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Industrial context

RANS frequently fails at off-
design conditions due to its

inherent modeling assumptions.

LES reduces the model-
ing assumptions but re-
mains costly at large Re.

Wall-models reduce the
computational cost by modeling
the near-wall energetic scales.

Simulation of turboma-
chines to compute the oper-
ating points of the engine.

In turbomachines, transitional flows
are frequently encountered, such
as laminar separation bubbles.

Calibration of the wall-model
using Deep Neural Net-

works with wrLES on blades.
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Contextualization

In the context of Large Eddy Simulations, a wall model (wm) should act as a driver for the wall shear
stress boundary condition.
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Contextualization

In the context of Large Eddy Simulations, a wall model (wm) should act as a driver for the wall shear
stress boundary condition.

Assumptions: attached, turbulent
and at equilibrium (for many wm)
Strong pressure gradient or separation:
there is no equilibrium layer
nor constant-stress layer
Capability of current
non-equilibrium wm: not yet a proven success
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Contextualization

To address this challenge, we decide to use the tools provided by deep learning and deep neural
networks.

Problem definition:
finding a complex and
dynamic relation between
instantaneous flow fields,
geometrical parameters
and the shear stress

ECCOMAS 2022 © 2022 Cenaero - All rights reserved 5

P
R
O
D
-F
-0
1
5
-0
2



PR
O
D
-F
-0
15
-0
2

Contextualization

To address this challenge, we decide to use the tools provided by deep learning and deep neural
networks.

New research subject:
need diagnostic tools
for pre-processing

Inspired from U. Piomelli.
Wall-modeled large-eddy
simulations: Present status
and prospects. Springer
Netherlands, 17, 2010.
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Test cases

TC1 : Periodic Hill - Lower wall

Separation, reattachment, acceleration
of the turbulent boundary layer

Reb = 10595

Lx

h

TC2 : Periodic Hill - Upper wall

Turbulent boundary layer subjected
to a moderate pressure gradient

Reb = 10595

TC3 : Channel wall

Turbulent boundary layer
(attached, at equilibrium, flow aligned)

Reτ = 950

2πh

2h = 2δ
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Two-dimensional Periodic Hill

• Bi-periodic flow evolving between two walls featuring a streamwise constriction[1]

• Controlled pressure gradient to match the bulk Reynolds number (Reb = 10595) combined with a
low bulk Mach number Mb = 0.1

Figure: Streamlines focusing on the separation bubble

1
https://www.kbwiki.ercoftac.org/w/index.php/Abstr:2D_Periodic_Hill_Flow
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Two-dimensional Periodic HillCf = u2τ/(0.5ρu
2
b)

where uτ =
√
τw/ρw and γ =

∆t(Cf <0)
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Space-time correlations

Reasons:
→ need to select input and output labels
that are strongly related
→ feature selection improves model performance
and reduces the computational cost of modeling
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Space-time correlations

Definition:
δt = time delay
δξ, δz = space shift
are two quantities
to be deduced
from correlations

Using→ Pearson and distance correlations, where distance
measures both linear and non-linear relationships
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Space-time correlation in the streamwise direction between τw ,ξ and uξ
P
ea

rs
o
n
’s

co
rr
.

D
is
ta
n
ce

co
rr
.

Instantaneous and
local correlation is
negligible for
separated flow :
shifted
in both δξ > 0
and δξ < 0
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Space-time correlation in the spanwise direction between τw ,ξ and uξ
P
ea

rs
o
n
’s

co
rr
.

Symmetric correlation as expected due to:

• the homogeneity of z and,

• the absence of convection.

ECCOMAS 2022 © 2022 Cenaero - All rights reserved 13

P
R
O
D
-F
-0
1
5
-0
2



PR
O
D
-F
-0
15
-0
2

Main Guidelines

• purely local and instantaneous information is sufficient for attached flows

• upstream information can be used if a convection delay is considered

• for separated flow, information has to be sought up- and downstream

• need to enlarge the domain of dependence of the wall model in both space (δξ) and time (δt)
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Which inputs are selected ?

Let us examine the distributions of three inputs (velocity, pressure gradient and wall-normal
distance) w.r.t the two components of the wall shear stress for the three configurations (lower wall
phill, upper wall phill and channel) :

→ Not a good behavior for generalization!

ECCOMAS 2022 © 2022 Cenaero - All rights reserved 16
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Which inputs are selected ?

Inputs:

Field Description Pre-scaling

Velocity u u⋆

Pressure Gradients ∇p ∇p⋆

Length scale hwm ln (hwm/yν,p)

for a total of 7 different components.

where yν,p is a near-wall scaling compatible with separation[2],

yν,p =
ν

uν,p
with, uν,p =

√
u2ν + u2p, uν =

√
νu∥
hwm

, up =

∣∣∣∣νρ ∂p

∂x

∣∣∣∣1/3 .
The velocity is scaled with uτ,p and the pressure gradient is scaled as the Clauser parameter :

∇p⋆ =
hwm
ρu2ν,p

∇p .

2
C. Duprat et al. A wall-layer model for large-eddy simulations of turbulent flows with/out pressure gradient. Physics of Fluids, 23203(1):015101, 2011.
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Which outputs are predicted ?

Outputs:

Field Description Pre-scaling

Wall shear stress τw,ξ, τw,z τ⋆
w =

τw
1
2
ρ⟨u2ν,p⟩ξ,z

which are the components of the wall shear stress in the local wall-aligned reference frame. Note that a
spatial averaging of the velocity scale is used to avoid spurious oscillations in the predictions.

ECCOMAS 2022 © 2022 Cenaero - All rights reserved 18
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Which inputs/outputs are selected ?

Let us examine the distribution of these normalized fields w.r.t. the wall shear stress :

Channel dataPhill down data Phill up data

→ Better for generalization!

ECCOMAS 2022 © 2022 Cenaero - All rights reserved 19
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Where are the data extracted ?

tips

10 pts. donwstrean
+

10 pts. upstream
+

the current pt.
=

domain of high correlations
(at one height)

=
union of the space-time

correlations.

ECCOMAS 2022 © 2022 Cenaero - All rights reserved 20
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That’s all ?

Two new inputs have been added to improve model performances:

• the curvature K defined as,

K =
|f ′′(x)|

{1 + (f ′(x))2}(3/2)
,

where f (x) is the function that describes the surface.

• the absolute value of the relative positions (information of spacing is hence added), this input
has an impact on the self-attention layer.
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Neural Network Architecture[3] - Jungle

3
MLP stands for Multi-Layer Perceptron, CNN stands for Convolutional Neural Network, RNN stands for Recurrent Neural Network, GNN stands for Graph

Neural Network, LSTM stands for Long-Short Term Memory, GMN stands for Gaussian-Mixture Network, GAN stands for Generative Adversarial Network.
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Neural Network Architecture - Convolutional Neural Network
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Neural Network Architecture - Gaussian Mixture heads

Gaussian Mixture Neural Networks (GMN) aim to predict the probability distribution p(τw ) of the wall
shear stress component as a linear combination of Gaussian distribution :

p(τw ) =
K∑

k=1

πkpk =
K∑

k=1

πkN (µk , σk)

x

y

θ

NN

µk

σk

πk

N pk Σ p

k = 1, . . . ,K
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Neural Network Architecture

Three neural networks are tested :

• CNN-1d-SAL : a one-dimensional convolutional neural network combined with two consecutive
self-attention layer

• GMN-CNN-1d-SAL : the same architecture as CNN-1d-SAL but the last layer is removed for a
Gaussian Mixture Head

• CNN-2d : a two-dimensional convolutional neural network that takes as input
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Outline

01 Problem definition and Industrial context
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Results - On the channel at Reτ = 950 - A priori validation

nξ × nη × nz × nt = 192× 6× 192× 123
Training height : y+ = 100

Training with 181,370 samples with 10% for test
Training with early stop after 400 epochs

Mean Square Error (MSE) loss

Tips

Tips

Main statistics about the model prediction dis-
tribution and the ground truth (or target) dis-
tribution :

µ σ S Erel%

Model 1.00798 0.126 -0.051 0.051

Target 1.00850 0.423 1.016 -
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Results - On the channel - A posteriori validation

Results, converged over 51.5tc (where tc = Lx/ub), are compared with Hoyas et al.[4]

101 102 103

y +
5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

u
+

data-driven wmLES Argo-DG
Hoyas et al., 2008

Mesh : nx × (ny/2)× nx = 26× 13× 13
combined with an order 3 to get
(∆x+,∆y+,∆z+) ≃ (76, 25, 76)

for a total of 562,432 dof
No stretching is applied near the wall(

dofwrLES
dofwmLES

)
≃ 30

→ small over-estimation of 2% near the wall.

4S. Hoyas and J. Jimenez. Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Physics of
Fluids, 20:101511, 2008. doi 10.1063/1.3005862.
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Results - Cross-training - Lower wallnξ × nη × nz × nt = 180× 40× 100× 200
Training height : y/h = 0.1

10% of the database is used for test
Training with early stop

Cross-training : training on the channel and the lower wall of the periodic hill while extrapolating on
the upper wall of the periodic hill.

Averaged streamwise wall shear stress τw ,ξ,
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Results - Cross-training - Lower wall

Instantaneous contours of the wall shear stress τw ,ξ :

Figure: Reference

Figure: CNN-2d

Figure: CNN-1d-SAL

Figure: GMN-CNN-1d-SAL
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Results - Cross-training - Channel

Let us look at results on the chan-
nel wall based on the distribution of
the ground truth compared to the
predicted ones.

Model µ σ S Erel%

CNN-1d-SAL 0.995 0.089 -0.022 1.367
GMN-CNN-1d-SAL 1.024 0.427 0.498 1.535
CNN-2d 0.998 0.122 -0.039 1.037

True distribution : 1.008 0.423 1.016 -
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Results - Cross-training - Upper wall

Model LOTW CNN-1d-SAL GMN-CNN-1d-SAL CNN-2d

Erel% 14.545 11.063 18.972 12.682
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Results - Summary

• Training on a channel gives great results in the a priori and a posteriori validation;

• Training on a channel wall and on the lower wall of the periodic hill gives encouraging results in
the a priori validation while extrapolating on the upper wall of the periodic hill fails;

• Training on the upper and lower wall of the periodic hill predicts well on the same configurations
and fails at extrapolating on the channel, except if the input ”curvature” is modified !

→ the curvature may act as a mask in the neural network
→ the physics of the channel may be better represented by the accelerated flow over the hill than the

flow under a moderate pressure gradient over the upper wall
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Conclusion

• Developing wall model to tackle separation using deep neural network

• Generating databases from channel and periodic hill flows

• Analyzing space-time correlations with τw (i.e., feature selection)

• Training CNN and GMN for the prediction of τw
• A posteriori validation on a channel at Reτ = 950 gives encouraging results

• A posteriori validation on the channel with a network trained on multiple configurations

• A posteriori validation on a channel flow at a higher Reτ
• A posteriori validation on the periodic hill (same Reb and a higher one)

• Tackle an industrial geometry, a blade (e.g. T106C) featuring a separation

o ”Data scientists need to think about their models in post-production because only
once the model is in production is when it starts generating value.” by Alessya
Viscnjic, CEO of WhyLabs.
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