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Abstract
In this paper, a straightforward procedure is presented for optimal design of negative derivative
feedback (NDF) controller with maximum damping and H2 optimization method. NDF is
a controller, which works as a band-pass filter, cutting off the control action far from the natural
frequencies associated with the controlled modes and reducing spillover effect. Since it is
a bandpass filter, it can effectively control the lower or higher frequency disturbances. It is also
implementable on vibration mitigation applications with high performance. For this end, a simple
one degree of freedom system is considered and afterward, the controller parameters are extracted
dependent on closed loop damping. The H2 method is used to calculate the optimal value of
closed loop damping. The effect of changing the controller parameters on the system response
are evaluated and discussed in detail. Also, the control effort for various closed loop damping
has been calculated and compared with performance index of controller. A detailed comparison
between performance and control effort are also presented. The results show high impact
of NDF controller on vibration mitigation and its applicability to employ on various systems.

Keywords: negative derivative feedback (NDF), maximum damping,
H2 optimization, performance index, control effort, bandpass filter, vibration mitigation

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years, due to development of light structures with
slightly damped characteristics, controlling the vibration of
structures has become more and more substantial [1–3]. The
most important issue for this structure is high amount of vibra-
tions amplitudes near their natural frequencies, mainly due to
the low damping ratio. A high level of vibration can easily
cause a degradation of system performance and consequently
decrease the structure health and lifetime.

In order to prevent this issue, vibration control approaches
are developed to avoid high vibration levels actively and
passively.

∗
Author to whom any correspondence should be addressed.

In past few years, active control and passive control
methods have been developed widely. The active control has
more impact and power in vibration reduction amount. There-
fore, in any case, which is possible to utilize active con-
trol methods, researchers would have inclination to use it.
Therefore, various types of active control methods have been
developed and each method have its own benefits and draw-
backs. The drawbacks of each controller can easily make it
impossible to apply on many applications. Therefore, scient-
ists are always looking for a new control logic with higher per-
formances and lower restrictions of utilization on industrial
applications.

Previously, many effective active techniques are introduced
in order to damp structural vibrations. Some of popular ones
are direct velocity feedback [4], integral force feedback [5],
and positive position feedback (PPF) [6]. These methods were
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used extensively for increasing the damping of structural
resonance. Among the mentioned methods, the PPF, as a
second order low-pass filter, is one of the effective control
techniques to be implemented on the plant having no high
frequency roll-off. However, since it is a low-pass filter, as a
consequence, the PPF effectively reduces the spillover on the
higher modes, but it introduces a significant static error and
worsen the system response at lower frequencies. This draw-
backs of PPF makes it inappropriate for targeting high fre-
quency modes. Because the static error will be applied to the
system from zero frequency to the targeted mode at high fre-
quency which is not desirable. Also, PPF is only effective on
onemode and does not have any effects on a band of frequency.

To overcome the imperfections of these controller tech-
niques, Cazzulani et al [7] proposed a new resonant control
logic called as negative derivative feedback (NDF) control for
the first time. The NDF is more robust than other logics with
respect to the spillover effects and by acting as a pass-band fil-
ter, it cuts off both the higher and lower uncontrolled modes’
contribution. NDF showed better performance with respect to
all the other techniques, both in terms of achieved damping
and robustness to low- and high-frequency problems. After
that, Cola et al [8] proposed an algorithm for designing NDF
by output feedback control optimal solution. The procedure
proposed was complicated and hard to implement. Also, the
optimal choice for designing NDF was not presented.

Syed [9] compared PPF and NDF performance on vibra-
tion control of a flexible arm featuring piezoelectric actu-
ator. Based on extracted results, it was shown that NDF con-
troller is more effective than PPF controller in terms of per-
formance measures. Ripamonti and Cola [10], developed an
adaptive NDFmodal control algorithm-based output feedback
control method and applied it on a carbon fiber plate. The
proposed algorithm is very interesting, but it is very hard to
apply on any system. Debattisti et al [11], evaluated distrib-
uted wireless-based control strategy through selective NDF
algorithm. Also, one important factor in smart structures is
evaluating sensor/actutaor distributions and segmentation on
the structures which has been studied by many researchers as
well [13–15].

In overall, the NDF controller is a new method which has
not been studied deeply and also an optimal way for determ-
ining the controller parameters has not been presented. There-
fore, in this study a careful consideration is taken in order to
tune the parameters of the controller to get an optimal perform-
ance for a targeted mode without creating any undesired issues
on other modes or frequency ranges.

In this article, a straightforward procedure is presented for
designing the NDF controller. In order to illustrate the design
methodology clearly, a simple one degree of freedom is con-
sidered. The systems displacement is considered to be con-
trolled by a simple NDF controller. The performance index of
system is extracted and based on maximum damping method.
It is derived as a function of closed loop damping. Afterwards,
in order to obtain an optimal value for closed loop damping,
a H2 optimization algorithm is used. After extracting optimal
value for the closed loop damping, all of the NDF controller
parameters are extracted accordingly. The results show high

power of NDF controller which can easily damp a highly low
dampedmode. The effect of each parameter of controller (con-
troller gain, damping ratio, cutoff frequency) on the perform-
ance index of the system are also evaluated. The stability of
the system considering an NDF controller is also evaluated.
The control effort ratio to disturbance input is also evaluated
based on maximum damping and H2 method as well. It has
been shown that by the increase of the closed loop damping,
the control effort ratio increases, as well.

2. Single degree of freedom system

In this section, a single one degree of freedom (SODF) system
is considered for implementing the NDF controller. The sys-
tem’s mass is m and the stiffness of it is k and a displacement
sensor is used to feedback the displacement of mass (figure 1).
A disturbance force (Fd) is applied on the mass and the NDF
controller is producing an action force Fa which is dependent
on the system displacement. The important point here is the
fact that NDF controller uses the system’s displacement as an
input.

The governing equation of motion of the system is presen-
ted below:

m
..
x+kx= Fd +Fa (1a)

Fa = kcu (1b)

where x is the mass displacement and u is the controller signal.
The dynamics of NDF controller in time domain is presen-
ted in equation (2a). For more clarifications the frequency
response function of the controller (UX ) is presented in equation
(2b). The controller signal is magnified by the gain of kc and
applied on the actuator (equation (1b)):

..
u+2ξcωcu̇+ω2

cu=−ωcẋ (2a)

U
X

=− ωcs
s2 + 2ξcωcs+ω2

c
(2b)

where ξc, ωc and kc damping ratio, cut-off frequency and gain
of NDF controller, respectively. To extract a dimensionless

equation, a transfer form of τ = ω0t where ω0 =
√

k
m , is con-

siderate and the aforementioned equations becomes:

x ′ ′ + x= fd + fa (3a)

u ′ ′ + 2ξαu ′ +α2u=−αx ′ (3b)

where:

fd =
Fd

k
(4a)

fa =
Fa

k
=
kc
k
u= βu (4b)
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Figure 1. One degree of freedom system oscillator with an active
NDF controller.

α=
ωc

ω0
(4c)

β =
kc
k

(4d)

ξ = ξc. (4e)

After applying Laplace transform to equations (3a) and (3b),
the performance index of the system in the closed loop con-
figuration (the ratio of displacement to disturbance force) in
Laplace domain is extracted and presented in below:

x
fd

=
s2 + 2ξαs+α2

(s2 + 1)(s2 + 2ξαs+α2)+αβs
. (5)

The above equation represents the performance index of the
NDF controller on the SDOF system and to increase the effic-
acy of a controller it is desired to minimize the value of the
performance index, in order to have lower displacement when
higher disturbances are applied to the system. The NDF con-
troller should be designed in a way which minimizes the per-
formance index of system.

2.1. Maximum damping method

For minimizing the performance index, first a maximum
damping method is utilized. Maximum damping is a very
effective method which ensures achievement of highest damp-
ing possible after closing the loop, by finding best candidates
for locations of the controller poles. Based on the maximum
damping method, in these kinds of systems, the best pole of
NDF is at locationwhere creates both of the closed-loops poles
with an equal damping ratio. By considering this method and,
the performance index of the closed loop system can bewritten
as:

x
fd

=
s2 + 2ξαs+α2

(s2 + 2ηγs+ γ2)
2 (6)

where γ =
ωf

ω0
, ωf and η are closed-loop resonance frequency

and damping of the system, respectively. For applying max-
imum damping to an SODF, the characteristic equation of
them should be the same. This means that, by comparing the
denominator of the fraction in equations (5) and (6) and equat-
ing the polynomial coefficient of them maximum damping
method will be applied to SDOF system. This creates the fol-
lowing equations:

4ηγ = 2ξα (7a)

(
4η2 + 2

)
γ2 = α2 + 1 (7b)

4ηγ3 = (2ξ+β)α (7c)

γ4 = α2. (7d)

By considering these four equations, the NDF controller para-
meters can be defined based on the closed loop damping. From
equation (7d), it can be easily concluded that

γ =
√
α. (8)

This equation implies that the resonance frequency of the
closed loop system can be determined by the cutoff frequency
of the controller. Also considering equations (7a) and (8), the
damping ratio of the controller can be extracted:

ξ =
2η√
α
. (9)

By putting equation (8) into the equation (7b), the controller
cutoff frequency parameter can be determined:

α=
(
2η2 + 1

)
− 2η

√
η2 + 1 (For α < 1) (10a)

α=
(
2η2 + 1

)
+ 2η

√
η2 + 1(For α > 1). (10b)

The parameter of α determines the distance between the con-
troller cutoff frequency to targeted mode. Based on maximum
damping method, this value is dependent on the closed loop
damping value. Considering equations (7c)–(9), the controller
gain parameter is extracted:

β = 4η

(√
α− 1√

α

)
. (11)

So, in overall based on the maximum damping method, the
NDF parameters are defined by equations (9)–(11). All of
these parameters are dependent on the closed loop damping
(η) and therefore these equations are rewritten dependent only
closed loop damping in the below table.

So, all of the parameters of the controller are determined
as a function of closed loop damping based on maximum
damping method and presented in table 1. Having table 1
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Table 1. Parameters of controller as a function of closed loop
damping.

α < 1 α > 1

α
(
2η2 + 1

)
− 2η

√
η2 + 1

(
2η2 + 1

)
+ 2η

√
η2 + 1

ξ 2η√
(2η2 +1)−2η

√
η2 +1

2η√
(2η2 +1)+2η

√
η2 +1

β 4η

(
2η2 −2η

√
η2 +1√

(2η2 +1)−2η
√

η2 +1

)
4η

(
2η2 +2η

√
η2 +1√

(2η2 +1)+2η
√

η2 +1

)

and considering equations (4c), (4e) and (4d), all of paramet-
ers of equation (2b) is defined based on maximum damping
method. All of these parameters are dependent on the closed
loop damping value which should be determined optimally. In
the next step an optimization method is deployed to determ-
ine the value of closed loop damping (and consequently the
controller parameters) optimally.

2.2. H2 optimization method

In previous section, the candidates for maximum damping
method are extracted. These infinite number of candidates can
be calculated for each value of closed loop damping from zero
to one. In the next step an optimization method should be con-
sidered to find an optimal one among all of the candidates for
the controller. The optimization method can affect the optimal
value for closed loop damping significantly. Two methods can
be considered for optimization which are H2 method and H∞
method. H2 method minimizes the magnitude of performance
index in all of the frequencies from zero to infinity in the
optimization procedure, while H∞ minimizes the magnitude
of performance index only the natural frequency of plant. Even
thoughH∞ can lead to higher values for closed loop damping,
it can come to the price of vibration magnification in the fre-
quencies which was not considered in the process of optimiz-
ation. This can easily cause lower phase margin or instability
issues in the closed loop. Therefore, it is highly recommended
to consider H2 method in which all of frequencies (from zero
to infinity) are considered in the process of optimization. This
can guarantee the stability of the closed loop system with an
acceptable amount closed loop damping.

In this section aH2 method is used to determine the optimal
value of the closed loop damping. The optimal value of the
closed loop damping should be chosen in order to minim-
ize the performance index of the system. For this purpose,
first the performance index of the system is rewritten based
on the closed loop damping and controller cutoff frequency
parameter (α) (which is also dependent on closed loop damp-
ing (equation (10)). So, by putting equations (8) and (9) into
equation (6), the performance index equation after applying
maximum damping can be extracted as:

x
fd

=
s2 + 4η

√
αs+α2

(s2 + 2η
√
αs+α)

2 . (12)

There are several ways to minimize the above equation. How-
ever, in order to reduce undesired impacts of the control action

for all frequencies, H2 method is preferred. Based on the H2

optimization method, the value of
∞́

0

∣∣∣ xfd ∣∣∣2dΩ should be min-

imized. According to Crandall et al [12], for a general transfer
function such as:

G(s) =
b3s3 + b2s2 + b1s+ b0

a4s4 + a3s3 + a2s2 + a1s+ a0
. (13)

The cost function for H2 norm for this transfer function is:

∞̂

−∞

|G|2dΩ= π
N1 +N2 +N3 +N4

D1
(14)

where

N1 =
b20
a0

(a2a3 − a1a4) (15a)

N2 = a3
(
b21 − 2b0b2

)
(15b)

N3 = a1
(
b22 − 2b1b3

)
(15c)

N4 =
b23
a4

(a1a2 − a0a3) (15d)

D1 = a1 (a2a3 − a1a4)− a0a
2
3. (15e)

Based on these equations, the cost function of the system per-
formance index (equation (12)) are extracted. The cost func-
tion is dependent on the closed loop damping ratio:

PI= π

(
4η2 + 1

)
α2 + 16η2 − 2α+ 1

16η3α
√
α

. (16)

In order to find the optimal value for closed-loop damping, the
cost function (after putting equation (10) into equation (16)
is differentiated with respect to closed-loop damping (η) and
equating the extracted equation to zero ( d(PI)dη = 0) yields:

α > 1 α < 1
ηopt = 0.41056 No optimal Value

. (17)

For the condition of cutoff frequency lower than targeted
mode (α < 1) the optimized value for closed loop damping is
0.410 56 and for the condition of cutoff frequency higher than
targeted mode (α > 1) there is no optimal value for closed-
loop damping. These cost function for various closed-loop
damping are plotted in the figure 2 for both conditions to show
the results insightfully (figure 2).

ByH2 method, in the case ofα < 1 there is an optimal value
for the closed-loop damping around 0.41056. However, in the
case α > 1 there is no optimal value for the closed-loop damp-
ing and in this condition as the η increases from zero to one,
the cost function decreases dramatically. Therefore, for hav-
ing a better performance it is inclined to consider the condition
of α < 1 which means that the cutoff frequency of controller
lower than targeted mode. This has a benefit of damping the
frequencies after the target mode as well.

4



Smart Mater. Struct. 31 (2022) 075023 R Jamshidi and C Collette

Figure 2. H2 norm cost Function for various closed loop damping ratios (a) α < 1 (b) α > 1.

3. Stability

In this section, the stability of the system considering NDF
controller is evaluated. Based on equation (5), the character-
istic equation of the system is:

s4 + 2ξαs3 +
(
α2 + 1

)
s2 +(2ξ+β)αs+α2 = 0. (18)

Based on Routh stability criterion, for the above system to be
stable, the conditions should be meet is extracted and presen-
ted on table 2.

Table 2. Stability criteria for NDF.

α < 1 α2 − 1< β
2ξ < 0

α > 1 0< β
2ξ < α2 − 1

The results show that, higher gains or lower damping
ratio of the controller can lead to instability. In order to
avoid instability, increasing the gain of controller should be
accompanied by increasing the damping ratio or in another
word, decreasing the damping ratio should be accompanied

5
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by decreasing the gain of controller as well. Also, the effect of
the cutoff frequency parameter (α) is not ignorable. In order to
increase the stability of system, it is preferred to have higher
distance between the cutoff frequency and the targeted mode.
This means that choosing a cutoff frequency near to the tar-
geted mode (before or after the mode) increases the possib-
ility of instabilities. For this reason, usually NDF controller
is cutting off the control action far from natural frequencies
associated with controlled modes.

4. NDF controller for α< 1

In this section, an NDF controller in the condition of α < 1 is
evaluated. For this purpose the effect of changing the closed-
loop damping (η), controller damping ratio (ξ), controller gain
(β), controller cutoff frequency (α) on the frequency response
and root locus are investigated separately. A simple system
with the specifications of m= 1 kg and k= 1 Nm−1 is con-
sidered and the response of the system for different conditions
are calculated and compared with each other in detail.

4.1. Effect of changing closed loop damping η

In the figure 3, the effect of the changing closed-loop damping
(η) on the frequency response and root locus are evaluated,
separately.

In the frequency response, it has been shown that increas-
ing the value of closed-loop damping till the optimal value,
increases the damping of structure. Increasing the closed-
loop damping more than that, creates more vibration reduction
around the targeted mode, however it also causes high vibra-
tion magnification at lower frequencies. Hence, increasing the
value of η increases the vibration reduction amount around
the natural frequency, but this comes to the price of vibration
magnification at lower frequencies which is not desirable. On
the other hand, decreasing the value of η, decreases the vibra-
tion reduction amount around the natural frequency and sys-
tem damping. Therefore, there is a compromise between the
vibration reduction around the natural frequency and vibration
magnification at lower frequencies. The optimum choice is the
optimal value of closed loop damping. The optimal magnitude
of η has an impressive vibration reduction around natural fre-
quency with less undesirable effect on lower frequencies.

The locations of NDF poles for various values of η are also
presented in figures 3(b)–(d). In all of them, the closed loop
poles are intersecting at one location and that is feature of
maximum damping method. In the case of η = ηopt/2 the NDF
poles are imaginary and before the targeted mode. But in the
case of η = ηopt and η = 2× ηopt the NDF poles are real in the
horizontal axes. This shows the importance of the location of
poles of NDF on the closed loop damping. In figure 3(d) root
locus of the system with optimal η is presented.

4.2. Effect of changing controller damping ratio ξ

In the figure 4, the effect of the changing controller damping
ratio (ξ) on the frequency response and root locus are presented
separately.

The frequency response figure shows that increasing the
value of ξ, decreases the effect of controller on vibration reduc-
tion amount around the natural frequency, slightly. On the
other hand, decreasing the value of ξ increases the vibra-
tion magnification level around the natural frequency but it
also creates a pick at lower frequencies which is unsettling.
Another important point is the fact that the root locus figure
shows that decreasing the value of ξ may lead the system to
become close to instability. This fact was also shown in the
table 2.

All of these results show that the controller damping ratio
has a very high impact on the system response and should
be chosen adequately. Otherwise, it can easily cause lower
performances in the response or even instabilities. In another
word, the NDF controller is very sensitive with the value of
the damping ratio and this value can impact highly on the per-
formance in closed loop.

4.3. Effect of changing controller gain β

In the figure 5, the effect of the changing controller damping
gain (β) on the frequency response and root locus are shown
separately.

The results shows clearly that, enlarging the value of
β (controller gain) rises the amount of vibration reduction
around the natural frequency. However, this causes a pick at
lower frequency which is unfavorable. Also, the side effect of
higher gain is the probability of instability. Therefore, it is not
recommended to increase the gain higher than optimal gain.
From the root locus plot it is obvious that increasing the gain
higher than 40% of the optimal value, can cause instability.
This phenomenon was discussed in table 2 as well.

On the other hand, reducing the value of β, dwindles
the effect of controller and declines the vibration reduction
amount around the natural frequency.

4.4. Effect of changing controller cut-off frequency (α)

In the figure 6, the effect of the altering controller cut-off
frequency (α) on the frequency response and root locus are
presented separately.

Figure 6(b) shows that declining the value of α (which rep-
resents controller cutoff frequency) drops the damping of the
system and consequently decreases the amount of vibration
reduction around the natural frequency.

On the other hand, enlarging the value of α (figure 6(c)),
rises the system’s damping and the vibration reduction level
around the natural frequency. However, this comes with
price of vibration magnification in the lower frequencies
(figure 6(a)). Also, figure 6(c) shows that increasing the con-
troller cutoff frequency parameter, can lead the system to close
margins of instability.

In the frequency response (figure 6(a)), all of the responses
goes through one fixed point which considered as a fixed point
of the system. This fixed point, has a lower frequency than
targeted mode.

6
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Figure 3. (a) Performance index for various values of η in the condition of α < 1 and (b) root locus for η = 2× ηopt. (c) Root locus for
η = ηopt/2. (d) Root locus for η = ηopt.

7



Smart Mater. Struct. 31 (2022) 075023 R Jamshidi and C Collette

Figure 3. (Continued.)

Figure 4. (a) Performance index for various values of ξ in the condition of α < 1 and (b) root locus for ξ = 0.8× ξopt. (c) Root locus for
ξ = ξopt × 1.4. (d) Root locus for ξ = ξopt.
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Figure 4. (Continued.)

5. NDF controller for α> 1

Similarly, in this section, the response of SDOF system with
NDF controller in the condition of α > 1 is evaluated in detail.
For this end, the effect of changing the closed loop damping
(η), controller damping ratio (ξ), controller gain (β), controller
cutoff frequency (α) on the frequency response and rot locus
are investigated separately. As before, a simple system with
the specification of m= 1 kg and k= 1 Nm−1 is considered.

5.1. Effect of changing closed loop damping η

In the figure 7, the effect of the changing closed loop damping
(η) on the frequency response and root locus are presented.

In the above figure, rising the value of η (from zero to one)
escalates the amount of vibration reduction around the nat-
ural frequency dramatically and as it obvious in the root locus
figure, for η = 1 all of the closed loop poles are located in the
horizontal axes which has damping of 1. This magnitude is the
highest possible damping value for a system.

Therefore, in overall, theNDF controller with the cutoff fre-
quency location after the natural frequency (α > 1) has more
power on reducing vibration. However, on the other hand, it
causes vibration magnification in the frequencies higher than
targeted mode (figure 7(a)). This downside can create prob-
lems especially in the systems with higher number of modes.
This means that in higher modes the vibration level will

9
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Figure 5. (a) Performance index for various values of β in the condition of α < 1 and (b) root locus for β = βopt and closed loop poles for
other values of β (βopt × 0.6, βopt × 1.4).

increases after applying this controller. This immense draw-
back inclines the designer to choose the condition of α < 1
rather than α > 1.

5.2. Effect of changing controller damping ratio ξ

In the figure 8, the effect of the changing controller damping
ratio (ξ) on the frequency response and root locus are described
in detail.

In figure 8, declining the value of ξ rises the amount of
vibration mitigation level around the natural frequency more.
However, this causes vibration magnification at frequencies
higher than natural frequency which is unsettling. Another
important point is the fact that the root locus figure shows

that decreasing the value of ξ may lead the system close to the
instability. This fact was also mentioned in the table 2. On the
other hand, rising the value of ξ, reduces the amount of vibra-
tion magnification in the frequencies after the mode. How-
ever, it decreases the performance of controller or the vibration
reduction amount around the natural frequency.

5.3. Effect of changing controller gain β

In the figure 9, the effect of the changing controller damp-
ing gain (β) on the frequency response and root locus are
presented.

Clearly, changing the value of controller gain (β) affects
the controller performance. Rising the value of β increases the

10
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Figure 6. (a) Performance index for various values of α in the condition of α < 1 and (b) root locus for α= 0.6×αopt. (c) Root locus for
α= αopt × 1.4. (d) Root locus for α= αopt.
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Figure 6. (Continued.)

amount of vibration reduction around the natural frequency
more, but this cause vibration magnification at frequencies
higher than natural frequency. Another important point is the
fact that the root locus figure shows that increasing the value
of β may lead the system to become close to instability. This
fact is also shown in the table 2.

Moreover, decreasing the value of β, declines the closed
loop damping of the system and hence the vibration reduction
level around the natural frequency decreases enormously.

5.4. Effect of changing controller cut-off frequency (α)

In the figure 10, the effect of the changing controller damping
gain (α) on the frequency response and root locus are evalu-
ated.

The results show that increasing the value of α, diminishes
the vibration reduction level around the natural frequency.
Moreover, decreasing the value of α, increases the amount of
vibration reduction around the natural frequency more. How-
ever, this creates vibration magnification at frequencies higher
than natural frequency. Also, one interesting point in the fre-
quency response is the fact that all of curves goes through one
fixed point which considered as a fixed point of the system.
This fixed point has a higher frequency than targeted mode.
This fixed point is different than the one in the figure 6(a).

6. Control effort

In this section, the control effect of NDF controller applied
to SDOF system is determined using maximum damping and
H2 method. One of the important factors of any control-
ler is its needed effort in the presence of disturbances with
various magnitudes. The best option for any controller is to
damp higher vibration levels with lower controller effort. For
this end, the ratio of actuator force to disturbance magnitude
should be minimized. At first, the ratio of actuator force to
disturbance magnitude for the SDOF system presented in the
figure 1 is extracted and presented in below:

Fa

Fd
=

Fa
x
Fd
x

=
Fa
x
kfd
x

=

Fa
k
x
fd
x

=− αβs
(s2 + 1)(s2 + 2ξαs+α2)+αβs

.

(19)

Similar to the section 2.1, considering maximum damping
method, in these kinds of systems, the best pole of NDF is at
location where creates both of the closed-loops poles with an
equal damping ratio. By considering this method, the control
effort ratio can be written as:

Fa

Fd
=− αβs

(s2 + 2ηγs+ γ2)
2 . (20)

By putting equation (8) in the equation (21), the below can be
extracted:

Fa

Fd
=− αβs

(s2 + 2η
√
αs+α)

2 . (21)

Equation (21), represents the control effort of the system after
applying maximum damping method. The lower value con-
trol effort is recommended. Therefore, in order to find lower
amount of the control effortH2 optimizationmethod is used. In

this way, the value of
∞́

−∞

∣∣∣ Fa
Fd

∣∣∣2dΩ should be minimized. For

this purpose, considering equations (13)–(15), the cost func-
tion of the control effort (equation (21)) is extracted. The cost
function is dependent on the closed loop damping ratio and it
is presented in below:

∞̂

−∞

∣∣∣∣Fa

Fd

∣∣∣∣2dΩ= π
β2

16η3
√
α
=

π
(
α2 − 2α+ 1

)
η
√
α

= CE (22)

where α, β is determined in table 1 for the both cases of α < 1
and α > 1. The control effort cost function value is minimized
when d(CE)

dη is equal to zero. However, this does not happen for
neither for α < 1 nor for α > 1. The extracted cost function

12
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Figure 7. (a) Performance index for various values of η in the condition of α > 1 and (b) root locus for η = 0.5. (c) Root locus for η = 1
and closed loop poles for other values of η (0.1, 0.3, 0.5, 0.6, 0.8).
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Figure 8. (a) Performance index for various values of ξ in the condition of α > 1 and (b) root locus for ξ = ξopt/4. (c) Root locus for
ξ = ξopt × 2. (d) Root locus for ξ = ξopt and closed loop poles for other values of ξ (ξopt/4, ξopt/2, ξopt × 2, ξopt × 4).
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Figure 8. (Continued.)

Figure 9. (a) Performance index for various values of β in the condition of α > 1. (b) Root locus for various values of β in the condition of
α > 1 and closed loop poles for other values of β ( βopt/2, βopt × 5).
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Figure 10. (a) Performance index for various values of α in the condition of α > 1. (b) Root locus for α= αopt/2. (c) Root locus for
α= αopt × 2. (d) Root locus for α= αopt and closed loop poles for other values of α ( αopt/2, αopt × 2).

for various magnitude of η is presented in figure 13 for both
cases of α < 1 and α > 1 (in figure 13).

Clearly, as the η increases from zero to one, the control
effort increases as well for both cases of α < 1 and α > 1.

This means that for lower actuation force, it is better to con-
sider lower closed loop damping. However, this will effect-
ively diminish the performance of the controller. It is inter-
esting that the control effort for α < 1 is always higher than
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Figure 10. (Continued.)

Figure 11. Performance index and control effort for various η in the case of α < 1.

α > 1. This means that for lower power consumption of the
actuation it is better to consider α > 1 rather than α < 1.

In order to choose the value of closed loop damping wisely,
the performance index of the system and control effort should
be evaluated simultaneously. Therefore, the cost function of
performance index and control effort for various value of
closed loop damping in the case of α < 1 is presented in
figure 11.

In the case of α < 1, if the control effort does not limit the
experiment, then the optimal parameter of ηopt = 0.41056 is
the best practical choice. However, if there are any limitations,
lower amounts for η can be considered and that would def-
initely decrease the controller performance on the vibration
reduction amount. Also, in the condition of α < 1, the values
higher than ηopt is not recommended at all. That is because of

higher control effort accompanied by lower performance at the
same time which both of them are unsettling.

Similarly, the cost function of performance index and con-
trol effort for various value of closed loop damping, in the case
of α > 1 is presented in the figure 12.

In the case of α > 1, the control effort and performance
index have the opposite directions in respect with η. As η
enlarges from zero to one, the performance index of the sys-
tem decreases dramatically. However, this leads to higher con-
trol efforts. This means as the η increase the control effort will
also increase. Therefore, in this condition there is compromise
between performance index and control effort. If the actuator
can apply higher forces, then higher performances will def-
initely be reachable, but in practice there are always limited
actuation force.
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Figure 12. Performance index and control effort for various η in the case of α > 1.

Figure 13. The control effort cost function for various η in the case of α < 1 and α > 1.

7. Optimal choices

In overall in this article, two options are presented for design-
ing the NDF controller which are based on the location of the
cutoff frequency in regards with the targeted mode. The first
option is choosing the cutoff frequency location before the tar-
geted mode (α < 1), and the second one is choosing the cutoff
frequency location after the targeted mode (α > 1).

The control effort for the case of α > 1 is always lower
than the case ofα < 1 (figure 13). Also, the performance index
of the system when α > 1, can be even much lower than the
optimal value of the performance index of the system when

α < 1 (figure 2). These beneficial features may seem very
tempting at the first glance. However, the drawback of choos-
ing α > 1, is the vibration magnifications after the targeted
mode (figure 7(a)). This means that if there are some modes
after the target mode in the system, the level of vibration in
those mode will enlarge which is a big obstacle in choos-
ing α > 1. On the other hand, if the designer chooses α < 1
with the optimal value of η, not only the performance of the
controller on the targeted mode will be impressive, but also
in higher modes of the system, there will be an appealing
vibration reduction as well (figure 3(a)). This superior feature
makes the condition of α < 1 more appropriate and logical
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Figure 14. Experiment setup, cantilever beam with two pairs of piezoelectric patches.

choice. Therefore, it is strongly recommended to choose the
cutoff frequency before the targeted mode with the presented
optimal value of closed loop damping. In this way, not only the
vibration mitigation level is impressive in the targeted mode,
but also in close modes after the targeted mode, vibration level
will decrease marginally.

There some cases that the choice of α > 1 can be logical
as well. When the frequency of disturbance input of the sys-
tem is limited to bandwidth, in which only the targeted mode
presents, then the choice of α > 1 would be more appeal-
ing. Because not only this can increase the performance of
the controller but also the control effort can be decreased
impactfully.

8. Experimental validation

In this section, in order to validate the presented method,
an experiment on a smart structure has been performed. For
this purpose, a beam with two pairs of piezoelectric patches
is used. One of pairs of piezoelectric patches is used as a
controlling unit and the other one is used to measure the per-
formance index of beam in controlled and uncontrolled condi-
tion. The experimental setup is presented in the figure 14. In
figure 14, the second pair is used to close the loop and the first
pair is used for performance index measurement. This means
that in the first pair of patches, a chirp signal from 0 Hz to
200Hz is injected to one patch as an excitation (or disturbance)
signal and the displacement of beam is measured in the other
patch. The length, width and thickness of this beam, which
is made by steal, are 255 mm, 30 mm, and 3 mm respectively.
Piezo 1, 2, 3 and 4 are standard PIC-225 patches, glued on each
side of the beam. The length, width and thickness of patches
are 50 mm, 30 mm, 0.75 mm respectively. The first pair is loc-
ated next to the clamped boundary condition and the second
pair is located after the first pair on the beam. One side of all

Table 3. Controller’s parameters.

ξc 1.02
ωc 101.5
β 285.7

patches are connected to the beam and the beam is connected
to ground. This means that one electrode of all patches is con-
nected to ground. The other electrode (or side) of each patch
is connected to cable which is connected to the Microlabbox.
MicroLab-Box is used to inject excitation signal to the actu-
ator andmeasure the sensor signal form the setup at a sampling
frequency of 10 kHz. Signal conditioner is also utilized during
the experiment on the sensor output of piezoelectric patches
for omitting sensor noise.

The first pair of piezoelectric patches is used for measuring
the performance index and the second pair is used for con-
trolling the structure’s displacement. The first mode of beam
has natural frequency of 142 rad s−1 and it has damping of
0.0097 and this mode is targeted to damp by NDF. Based on
the presented method an NDF controller is designed the damp
the first bending mode of the beam. The controller’s paramet-
ers are presented in table 3. The results of this experiment is
presented in figure 15.

Obviously, the result shows that the first bending mode of
beam is completely damped by using NDF controller. This
easily shows the effectiveness and power of NDF controller.
The second point is the fact that the second mode of the beam
is slightly damped as well, even though the controller was
designed to damp the first mode. This shows that the NDF can
be effective with the modes close to the targeted mode. The
third point which is worth to mention is the fact that the con-
troller has no side effect like vibration magnification in other
frequencies which is appealing for damping a certain band of
frequency. This is because of the fact that NDF is working as a
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Figure 15. Performance index of beam in controlled and uncontrolled condition.

bandpass filter andH2 method is used for tuning the controller
parameters.

9. Conclusion

In this article, a direct method is presented to design NDF con-
troller optimally. For this purpose, maximum damping method
and H2 optimization method is utilized to tune the parameters
of the NDF controller for SODF system. NDF is a controller
which works as a band-pass filter, cutting off the control action
far from the natural frequencies associated with the controlled
modes and reducing the spillover effect. Since it is a bandpass
filter, it can effectively control the lower and higher frequency.
The results shows that the NDF controller can easily reduce
vibration of targeted mode effectively. It is recommended that
the cutoff frequency of the controller is chosen before the tar-
geted mode and in this case, the controller can be effective for
a band of frequency. The effect of changing the NDFs para-
meters of the on the system response are evaluated in detail.
Also, the control effort for various disturbance input has been
calculated and compared with performance of controller. The
designed aim is to have higher performance with lower control
effort.
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