into

5. http://www.ceci-hpc.be/
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those fields, letting the user employ the toolset of his choice for fur-
ther analysis. shamo could be used in various studies to assess the
sensitivity of the results to some parameters or to build paramet-
ric models for complex physical fields that, otherwise, should be
evaluated every time a new value is needed.

A.6. Data availability
The data that support the findings of this study are available

from the IT’IS foundation 6 but restrictions apply to the availabil-
ity of these data, which were used under licence 7 for the current
study, and so are not publicly available. Data are however avail-
able from the authors upon reasonable request and with permis-
sion of the IT’IS foundation.

A.7. Information sharing
The source code of shamo is available on Github 8 under GPLv3

license and is fully documented 9. It can be installed from PyPI 10.
In addition, jupyter notebooks are also available on Github 11 and
show how to conduct similar studies.

6. https://itis.swiss/virtual-population/
regional-human-models/mida-model/

7. https://itis.swiss/assets/Downloads/VirtualPopulation/
License_Agreements/LicenseAgreementMIDA.pdf

8. https://github.com/CyclotronResearchCentre/shamo
9. https://cyclotronresearchcentre.github.io/shamo/index.html
10. https://pypi.org/project/shamo/
11. https://github.com/CyclotronResearchCentre/shamo-tutorials
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This appendix contains the original text of the second paper
written in the context of this thesis, entitled ”Why tDCSmodels can-
not be trusted yet? —Asimulation study”which is still beingworked
on. All the supplementary materials referenced in this annex are
available online with the preprint 1.

1. https://hdl.handle.net/2268/294662
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WhytDCSmodelscannotbetrusted
yet? — A simulation study

Martin Grignard 2, Christophe Geuzaine 3, Michel Hansenne 4, Steve Majerus4
and Christophe Phillips2

Transcranial direct current stimulation (tDCS) has gained
increased interest over the past decades due to its affordabil-
ity, ease of use and wide range of applications. However, its
lack of consistency and reproducibility of published results
is rising concerns.
A potential solution to improve the method is to tailor the
stimulation for each subject based on individual measure-
ments and models. Such model requires accurate informa-
tion about the geometry of the tissues composing the head
of the subjects, about their electric properties and about the
electrode montage.
In the present simulation work, we evaluate the effect of an
error on the placement of the anode and of the unknown
physical properties of the tissues on the induced electric field
for 6 experiments on 20 subjects.
In addition to confirming the concerning small tDCS effect
size, we show that the uncertainty on the conductivity pa-
rameters prevents any other conclusion to be drawn from
such models.

2. GIGA CRC In-Vivo Imaging, University of Liège, Belgium
3. Department of Electrical Engineering and Computer Science, University of

Liège, Belgium
4. Psychology&Neuroscience of Cognition (PsyNCog) researchunit, University

of Liège, Belgium
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B.1. Introduction
Transcranial direct current stimulation (tDCS) is a non-invasive

neuromodulation techniquewhich consists in injecting a small amount
of electric current (i.e., usually 1 to 2mA) through the head of a sub-
ject by the mean of two large saline-soaked sponge electrodes (e.g.,
5× 5 cm2). The stimulating electrode or anode is placed above the
cortical region of interest. The reference electrode, also referred
to as cathode, is either located on the same region of the opposite
hemisphere in a bipolar electrode montage or on the contralateral
orbit region in a unipolarmontage. It can also be applied on a silent
zone such as the chin, the neck or the deltoid muscle [Nitsche et al.,
2008; Kropotov, 2016].

Since the beginning of the century, this tool has received in-
creased interest due to its affordability, simplicity and wide range
of application. Indeed, it has been studied in research and clini-
cal applications to help patients recovering from strokes [Boggio
et al., 2007], traumatic spinal cord injury [Li et al., 2021] or suffer-
ing from refractory epilepsy [Yang et al., 2019], fibromyalgia [Lloyd
et al., 2020], depression [Razza et al., 2020], anxiety disorders [Stein
et al., 2020] just to name a few. A lot of studies have also tried to
use tDCS to improve cognitive functions like working memory or
inhibition in normal subjects and patients [Dedoncker et al., 2016;
Senkowski et al., 2022; Schroeder et al., 2020].

Whilst more and more papers focusing on tDCS are published
every year (1, 088 papers listed on PubMed in 2021 5), two major is-
sues rose up: the high inter-subject variability in the response to
the stimulation and the lack of reproducibility of some published
results in follow-up studies [Dumont et al., 2021; Jacoby and Lavi-

5. https://pubmed.ncbi.nlm.nih.gov/?term=tDCS&filter=years.
2021-2021

181



Paper 2

dor, 2018; Westwood, 2018].
With a percentage of expected response generally lower than

50% [Müller-Dahlhaus et al., 2008; Jacobson et al., 2012], the relia-
bility of tDCS is questionable. Wiethoff et al. [2014] concludes that
the after-effect of tDCS on corticospinal excitability is highly vari-
able, and the systematic review of Horvath et al. [2015] rose ques-
tions about the efficacy of such device and the underlying mecha-
nisms.

One of the proposed solutions to improve the technique is to in-
dividualize the intensity of the injected current, referred to as the
dose, based on subject specific models [Albizu et al., 2020]. Unfor-
tunately, the recent work by Sallard et al. [2021] indicates that this
approach might not improve the efficacy of tDCS over the primary
motor cortex. Nevertheless, current modelling is often performed
in addition to tDCS to evaluate the current density induced by the
stimulation in a given region of interest (ROI).

Such a model relies heavily on the geometry of the subject and
on the electrode placement, but also on the electric properties of
the tissues composing the head. Those properties have been shown
to vary widely between subjects based on numerous factors (e.g.,
temperature, time of day, health status...). The review from [Mc-
Cann et al., 2019] provides ranges of low frequency conductivity
values for the main biological tissue classes.

Thehead geometry is usually built based on subject-specific struc-
tural images, but electrode positions are not always recorded us-
ing virtualization techniques. In this case, they are placed on the
model without real world information, inducing a potential error
of placement.

On the other hand, the physical properties of the tissues are
hard to measure on a subject basis. Hence, constant values across
subjects are usually set according to the literature.

In the present simulation work, we study the electric field in-
duced in four different ROIs of the left hemisphere by the injection
of 2mA with six electrode montages (See Table B.1) and compute
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the induced transmembrane potential (ITP) on the 20 subjects from
BrainWeb 6. Previous studies reported ITP values between 0.2 and
0.5mV [Radman et al., 2009; Opitz et al., 2016].

Anode Cathode ROI Bipolar Unipolar

C3 C4 MCC3 Fp2

F3 F4 dlPFCF3 Fp2

F7 F8 vmPFC

P3 P4 IPS

Table B.1 The electrodemontages consideredwith the ROI they target.

In the process, we account for an error of 1 cm on the anode
placement in four directions relative to the reference EEG 10-20
position and for the uncertainty on the electric conductivity of the
biological tissues.

B.2. Materials andmethods

B.2.1. Dataset
We used the dataset of 20 simulated normal healthy adults (10

females and 10 males) made available by BrainWeb. For each sub-
ject, this dataset provides a structural T1-weighted generated based
ona SFLASH sequence (TR=22ms, TE=9.2ms, flip angle=30° and 1mm
isotropic voxel size), 12 fuzzy tissue probabilitymaps and adiscrete
segmented volume [Aubert-Broche et al., 2006a,b].

6. https://brainweb.bic.mni.mcgill.ca/
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In the present work, only the T1-weighted images and discrete
models were first converted into NIfTI images using Nibabel [Brett
et al., 2020] and sorted following BIDS specifications [Gorgolewski
et al., 2016] to be further processed.

B.2.2. Head geometry
To simulate the electric current in the head of the subjects, we

generatedfinite elementmodels based on the labelled images. These
original segmented volumes with 0.5 × 0.5 × 0.5 mm3 voxels were
first cleaned to remove external objects and noise (See Figure B.1a
and Figures S1-20a) in four consecutive steps.

First, we createdmanually binarymasks using itk-SNAP [Yushke-
vich et al., 2006] to remove big objects adjacent to the scalp from
subjects 18 and 42. The other subjects did not require suchmanual
processing. After this step, an iterative binary opening was per-
formed on the whole head masks until no change between two it-
erations was measured. This removed the small external clusters.
To erase the remaining non-head bodies, we kept only the biggest
remaining cluster using Scipy [Virtanen et al., 2020]. Finally, we
enforced at least one layer of CSF around the gray matter and one
layer of soft tissues around the skull.

Next, we merged the original 11 tissues (referred to as SEG-11)
into 5 tissues (SEG-05). Indeed, the most common models used to
simulate tDCS include only fivemain tissues classes, namely: white
matter (WM), graymatter (GM), cerebrospinal fluid (CSF), skull (SKL)
and soft tissues (SFT). This can be attributed to the fact that most
of the available automated head segmentation pipelines only out-
put these tissues, even though a recent effort in the community has
led to the release of several tools that can produce more accurate
models [Puonti et al., 2020; Taberna et al., 2021].

The merging rules are described in Table S1 from the supple-
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mentary materials, and the resulting labels are presented in Fig-
ure B.1b for subject 41 (See Figures S1-20b for the other subjects).

These final labels were processed with Shamo to generate sub-
ject specific finite elementmodels (FEM). The obtainedmodels con-
tainedmore than 2×106 tetrahedra (See Figure B.1c and Figures S1-
20c).
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(a) SEG‑11 (b) SEG‑05

(c) Finite elementmodel

WM GM CSF SKL SFT

Figure B.1 (a) The original SEG‑11model, (b) the SEG‑05 obtained by first
cleaning the labels and thenmerging tissues following the rules defined in
Table S1 and (c) a sagittal cut of the resulting FEM for subject 41.
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B.2.3. Electrode placement

Since one of the goals of this study is to evaluate the effect of
the error on the placement of the electrodes, we considered five
different positions of the anode for each of the experiments from
Table B.1 where the electrode was moved by 1 cm relative to the
reference EEG 10-20 international system [Jasper, 1958; Klem et al.,
1999] position.

We denote the four perturbation directions as central (C)/lateral
(L) if the electrode moves toward/away from the symmetry axis of
the head and anterior (A)/posterior (P) if the electrode moves to-
wards the front/back of the head. The name of the displaced anode
is the concatenation of its base name and the direction (e.g., central
P3 is referred to as P3C).

TheBrainWebdataset does not include electrodepositions. Con-
sequently, we first located the nasion (NZ), the inion (IZ) and the
left and right helix-tragus junction (LHJ and RHJ) in RAS coordi-
nate system manually using MRIcron [Rorden et al., 2007]. Then,
we generated a high density mesh of the head surface using Shamo
[Grignard et al., 2022] and implemented the procedure proposed
by Jurcak et al. [2005] to compute the coordinates of both the refer-
ence electrodes and their displaced counterparts (See Figure B.2a
and Figures S1-20d).

We then produced a finite element model for each electrode
montage with each position of the anode by adding the sensors to
the base mesh from Section B.2.2. The electrodes were modelled
as 5 × 5 cm2 square patches, as shown in Figure B.2b for the C3-
Fp2 electrode montage on subject 41 (See Figures S1-20e-j for the
other montages and subjects). This step resulted in the creation of
30 models per subject (600 models in total).
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(a) EEG 10‑20 (b) Montage

Figure B.2 (a) The automatically computed EEG 10‑20 electrode positions
and (b) the resultingmodel for the C3‑Fp2 electrodemontage on subject 41.

B.2.4. Electrical conductivity
In our previouswork [Grignard et al., 2022], we showed that the

electrical conductivity of the tissues κ (Sm−1) influences the results
of the simulations by using the conductivity values reported byMc-
Cann et al. [2019] (See Table B.2). The mean values in the table are
the reported weighted means computed using a weighting method
described in their paper. We used the same values in the present
study.

The electrical conductivity considered for the soft tissues class
(SFT) was set as the one measured for the scalp since its range en-
compasses those of fat, muscle, and bloodwhich are the threemain
classes that were merged into it.

We defined 20 different conductivity profiles
κ = [κWM, κGM, κCSF, κSKL, κSFT] by sampling the 5D uniform conduc-
tivity space with a quasi-random Halton sequence [Halton, 1960]
(See Table S2a in supplementary material). This space, Ωuniform,
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Tissue Electrical conductivity (Sm−1)

Min. Max. Mean Std.

WM 0.0646 0.8100 0.2167 0.1703

GM 0.0600 2.4700 0.4660 0.2392

CSF 1.0000 2.5100 1.7100 0.2981

SKL 0.0182 1.7180 0.0160 0.0190

SFT 0.1370 2.1000 0.4137 0.1760

Table B.2 The electrical conductivities of the tissues (Sm−1) as reported by
McCann et al. [2019].

was defined by five uniform distributions ranging from the min-
imum to the maximum conductivity value for each tissue.

In addition to these profiles, we also determined the reference
conductivity profile, as recommended by McCann et al. [2019] (i.e.
κ = [κ̄WM, κ̄GM, κ̄CSF, κ̄SKL, κ̄SFT]).

The uniform distributions used to define Ωuniform are consid-
ered as the worst case scenario, since some ranges reported byMc-
Cann et al. span multiple orders of magnitude (e.g., the conductiv-
ity of GM). In order to evaluate the effect of more educated priors
on the computed metrics, we also defined a second input param-
eter space, Ωnorm, where we used the truncated normal distribu-
tions for each tissue. We drew 20 new conductivity profiles from
this new space using the same technique (See Table S2b in supple-
mentary material).

B.2.5. Regions of interest
As explained in Table B.1, each electrodemontage targets a spe-

cific ROI in the left hemisphere. To extract individual binarymasks
of these brain areas for each subject, we relied on three different
cortical atlases: Brodmann [Fischl et al., 2008], CP-MMP1.0 [Glasser
et al., 2016] and MarsAtlas [Auzias et al., 2016].
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Unfortunately, the latter is not available in fsaverage space (i.e.,
the standard space for FreeSurfer defined as a reference cortical
surface) [Mills, 2016]. However, it has been published in Colin27
space [Holmes et al., 1998]. To produce the proper labels in fsav-
erage space fromMarsAtlas, we first converted the segmented vol-
ume into labels in the native space of the subject. Next, we regis-
tered these labels onto fsaverage cortical surface with the surface
registration tools from FreeSurfer [Dale et al., 1999]. The resulting
labels for the four ROIs are displayed on fsaverage in Figure B.3.

(a) Anterior (b) Lateral (c) Medial (d) Posterior

MC dlPFC vmPFC IPS

Figure B.3 The left hemisphere ROIs considered in this study and extracted
from Brodmann [Fischl et al., 2008], HCP‑MMP 1.0 [Glasser et al., 2016] and
MarsAtlas [Auzias et al., 2016] atlases displayed on the inflated surface of
fsaverage.

Once all the labels were extracted and projected on fsaverage,
we registered themon the cortical surfaces of each subject and con-
verted them into binary masks coregistered on the SEG-05 images.

We also extracted the surface area (mm2), the volume (mm3)
and the depth (mm) of these regions for all the subjects (See Ta-
ble S3).
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B.2.6. Simulations
We simulated tDCS with Shamo [Grignard et al., 2022] which

interfaces with GetDP [Geuzaine, 2008] to solve the finite element
problems. Each simulation solves the Poisson equation [Hallez et al.,
2007; Darbas and Lohrengel, 2018]

∇ · (κ∇(v)) = −ρs, Eq. B.1

where v (V) is the electric potential and ρs (Am−3) is the source vol-
ume current density. The boundary conditions were set so that the
anode injected 2mA and the cathode acted as a reference (i.e. 0V).

Considering the 20 subjects, their respective 30 finite element
models described in SectionB.2.2with the electrodemontages from
Section B.2.3 and the 21 different conductivity profiles drawn from
Ωuniform defined in Section B.2.4, we ran a total of 12600 simulations
(2100 for each experiment).

The simulations calculated the electric potential v (V), the elec-
tric field e (Vm−1) and the current density j (Am−2) on the unstruc-
turedmeshes (See Figure B.4). Tomake any further processing eas-
ier, we converted these fields into NIfTI files by sampling them on
a regular 1×1×1mm3 grid with the same orientation as the SEG-05
image.

Then, by applying the binary masks built in Section B.2.5, we
extracted the values of these fields for all the voxels of the ROIs in
each simulation and stored it in a DuckDB database [Raasveldt and
Mühleisen, 2019]. In addition, we computed both the components
normal and tangential to the cortical surface of e and j.

Finally, we computed the average absolute values for all the pre-
viously described metrics for each simulation.
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Figure B.4 A cut of themagnitude of themagnitude of the current density
computed in the head of subject 4 resulting from the injection of 2mAwith
the C3‑C4 electrodemontage.
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B.2.7. Gaussian process regressors
As described above, we only performed simulations for the con-

ductivity profiles drawn from Ωuniform, while in Section B.2.4 we
stated that we also defined 20 conductivity profiles from Ωnorm.

Indeed, running the simulations is computationally expensive.
In order to reduce the computation time required, and considering
that the points drawn from Ωnorm are also included in Ωuniform, we
decided to fit multi-output Gaussian process regressors (GPR) [Ras-
mussen and Williams, 2006] on the results of the simulations de-
scribed in Section B.2.6 using scikit-learn [Pedregosa et al., 2011b].
Following the recommendations fromChen et al. [2016], the regres-
sion part of the GPR was set to the mean of the output variable and
the kernel was defined as the product of a constant kernel and a
stationary Matérn kernel with a smoothness parameter ν = 2.5.

This way, we leveraged the 12600 simulations to interpolate the
results corresponding to the conductivity profiles from Ωnorm.

B.2.8. Models
We focused on themean absolutemagnitude of the electric field

¯|e| and of its component normal to the cortical surface ¯|er|. For
each experiment, we built different Bayesian models using Bambi
[Capretto et al., 2020] which is based on PyMC3 [Salvatier et al.,
2016]. The basic expression of all these models is

Y ∼ N (µ, σ2), Eq. B.2

with Y the dependent variable, µ defined as

µ = α+ β ·X + ε, Eq. B.3
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where α the intercept, β = [β1, . . . , βn] the slopes,X = [X1, . . . , Xn]
⊤

the vector of independent variables and ε the error term. We also
consider thehierarchic counterpart of these pooledmodels, inwhich
we account for the subject with a random effect. For these models,
we have different values of µ, α and β for each subject i,

µi = αi + βi ·X + ε,

αi = α(com) + α
(sub)
i ,

(βj)i = β
(com)
j + (β

(sub)
j )i,

Eq. B.4

where α(com) and β
(com)
j are respectively the common intercept and

slopes and α
(sub)
i and (β

(sub)
j )i are the subject specific contributions

to the intercept and slopes.
For all the models described in the next paragraphs, weakly in-

formative priors are set automatically using the method explained
inWestfall [2017]. They are then all fitted using theNo-U-Turn sam-
pler (NUTS) [Hoffman and Gelman, 2011] with 4 chains of 1000 tune
and 1000 draw iterations.

To decide whether a parameter has a significant effect on the
dependent variable, we use the 95% highest density interval (HDI)
and the region of practical evidence (ROPE) [Kruschke and Liddell,
2018]. This method states that if the 95% HDI lies inside the ROPE
for more than 97.5%, the corresponding parameter is null. Con-
versely, if the 95%HDI intersects with the ROPE for less than 2.5%,
the parameter is non-null. Finally, if the intersection between the
two intervals is between these twoboundaries, we cannot conclude
whether the parameter is null or not. The boundaries of the ROPE
are set to ±0.1 · std(Y ).

Anode placement

To evaluate the effect of a displacement of 1 cm of the anode
with regard to the reference EEG 10-20 position, we define amodel
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to assess the difference between the measurements computed for
each of the 5 anode placements from Section B.2.3 as

µ = α+

4∑
p=1

βp ·Xp + ε,

µi = αi +

4∑
p=1

(βp)i ·Xp + ε,

Eq. B.5

where p corresponds to a specific displacement of the anode (ante-
rior, central, lateral or posterior) and Xp is either 0 or 1 based on
the anode used to obtain the record.

Conductivity profile

Using the same method, we compare the values of both |ē| and
|ēr| calculated for the 20 conductivity profiles described in SectionB.2.4
with the values obtained for the reference profile, where the con-
ductivity of each tissue is set to the value recommended byMcCann
et al. [2019]. Thus, we transform the basemodels fromEquationB.3
and B.4 into

µ = α+
20∑
k=1

βk ·Xk + ε,

µi = αi +

20∑
k=1

(βk)i ·Xk + ε.

Eq. B.6

In these expressions, k refers to one of the 20 conductivity profiles
established using the quasi-randomHalton sequence andXk is 1 or
0.

Bipolar and unipolar electrodemontages

As shown in Table B.1, we simulate a bipolar and an unipolar
electrodemontage to stimulate both theMC and the dlPFC. In order
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to compare the values of |ē| and |ēr| computed for each pairs, we
fit the models with the following expected values,

µ = α+ βuni ·Xuni + ε,

µi = αi + (βuni)i ·Xuni + ε,
Eq. B.7

with Xuni equal either to 1 if the montage is unipolar or to 0 other-
wise.

B.2.9. Induced trans‑membrane potential
The steady-state induced trans-membrane potential (ITP), de-

noted by ∆ui (mV), is the potential difference measured between
the inside uin and the outside uout of the cell membrane added to
the resting state potential ∆ur and due to an external stimulation,

uin − uout = ∆ur +∆ui. Eq. B.8

While tDCS is not able to trigger action potentials, it is gener-
ally accepted that it generates an induced trans-membrane poten-
tial which hyperpolarizes the neuronmembranes under the anode
and depolarizes it under the cathode [Pelletier and Cicchetti, 2015;
Tanaka et al., 2020]. In the present work, we compute the ITP re-
sulting from the different stimulations using analytical expressions
for both spherical and spheroidal cells.

Spherical cell

The theoretical steady-state ITP resulting from an external elec-
tric field e (Vm−1) in a spherical cell of radius r1 (m) with a non-
conductive plasma membrane is described by Schwan’s equation
[Schwan, 1994]

∆ui =
3

2
|e|r1cos(θ), Eq. B.9
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with θ the angle between the electric field and the vector going from
the centre of the cell to the point of the membrane where the ITP
is calculated.

Consequently, the maximum value of ∆ui is obtained for θ = 0.
To avoid using an arbitrary value for r1, we finally compute

max(∆ui)

r1
=

3

2
|e|. Eq. B.10

Spheroidal cell

Pyramidal cortical cells are not spherical, thus we also consider
spheroidal cells r1 > r2 = r3 with a shape ratio γ = r1/r2 and elon-
gated along the normal of the cortical surface. For such cells, Valic
et al. [2003] gives the following expression of the ITP,

∆ui = |e|sin(φ)r2sin(θ)
1− lx

+ |e|cos(φ)r1cos(θ)
1− lz

, Eq. B.11

where φ is the angle between the electric field and the main axis of
the cell and lx and lz are the depolarization factors

lz =
1− λ2

2λ3

(
log

(
1 + λ

1− λ

)
− 2λ

)
, Eq. B.12

lx =
1

2
(1− lz), Eq. B.13

with λ =
√
1− (1/γ)2.

Since we already computed the tangential and radial compo-
nents of the electric field denoted by |et| and |er|, we have

∆ui = |et|
r2sin(θ)
1− lx

+ |er|
r1cos(θ)
1− lz

, Eq. B.14

which is maximized when

θ = θmax = atan
(

|et|(1− lz)

|er|γ(1− lz)

)
. Eq. B.15
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Following what we did for the spherical cell, we derive the size
independent expression

max(∆ui)

r1
= |et|

sin(θmax)

γ(1− lx)
+ |er|

cos(θmax)

1− lz
. Eq. B.16

B.3. Results
Figure B.5 shows the distributions of the measured values of ¯|e|

and ¯|er| (mVm−1) for the different experiments defined in Table B.1
(See also Figures S21-32a-b). Overall, themean absolutemagnitude
of the electric field ranges from 47.2 to 644.2mVm−1 and its com-
ponent normal to the cortical surface from 24.2 to 470.7mVm−1

for the simulations, while for the GPRs, ¯|e| ranges from 139.2 to
398.5mVm−1 and ¯|er| ranges from 69.5 to 223.9mVm−1.

In order to better picture the results, we show the data obtained
for the C3-C4 electrode montage targeting the motor cortex, based
on the conductivity profiles drawn from Ωuniform, all along the fol-
lowing sections. Figure B.6 shows the results for this specific mon-
tage, and the outcome of the other experiments are provided in
supplementary materials.

B.3.1. Anode placement
Based on themeasurements acquired for each anodeplacements

shown inFigureB.7 for the C3-C4 electrodemontage (See Figures S22-
32e-f for the other experiments), we fitted the model from Equa-
tion B.5 and computed the 95%HDI of βp and β

(com)
p which are given

in Tables S4/8a-b.
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(a) ¯|e| (Ωuniform) (b) ¯|er| (Ωuniform)

(c) ¯|e| (Ωnorm) (d) ¯|er| (Ωnorm)

MC (C3-C4) MC (C3-Fp2) dlPFC (F3-F4) dlPFC (F3-Fp2) vmPFC
(F7-F8) IPS (P3-P4)

Figure B.5 (a/c) The average absolutemagnitude of the electric field ¯|e| and
(b/d) the average absolutemagnitude of the normal component of the
electric field ¯|er| recorded for all the simulations for the different ROIs and
electrodemontages.
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(a) ¯|e| (b) ¯|er|

Figure B.6 The average absolute value of (a)themagnitude of the electric
field and (b) its radial component for the C3‑C4 electrodemontage targeting
themotor cortex.

(a) ¯|e| (b) ¯|er|

Figure B.7 The average absolute value of (a)themagnitude of the electric
field and (b) its radial component for the C3‑C4 electrodemontage targeting
themotor cortex, grouped by anode placements.
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Overall, for the results obtained using Ωuniform, most of the 95%
HDI intercept with the ROPE for more than 2.5% but none of them
is fully included (i.e., more than 97.5%) in the ROPE. Consequently,
we cannot state that an error of 1 cm on the placement of the anode
plays a significant role or not in the electric field induced in the
ROIs.

However, by computing the boundaries of the absolute ratio be-
tween the values of βp and the intercept, we get that such an error
on the anode placement yields an absolute relative difference with
the reference value up to 27.6% for ¯|e| and up to 27.1%% for ¯|er|.

When moving to Ωnorm, the trend is reversed and most of the
95%HDI do not intercept with the ROPE, while themaximumabso-
lute ratios between the values of βp and the intercept drop to 18.5%
and 17.6% for ¯|e| and ¯|er| respectively.

B.3.2. Tissues electrical conductivity
Similarly to the anode placement, Figure B.8 shows the results

for the C3-C4 montage (See Figures S22-32c-d for the other experi-
ments).

Following the descriptions of the pooled and hierarchic models
from Equation B.6, we determined values for each βk and β

(com)
k for

both ¯|e| and ¯|er| (See Tables S7/11a-b for the 95% HDI).
As opposed to the anode placement, themajority of the 95%HDI

computed on Ωuniform fall completely outside the ROPE, meaning
that the uncertainty on the conductivity of the tissues has a signif-
icant influence on the electric field computed in the ROI.

Moreover, by calculating the same absolute ratio between the
different βk and α, we found that some conductivity profiles could
induce a difference relative to the reference of up to 112.5% and
146.6% for ¯|e| and ¯|er| respectively.

Once again, usingΩnorm inverses the trend and all the computed
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(a) ¯|e| (b) ¯|er|

Figure B.8 The average absolute value of (a)themagnitude of the electric
field and (b) its radial component for the C3‑C4 electrodemontage targeting
themotor cortex, grouped by conductivity profiles.

95%HDI intercept formore than 2.5%with the ROPE, and some are
fully embedded in, meaning that changing the conductivity profile
yields easier no significant variation or a variation that cannot be
classified as significant or not. The maximum ratios obtained for
these results drop considerably when compared to those obtained
from Ωuniform. Indeed, the values are 13.1% for ¯|e| and 14.2% for
¯|er|.

B.3.3. Bipolar and unipolar electrode mon‑
tages

Figure B.9 provides an overview of the metrics of interest com-
puted for the two electrode montages targeting the motor cortex.

By fitting the model from Equation B.7, we determined the dif-
ference between the results computed for the bipolar and unipolar
electrode montages targeting both the motor cortex and the dor-
solateral prefrontal cortex (See Table S5/9a-b for the 95% HDI of
β
(com)
uni ).
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(a) ¯|e| (b) ¯|er|

Figure B.9 The average absolute value of (a)themagnitude of the electric
field and (b) its radial component for the uni‑ and bi‑lateral electrode
montages targeting themotor cortex.

Using the unipolar montage when stimulating the MC yields an
electric field of up to 13.7% lower than with the bipolar montage
for both Ωuniform and Ωnorm. However, the effect on the normal
component of the electric field is not determined when consider-
ing Ωuniform but is significant for Ωnorm.

On the other hand, bothmontages yield equivalent normal com-
ponents of the electric field when targeting the dlPFC.

B.3.4. Induced transmembrane potential
As described in Section B.2.9, we computed the induced trans-

membrane potential resulting from the electric field generated in
the ROIs for the different electrode montages using analytical ex-
pressions for spherical and spheroidal cells. The calculated ranges
of ∆ui/r1 are shown in Table S6/10.

Across all the experiments, the spherical and spheroidal cell
models respectively yield values ranging from 70.9 to 966.3mVm−1

and from 21.5 to 441.5mVm−1 when considering Ωuniform and from
208.9 to 597.7mVm−1 and 62.3 to 209.8mVm−1 when using Ωnorm.
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B.4. Discussion
The results of the models assessing the effect of different con-

ductivity profiles inΩuniform are concerning. As for the anode place-
ment, the F3-Fp2 electrode montage is the most influenced, with a
difference of up to 112.5% on ¯|e|. Still, it is interesting to note that
the direction of the electric field varies the most in the IPS when
using the P3-P4 electrode montage. Indeed, the maximum relative
difference can be up to 146.6% on ¯|er|.

Still, for all the experiments, moving from the worst case sce-
nario, where Ωuniform is considered, to more educated priors on the
conductivity of the tissues, when Ωnorm is used, yields a consider-
able drop in the variability of the computed metrics, which end up
lower than 15%. This also affects the other Bayesian linearmodels.
Indeed, when the uncertainty lying in the conductivity is reduced,
the influence of the other factors grow.

On the other hand, the results we obtained regarding the er-
ror on the anode placement are in line with the ones published by
Ramaraju et al. [2018]. Indeed, we find that the F3-Fp2 electrode
montage is more sensitive to the anode placement than the others.
However, the 27.6% change in the mean absolute electric field in
the left dlPFC is comparable with the 38% they measured in the
left frontal lobe. When improving the priors on the conductivity of
the tissues, the error on the anode placement becomes significant
in most of the cases, but the maximum error decreases to around
18%.

While such a difference is non-negligible, it results from a dis-
placement of 1 cm of the anode. Considering the work of Rich and
Gillick [2019] which showed that the inter- and intra-rater error
on the electrode placement is lower than 1 cm, the shift in the an-
ode position we studied can be regarded as an upper bound to the
plausible experimental deviation. As a result, the actual variation
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of the electric field induced in the ROI due to a misplaced electrode
is expected to be smaller than what we calculated here.

These considerable variations obtained with Ωuniform lead us to
question the information we can extract from modelling tDCS. Un-
til one cannot feed the models with better priors about the elec-
trical conductivity of the biological tissues, the randomness of the
outputs makes it almost impossible to gain insights and draw con-
clusions about the electric effect of the stimulation. Using Ωnorm
resulted in a significant improvement of the outcome, but, even
thought the electric conductivities of a random subject are more
likely to remain closer to the reportedmean, nothing prevents them
to drift toward the extrema.

Moreover, the conventional way of modelling tDCS, which in-
volves setting almost arbitrary values to the electrical conductivity
of the tissues based on the literature, identical for each subject, ap-
pears to be an inappropriate assumption.

Techniques such as magnetic resonance electric impedance to-
mography (MREIT) [Woo and Seo, 2008] and conductivity tensor
imaging (CTI) [Marino et al., 2021] could provide a better descrip-
tion of the electric properties of the tissues of each subject.

Finally, tDCS is expected to generate an induced transmembrane
potential of around 0.5mV in the neurons of the target ROI [Rad-
man et al., 2009; Opitz et al., 2016]. The values we obtain analyt-
ically, considering r1 = 1 mm, are at most of the same order of
magnitude but can be smaller by up to a factor of 20.

Once again, this value relies heavily on the conductivity profile
of the models. Still, computing ITP values of 0.02mV, as compared
to a resting potential of −70mV and a reference action potential
threshold of −55mV, highlights the questionable efficiency of tDCS
as a neuromodulation technique. This concern has already been
raised by other papers before [Horvath et al., 2015].

Still, it is important tomention that, since the present study only
focused on simulations, we cannot draw conclusions on the func-
tional long-lasting effect of the different experiments.
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B.5. Conclusion

In the present work, we studied the influence of an error of
placement of the anode and of the unknown conductivity profile
on the computed electric field resulting from 6 different tDCS ex-
periment targeting 4 ROIs on 20 subjects using a simulation tool. A
total of 12600 simulations were performed.

Themodels used in this paper show that anode displacements of
reasonable size yield a negligible to moderate effect on the electric
field induced in the ROI. They also highlight that the uncertainty
regarding the electrical conductivity of the tissues make it practi-
cally impossible to assess the electrical effect of the stimulation in a
specific ROI and that using fixed standard values could potentially
yield highly biased results. The comparison between Ωuniform and
Ωnorm clearly shows that usingmore informative priors reduces the
variability of the output.

Improving the conductivity acquisition methods could lead to a
better understanding of the factors that underly the variability of
the effects of tDCS experiments. Until no new method is proposed
to measure tissues electric conductivity on a subject basis, using
uncertainty quantification and sensitivity analysis with Shamo or
other similar tools could allow for more educated conclusions.

Wealso computed the induced transmembranepotential induced
by the stimulation for different simple cell models. The overall size
of the computed ITP is concerning.

While we did not perform functional experiments in parallel to
the modelling work, the overall results presented here lead us to
call for caution when designing, modelling and analysing a tDCS
experiment.
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C.
Shamo tDCS

This appendix contains all the additional results, figures, and
tables from the application of Shamo to tDCS from Chapter 6 and
Appendix B.
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C.1. Simulation results

C.1.1. MC (C3‑C4)

(a) (b)

(c) (d)

Figure C.1 The computed values of the absolutemeanmagnitude of the
electric field (left) and of its radial component (right) (a‑b) overall and
grouped by (c‑d) conductivity profiles for all the simulations of the
C3‑C4 electrodemontage targeting the MC.
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(a) (b)

(c) (d)

Figure C.2 The computed values of the absolutemeanmagnitude of the
electric field (left) and of its radial component (right) grouped by (a‑b) anode
placement and (c‑d) subject for all the simulations of the C3‑C4 electrode
montage targeting the MC.
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C.1.2. MC (C3‑Fp2)

(a) (b)

(c) (d)

Figure C.3 The computed values of the absolutemeanmagnitude of the
electric field (left) and of its radial component (right) (a‑b) overall and
grouped by (c‑d) conductivity profiles for all the simulations of the
C3‑Fp2 electrodemontage targeting the MC.
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(a) (b)

(c) (d)

Figure C.4 The computed values of the absolutemeanmagnitude of the
electric field (left) and of its radial component (right) grouped by (a‑b) anode
placement and (c‑d) subject for all the simulations of the C3‑Fp2 electrode
montage targeting the MC.
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C.1.3. dlPFC (F3‑F4)

(a) (b)

(c) (d)

Figure C.5 The computed values of the absolutemeanmagnitude of the
electric field (left) and of its radial component (right) (a‑b) overall and
grouped by (c‑d) conductivity profiles for all the simulations of the
F3‑F4 electrodemontage targeting the dlPFC.
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(a) (b)

(c) (d)

Figure C.6 The computed values of the absolutemeanmagnitude of the
electric field (left) and of its radial component (right) grouped by (a‑b) anode
placement and (c‑d) subject for all the simulations of the F3‑F4 electrode
montage targeting the dlPFC.

215



Shamo tDCS

C.1.4. dlPFC (F3‑Fp2)

(a) (b)

(c) (d)

Figure C.7 The computed values of the absolutemeanmagnitude of the
electric field (left) and of its radial component (right) (a‑b) overall and
grouped by (c‑d) conductivity profiles for all the simulations of the
F3‑Fp2 electrodemontage targeting the dlPFC.
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(a) (b)

(c) (d)

Figure C.8 The computed values of the absolutemeanmagnitude of the
electric field (left) and of its radial component (right) grouped by (a‑b) anode
placement and (c‑d) subject for all the simulations of the F3‑Fp2 electrode
montage targeting the dlPFC.
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C.1.5. vmPFC (F7‑F8)

(a) (b)

(c) (d)

Figure C.9 The computed values of the absolutemeanmagnitude of the
electric field (left) and of its radial component (right) (a‑b) overall and
grouped by (c‑d) conductivity profiles for all the simulations of the
F7‑F8 electrodemontage targeting the vmPFC.
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(a) (b)

(c) (d)

Figure C.10 The computed values of the absolutemeanmagnitude of the
electric field (left) and of its radial component (right) grouped by (a‑b) anode
placement and (c‑d) subject for all the simulations of the F7‑F8 electrode
montage targeting the vmPFC.
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C.1.6. IPS (P3‑P4)

(a) (b)

(c) (d)

Figure C.11 The computed values of the absolutemeanmagnitude of the
electric field (left) and of its radial component (right) (a‑b) overall and
grouped by (c‑d) conductivity profiles for all the simulations of the
P3‑P4 electrodemontage targeting the IPS.
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(a) (b)

(c) (d)

Figure C.12 The computed values of the absolutemeanmagnitude of the
electric field (left) and of its radial component (right) grouped by (a‑b) anode
placement and (c‑d) subject for all the simulations of the P3‑P4 electrode
montage targeting the IPS.
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C.2. Models comparison

C.2.1. Bipolar and unipolar electrode mon‑
tage

(a)

Coef. MC dlPFC

βuni [−29.0, −19.2] [ 0.2, 12.5]

(b)

Coef. MC dlPFC

βuni [ −5.7, −1.0] [ −1.7, 4.2]

Table C.1 The 95%HDI computed for the slopes of the hierarchic linear
model comparing the unipolar and bipolar experiments for (a) the absolute
mean of themagnitude of the electric field and (b) its radial component.
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C.2.3.Conductivity
profile
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