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Abstract

This paper studies the possibility of extending the already proved link between the pole-

zero distance and the maximum reachable damping ratio in single input single output (SISO)

systems to multiple inputs multiple outputs (MIMO) ones. This extension is shown to be pos-

sible when the considered system presents specific properties: (i) it is equipped with collocated

transducers with small authority, (ii) the system has a small modal density in the frequency

band of interest and (iii) a low authority control law is used. It is indeed demonstrated that

when these three conditions are satisfied, the analytical development of the closed-loop poles

convergence is equivalent to the one observed with SISO cases, except that the anti-resonances

are replaced by the transmission zeros (TZs). Consequently, it is concluded that the maximum

reachable damping ratio is directly proportional to the pole-transmission zero distance for such

MIMO systems. This conclusion is demonstrated with two numerical examples (a cantilever

beam and a simply supported plate) and experimentally validated on a cantilever beam where

all the studied systems are equipped with two collocated pairs of piezoelectric patches.

Keywords: Multiple input multiple output system, Transmission zeros, pole-zero distance,

maximum reachable damping

1 Introduction

The poles (natural frequencies) are of high importance when studying the dynamics of any flexible

system. For example, the poles inform at which frequencies a bounded disturbance can lead to a

very large system response due to the resonance phenomenon. Such a resonance effect can cause

structural damages to the system or, in worst cases, the complete destruction of the structure.

Control systems are therefore required to prevent such unwanted phenomenon by decreasing the
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level of the spurious vibrations. Different alleviation strategies have been developed during the

last few decades such as passive damping (e.g. [1]), active damping (e.g. [2]) or hybrid damping

(e.g. [3]). Physically, those damping strategies aim at reducing the resonance peaks by dissipating

the vibration energy, which then leads to an acceptable level of the system response when it is

subjected to some internal and/or external disturbances.

Although the information contained within the open-loop system poles are of high importance

in the development of those three damping approaches, the TZs play a major role as well. Indeed,

those TZs that are defined as the frequencies at which a non-zero actuation leads to a zero output

response can have a strong impact on the achievable performance of the control strategy. For

example, they provide a phase lead that compensates the phase lag brought by the poles which, in

case of collocated systems, ensures that the open-loop phase lag can never drop below 180 degrees

thanks to the interlacing property [4]. Moreover, and for SISO linear and time-invariant collocated

systems with well separated modes, the maximum achievable damping directly depends on the

distance between the poles and the zeros [5]. A quick analysis of the TZs of those collocated SISO

systems allows therefore to obtain, for a reasonable computational cost, valuable information on

the possible performance once in closed-loop. A study has recently been published in which the

pole-zero distance is used to build a novel sensor-actuator placement criterion for collocated SISO

systems, allowing to obtain a control architecture with high modal damping while using small

computational resources [6]. Unfortunately, the link between pole-zero distance and damping has

never been studied for MIMO systems. This paper aims therefore to extend this link from SISO to

MIMO, allowing to obtain knowledge on the performance of the considered system at small cost,

which can be highly valuable for a preliminary evaluation.

The second section recalls some properties of the TZs and the convergence of the closed-loop

poles in MIMO systems. The third part analytically explores how the distance between the pole and

the TZ for a specific mode is related to the maximum reachable damping ratio once in closed-loop.

The fourth section illustrates this new link with two numerical examples (a cantilever beam and

a simply supported plate) while the fifth one provides an experimental validation on a cantilever

beam. Finally, some concluding remarks are given in the last section.
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2 Properties of the transmission zeros in MIMO systems

In SISO systems, the TZs are the frequencies at which a non-zero signal injected in the actuator

leads to a zero output response in the sensor, which is the reason why they are often called anti-

resonance frequencies. When dealing with a MIMO system, the TZs are the frequencies for which

there is no transmission from the inputs to all the outputs of the system. The TZs are therefore

not simply equal to the anti-resonance frequencies of each individual entry of the transfer function

matrix, they are associated to the global system.

The TZs of MIMO systems can be obtained by applying different approaches. One of the main

techniques is based on the state space representation from which the system matrix is built [7, 8].

Let us consider a MIMO system with n degrees of freedom and r collocated inputs-outputs pairs,

which can be represented by its state space form as follows:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1)

where x(t) ∈ R2n is the state variable vector, A ∈ R2n×2n is the state matrix, B ∈ R2n×r is the

input matrix, y(t) ∈ Rr is the output vector, C ∈ Rr×2n is the output matrix and D ∈ Rr×r is the

feedthrough matrix. Equation 1 can be easily rewritten in the Laplace domain and rearranged as

follows:

sI −A −B

C D


x
u

 =

0

y

 (2)

where s is the complex Laplace variable and the left hand side matrix is called the system

matrix. Since the TZs are the frequencies at which all the outputs of the system are zero when

applying non-zero inputs, they are the solution of Eq. 2 when y is set to zero:

Z0I −A −B

C D


x0

u0

 =

0

0

 (3)

Hence, the solutions of Eq. 3, which are obtained by solving the generalised eigenvalue problem,

provide the different TZ frequencies Z0. Interestingly, each TZ is related to a specific zero input

direction u0 while, in case of SISO systems, a particular input signal is not required. This is due
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to the switching from scalar space (i.e. with SISO systems) to the vectorial one (in case of MIMO

systems), in which the input vector cannot be cancelled out before solving the equation.

The TZs can also be computed from the transfer function matrix representation, which can be

obtained by transforming the state space system of Eq. 1 as follow [9]:

G(s) = C(sI −A)−1B +D (4)

where G(s) ∈ Rr×r is the transfer function matrix and I ∈ R2n×2n is the identity matrix.

Usually, the TZs of the system cannot be computed with the transfer matrix in its original coupled

form. Therefore, a Smith-McMillan reduction is performed [10, 11], which allows to obtain a diag-

onal canonical form of the system. Nevertheless, applying the Smith-McMillan reduction instead

of using the state space representation to compute the TZs can lead to some complications, such

as (i) additional effort required to obtain the zero input directions u0, (ii) numerical imprecisions

when solving the Smith-McMillan reduced form or (iii) the omission of the TZ frequencies related

to the uncontrollable and/or unobservable subsystems [12].

Finally, the TZs of MIMO systems with collocated displacement sensor-force actuator pairs

correspond to the eigenvalues of an associated constrained problem [13]. Hence, the TZs of such

configurations can be obtained by solving the corresponding eigenvalue problem, which is already

well-known and used in SISO systems [14]. Nonetheless, this physical interpretation does not hold

for non-collocated configurations where the TZs are obtained by solving a non-symmetric eigen-

value problem which leads to non-minimum phase zeros [15].

It is also well known that, in SISO system, the closed-loop poles tend to the open-loop anti-

resonances for high value of the feedback gain. Nevertheless, and as previously discussed, MIMO

systems present (1) the anti-resonance frequencies that are related to each sensor-actuator combi-

nation and (2) the TZs that are associated to the global system. The question of the convergence

of the closed-loop poles in such MIMO systems is therefore important.

It has first been proved by Davison [16] and then analytically confirmed by Preumont [17]

that when dealing with collocated MIMO systems, the closed-loop poles that do not tend to

infinity when increasing asymptotically the gain are converging towards the TZs. Moreover, this

asymptotic behaviour does not depend on the feedback control law, unlike the shape of the root

locus. Besides, it is stated in [17] that it is not possible to predict the precise trajectory of the
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closed-loop poles in the complex plane.

Nevertheless, and despite this last statement, it can be actually shown that in case of a low

authority controller with a specific architecture, the shape of the root locus can present an expected

trajectory, as demonstrated in the next Section.

3 Pole-TZ distance and maximum reachable damping in MIMO

The impossibility of predicting the shape of the root locus for MIMO systems depicted in [17] is

mainly due to its generalisation for any type of controller. Indeed, specific configurations can lead

to expected behaviours similar to SISO systems and, therefore, the possibility to draw the root

locus of the closed-loop system using only the open-loop poles and the TZs knowledge.

Let us consider a flexible system with almost no damping and a small modal density on which

multiple collocated sensor-actuator pairs are mounted. For some transducer configurations, it can

be assumed that a TZ lies in the vicinity of each open-loop pole, mimicking therefore the alter-

nating pole-zero property of the SISO collocated systems. By recalling the physical interpretation

of the TZs (i.e. they correspond to the frequencies of an associated constrained system), this

condition is only possible when the transducers present a small authority on the system such that

the corresponding constrained system is close to the unconstrained one. This can for example be

observed when only a few force actuator-displacement sensor pairs are mounted on a very large

system. When considering piezoelectric patch actuation, small authority occurs when the cumu-

lated size of the patches is small with respect to the size of the system or when the patches are

located in an area with small amount of strain energy.

When a control law is implemented, the closed-loop poles of the controlled system converge

towards the TZs for large gain values. If the implemented controller presents a small authority,

its effect is limited which restricts the migration of the closed-loop poles in the complex plane.

Moreover, and because of the small modal density hypothesis, the different open-loop poles are

located far away from each other, limiting therefore the possible modal interaction. Consequently,

each open-loop pole converges towards the TZ in its neighbourhood, forming thereby independent

modal loops. This hypothesis is illustrated in Fig. 1 where the real and the imaginary axes present

different scale in order to ease the visualization.

Independent root loci derived from each open-loop pole and the TZ in its neighbourhood can

therefore be considered, allowing to analyse the migration of every closed-loop pole independently
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Figure 1: Hypothesis on the shape of the root locus in case of a MIMO decentralised low authority
controller with small modal density and a TZ in the vicinity of each open-loop pole

by only considering the open-loop pole,the TZ in its neighbourhood and the low authority control

(LAC) law. Let us for example consider a decentralised architecture with an identical LAC law,

such as an integral force feedback defined by:

C(s) = g
1
s

(5)

where g is the gain of the controller. Because of the independent behaviour of each mode,

the characteristic equation of the closed-loop system can be written in the modal coordinates as

follows:

1 + g
1
s

(
s2 + Z2

0,i

s2 + ω2
i

)
= 0 (6)

where ωi is the open-loop pole of the mode of interest i and Z0,i is its related TZ, i.e. the TZ

that lies in the vicinity of ωi in accordance with the hypothesis. The full path of each closed-loop

pole in the complex plane can thereby be computed by solving Eq. 6 when the gain g is varied

from 0 to infinity.

Interestingly, Eq. 6 presents the same form as the characteristic equation of a SISO integral

force feedback controller architecture from [5], the only difference being that the anti-resonance zi

in the SISO configuration is replaced by the TZ values Z0,i in the considered MIMO architecture.

Therefore, the existing link between the maximum reachable damping of mode i, ξmax
i , and the

pole-zero distance in collocated SISO systems that has been demonstrated in [18] can be extended

to collocated MIMO ones by replacing the anti-resonance frequency zi with the TZ value Z0,i,
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which leads to:

ξmax
i = Z0,i − ωi

2ωi
(7)

Consequently, Eq. 7 shows that the link between damping and pole-zero distance holds in the

case of MIMO systems. Nevertheless, this relationship is only valid when the three hypotheses

that have been previously defined are satisfied, i.e. when (1) the considered system presents a

small modal density, (2) a TZ lies in the vicinity of each open-loop pole and (3) the collocated

control architecture has a small authority. Those properties can be encountered in different engi-

neering applications such as communication antennas, solar panels or large mirrors for observatory

purposes. Indeed, it is for example illustrated in [19] that a laminated membrane plate mirror

modelled for space telescopes presents a small modal density for the first four modes. Hence,

and as it will be demonstrated in the numerical and experimental validation sections, mounting

collocated pairs of piezoelectric patches on such system induces TZs in the vicinity of the poles,

guaranteeing therefore the hypotheses.

Obviously, the expression of the maximum reachable modal damping given by Eq. 7 is only

valid when a integral force feedback controller is applied. However, and even though using another

control law can modify this expression, the maximum achievable damping will still be directly

proportional to the distance between the open-loop pole ωi and the nearby transmission zero Z0,i.

It is indeed shown in [5] that, for different SISO cases, the maximum damping ratio is always

proportional to the pole-zero distance no matter which LAC is used. Hence, when the defined

hypotheses are satisfied, and therefore when the modal loops are independent which allows to

replace the anti-resonances by the TZs, a more general expression can be defined as follows:

ξmax
i ∝ |P Z0|i (8)

where |P Z0|i expresses the pole-TZ distance of mode i. This distance can be obtained by

the difference between the TZ and the nearby open-loop pole when the system exhibits a pole-TZ

pattern (as applied in Eq. 7) or by the difference between the open-loop pole and the nearby TZ

when the latter appears first.

The extension of the direct link between the maximum reachable damping and the pole-TZ distance

for MIMO systems described by Eq. 8 is numerically demonstrated in the next section on two

different systems: a cantilever beam and a simply supported plate. An experimental validation is
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also performed on a cantilever beam, proving therefore that the required three specific properties

can be encountered on real-live structures.

4 Numerical validation

The extension of the direct link between the maximum reachable damping and the pole-TZ distance

for MIMO systems described by Eq. 8 is subjected to some limiting hypotheses. The aim of this

section is to provide numerical examples of systems that satisfy those required hypotheses in order

to prove that, in such a case, this direct link exists. The numerical simulations have been performed

using the Structural Dynamics Toolbox (SDT), an open and extendible finite element modelling

MATLAB based toolbox for dynamics problems [20].

Two different systems have been considered: one with less modal density (a cantilever beam)

and the other with a higher one (a simply supported plate). In both cases, the values of the TZs

have been modified by changing the positions of the collocated transducer pairs. Moreover, the

two systems are defined with the same lightly damped steel with the following properties: Young’s

modulus E = 210 GPa, Poisson’s ratio ν = 0.285, mass density ρ = 7800 kg/m3 and modal

damping ratio ξ = 0.004.

The cantilever beam is modelled with the dimension of 300 mm x 25 mm x 2 mm and its finite

element model is built with 6 degrees of freedom (DOFs) shell elements each 1 and 5 mm in the

x and y direction respectively, leading to 1806 nodes in total. Two lead zirconate titanate (PZT)

piezoelectric voltage actuators and two PZT sensors patches are considered, with the following

dimension: 15 mm x 25 mm x 0.5 mm. A possible position is defined every 30 mm in the lon-

gitudinal direction of the beam starting from its clamped end, leading to 10 different placement

locations. In order to perform this study on a MIMO system, two pairs of patches are placed

together, translating consequently the 10 possible patch locations into 45 different configurations

in total. Moreover, to ensure the collocation of the transducers in the sense that there is the al-

ternating pole-zero property on the open-loop transfer function of each pair in the frequency band

of interest, each sensor-actuator pair is placed at the same location but on the opposite sides of

the structure for every tested configuration. Such configuration allows indeed to ensure this alter-

nating properties within the frequency band of interest when dealing with piezoelectric patches,

as demonstrated by [21]. The entire set of the 10 possible patch positions is shown in Fig. 2a, as
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Figure 2: Representation of the two structural systems and the full set of possible patch positions
in dotted blue lines: (a) top view of the cantilever beam that presents 10 possible patch positions
along its longitudinal axis x, (b) top view of the simply supported plate with a total of 20 possible
patch positions in the x and y directions

well as the Cartesian coordinates of the beam. Finally, and because the different considered pair

positions do not allow to control the torsion modes (the patches are symmetrically placed along

the middle transversal axis), the study will be limited to the bending modes of the beam.

The simply supported plate defined by free rotation but fixed translation on its four edges is

modelled with the dimension of 300 mm x 240 mm x 2 mm and is discretized by 6 DOFs mul-

tilayer shell elements each 3 mm in both x and y directions (8181 nodes in total). Again, two

pairs of PZT piezoelectric voltage actuators and sensors patches are considered, with the following

dimension: 30 mm x 30 mm x 0.5 mm. A pair of patches can be placed each 60 mm in both the

x and y directions starting from the origin of the Cartesian frame, leading to 20 possible patch

positions. Because two pairs of patches are again considered, those possible positions translate into

a total of 190 different configurations. The alternating pole-zero property within the frequency

band of interest is again ensured by placing the actuator and sensor patches at the same location
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but on opposite sides of the structure, for each considered configuration. The entire set of the 20

possible patch positions is shown in Fig. 2b, as well as the Cartesian coordinates of the plate.

Regarding the control architecture, a decentralised identical direct velocity feedback (DVF)

control law is selected. Such LAC introduces indeed only one parameter (the gain g), which avoids

any additional variability in the control architecture when analysing the results obtained with the

cantilever beam or the simply supported plate. Because the considered systems present, for each

configuration, two collocated pairs of patches, the controller C(s) is defined as a 2 × 2 matrix as

follows:

C(s) = g

s 0

0 s

 (9)

The root loci obtained for arbitrary configurations of the two systems when applying the de-

centralised controller defined by Eq. 9 are shown in Fig. 3. It can be seen that the three required

conditions to ensure the MIMO extension are fulfilled. Indeed, (1) the open-loop poles of the

considered modes are indeed well separated (low modal density), (2) a TZ lies within the vicinity

of each open-loop pole (mimicking the alternating pole-zero property of collocated SISO systems)

and (3) each mode behaves independently from the others by making a loop from the open-loop

poles towards the surrounding TZ (low authority control with no modal interaction). This there-

fore confirms the possibility to encounter systems that present the aforementioned conditions and,

consequently, it reassures about the relevance of the presented extension of the link between damp-

ing and pole-zero distance for MIMO systems expressed by Eq. 8.

It can be seen in Figs. 3a and 3b that, for each configuration and each mode, an optimal gain

value allows to obtain the maximum reachable damping ratio, i.e. the one obtained at the leftmost

position of the closed-loop poles in the complex plane. Hence, the maximum reachable damping

ratio can be easily extracted for each of the first three modes, for the entire set of the 45 (cantilever

beam) and 190 (simply supported plate) possible pairs configurations.

Moreover, the value of all the TZs can be obtained by using the state-space approach developed

in the previous Section. Hence, and in addition to the maximum reachable damping ratio of each

mode, the pole-TZ distance can be computed as well by calculating the difference between each

TZ and each surrounding pole, for all the possible pair configurations. It therefore means that the

link between the maximum reachable damping ratio and the pole-TZ distance can be plotted for
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Figure 3: Root locus in closed-loop with an identical decentralised DVF controller for specific
locations of two pairs of piezoelectric patches on: (a) the cantilever beam, (b) the simply supported
plate

all the considered configurations and for the first three modes of the two systems. In order to ease

the visualization of this link for those three modes, the pole-TZ distance needs to be normalised to

ensure the same order of magnitude for each mode. Consequently, the normalised pole-TZ distance

|P Z0|i,norm. of mode i is defined by:

|P Z0|i,norm. = Z0,i − ωi

ωi
(10)

Figures 4a and 4b show, for the cantilever beam and the simply supported plate respectively,

the value of the maximum reachable damping ratio as a function of the corresponding normalised

pole-TZ distance for the three first modes of interest. In addition, the dotted lines plotted on
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Figure 4: Maximum reachable damping ratio as a function of the normalised pole-TZ distance for
the first three modes: (a) for the cantilever beam, (b) for the simply supported plate

both figures correspond to a first-order fit based on a least-squares approach using the entire set

of entries. The two figures clearly highlight the proportionality between the maximum reachable

damping ratio and the pole-TZ distance, demonstrating therefore that the generalised linear link

expressed by Eq. 8 is verified for the two considered systems and all the modes of interest.

Furthermore, and for each system, this linear link exhibits a common factor for all the modes,

meaning that it is indeed possible to find the analytical expression of the damping as a function

of a normalised pole-TZ distance such as the one formulated by Eq. 7. Those observations are

therefore numerically proving the presented extension of the link between damping and pole-zero

distance for collocated SISO systems to MIMO ones when the different defined conditions are

satisfied. The next section experimentally demonstrates this extension on a cantilever beam.

5 Experimental validation

In order to experimentally validate the presented extension, a model in SDT is first implemented

to determine the appropriate parameters of the experimental system, the size and the position of

the active patches and the method that will be applied to estimate the performance index. This

analysis provided the following system: the structure consists in a 250 mm x 36.4 mm x 0.75 mm

cantilever steel beam. The same steel used for the numerical validation is used again to build the

model, the only difference being that the modal damping ratio has been set to ξ = 0.01 instead

of 0.004 in order to comply with the damping introduced by the effect of non-perfect clamping.
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Five pairs of 13 mm x 13 mm identical piezoelectric patches are mounted with a spacing of 3 mm

between them in the longitudinal direction and symmetrically to the central axis. The patches

consist of d31 P2 Macrof Fiber Composites (MFC) which have been ordered with a specific size

and wiring scheme from Smart Material company (not in the regular catalogue), with an overall

thickness of 0.3 mm (0.18 mm for the active layer) and a volume fraction of active fibres of 86%

as for the normal MFCs from the catalogue. It can be noted that the MFC active layer is mod-

eled with equivalent piezoelectric properties obtained with homogeneization, as explained in [22].

Similarly to the numerical validation, each sensor-actuator pair is placed at the same location but

on the opposite sides of the structure. Moreover, another piezoelectric patch (d33 PZT type) of

dimension 34 mm x 7 mm (in the longitudinal and transversal directions, respectively) is attached

at the root of the beam in order to excite the structure. The entire system is modelled with a total

of 16800 shell elements. Finally, the Young modulus of the elements located near the vicinity of

the clamp has been increased by 2 % to model the non-perfect clamping, as illustrated in Fig. 5a

by the use of a different color for those elements; a picture of the experimental setup is shown in

Fig. 5b as well.

(a) Finite element model

(b) Experimental setup

Figure 5: Side views of the experimental system with the five MFC sensor patches and the distur-
bance PZT patch: (a) finite element model built within SDT, (b) the experimental setup

As considered for the numerical validation, configurations composed by two pairs of sensors-

actuators patches are investigated. Because 5 locations are available, a total of 10 different MIMO

configurations can be studied; each one being composed by two pairs of active patches. To avoid
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the addition of an extra transducer, one of the three unused MFC sensor patches will be chosen to

measure the response of the system. Consequently, the five pairs of patches that are mounted on

the beam can be sorted as follow, for each configuration: two pairs are dedicated for the control

loop, two are not in use (i.e. open circuit connexion) while the sensor of the last pair is used to

measure the response of the system.

Similarly to the numerical validation, a decentralised identical control law is selected as the

control architecture. Nevertheless, and to avoid spillover issues or excessive sensor noise amplifi-

cation, a first order positive position feedback (PPF) is chosen instead of a DVF. Indeed, the PPF

control law provides a −20dB/decade roll-off which is compulsory for systems that present non-

negligible dynamics at high frequency, such as the considered voltage/voltage pairs of piezoelectric

patches [23]. Because this study will be limited to the first two bending modes, the filtration pole

of the PPF is set to ωc = 530rad/s, i.e. ωc = 1.25 × ω2 where ω2 is the second natural pulsation

of the beam. Hence, the controller C(s) is defined as a 2× 2 matrix as follows:

C(s) = −g
s+ ωc

1 0

0 1

 (11)

0 0.05 0.1 0.15
Normalised pole-transmission zero distance

0

0.2

0.4

0.6

0.8

1

M
ax

im
um

 r
ea

ch
ab

le
 d

am
pi

ng
 r

at
io

Mode 1

Mode 2
First-order fit of mode 1

First-order fit of mode 2

(a) SDT Model

0 0.05 0.1 0.15
Normalised pole-transmission zero distance

0

0.2

0.4

0.6

0.8

1

M
ax

im
um

 r
ea

ch
ab

le
 d

am
pi

ng
 r

at
io

Mode 1

Mode 2
First-order fit of mode 1

First-order fit of mode 2

(b) Experimentally extracted model

Figure 6: Maximum reachable damping ratio as a function of the normalised pole-TZ distance for
the first two modes: (a) from the SDT model, (b) from the experimentally extracted model

Although the use of the finite element model is of high interest to design the experimental

setup and to ensure its desired behaviour, it is well known that deviations will appear between
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the model and the experimental setup. Those deviations can be attributed to different factors,

e.g. the inaccuracy of the material parameter values, imprecision on the placement of the patches

during the mounting, the effect of the glue that is not considered in the model or the difficulty

to accurately model piezoelectric structures because of the interaction between mechanical and

electrical effects [24]. Consequently, an experimentally extracted model is built for all the ten con-

figurations by first measuring the open-loop responses between the different patches and secondly

by fitting those experimental transfer functions using the modal identification toolbox available

within SDT. The identification method is based on the fitting of a pole-residue type model, with

both high and low frequency corrections, which can then be transformed into a state-space repre-

sentation. Using the finite element model and the experimentally extracted one, the link between

the maximum reachable damping and the normalised pole-TZ distance can be plotted for the 10

configurations and for the first two considered modes, as previously done in the numerical valida-

tion. As shown in Fig. 6, the direct link between the maximum damping and the pole-TZ distance

is again numerically established for this new system on the two different models. Nevertheless, and

for both the models, a modification of the slope factor can be observed between the two modes,

which can be explained by the filtration pole ωc and its variable interaction on them. Moreover,

and although the same overall behaviour is observed, the SDT model presents higher maximum

reachable damping ratio and higher normalised pole-TZ distance compared to the experimentally

extracted model. This overestimation is due to the fact that the finite element model exhibits

larger pole-TZ distances than the ones obtained with the experimentally extracted one, increasing

consequently the damping. Additionally, the extracted model presents different damping values

for each pole and anti-resonance which modifies the shape of the different root loci [25], impacting

therefore the maximum reachable damping.

In order to experimentally validate the linear link obtained with the experimentally extracted

model, a dSPACE MicroLabBox is used for both the data acquisition and the control aspect, with

the sampling frequency set to 20kHz. Moreover, and because the capacitance of the MFC patches

is low (approximatively 18nF ), a sensor signal conditioner from PCB Piezotronics (model 482C)

with unitary gain is used to avoid any possible impedance issue in case of direct connection from

the patches to the MicroLabBox.

The experimental test campaign focusses on four of the ten available configurations such that

all the patches are in use at least once, as illustrated by Fig. 7 where the active patches for each
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selected configuration are filled in blue while the MFC sensor patches used for the performance

index are highlighted in pink. Additionally, the configuration scheme of the experimental study is

depicted in Fig. 8 for the first considered configuration: a white noise generator is employed to

excite the structure from 0Hz to 300Hz through the disturbance patch and the induced response

of the system is measured by one of the MFC sensor. Simultaneously, the control architecture is

applied on the two pairs of active patches while the unused remaining ones are kept open.

Configura�on 1

Configura�on 2

Configura�on 3

Configura�on 4

Figure 7: Illustration (top view) of the four configurations that have been experimentally tested.
For each configuration, the filled blue patches are the MFC active ones used in the control loop,
the red patch corresponds to the PZT disturbance actuator and the pink patch is the MFC used
as a sensor to build the performance index.

The experimental validation is done by the comparison between the theoretical and the exper-

imental root-locus for each of the four considered configurations. Indeed, if the trajectories of the

closed-loop poles in the complex plane obtained with the experimental set-up match the numerical

ones for the different tested configurations, it can be assumed that the correlation for the other six

is also validated. Therefore, the maximum damping ratio obtained with the numerical simulation

and the TZ values are confirmed and, consequently, the linear link between the maximum damping

ratio and the pole-TZ distance shown in Fig. 11b is validated. To obtain the experimental closed-

loop poles, four different values of the gain g from Eq. 11 are tested on the four configurations. For

each gain value, the transfer function from the disturbance to the MFC sensor patches is measured.

Then, the poles are obtained by fitting the experimental closed-loop transfer function using again

the modal identification toolbox available within SDT. The comparison between the theoretical

and the experimental closed-loop poles convergence, for each considered configuration, is shown

in Fig. 9 where the coloured solid lines correspond to the simulated root locus using the experi-

mentally extracted model and the black crosses represent the closed-loop poles for the considered
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gain values. As it can be seen, none of the four selected gains (g = 2500, g = 5000, g = 7500

and g = 10000) is sufficient to reach the maximum damping value for none of the two modes and

any of the four configurations. This is because the first order PPF is not unconditionally stable:

the additional pole brought by the control law on the real axis converges indeed towards the right

half plane for large gains, limiting consequently its value [5]. Nevertheless, the trajectory of the

closed-loop poles in the complex plane is correctly mimicking the simulated closed-loop behaviour,

validating therefore the simulated root loci and, consequently, the maximum reachable damping

values as well as the TZ positions. Indeed, the slight mismatches that can be observed are at-

tributed to the unavoidable errors arising from the modal identification on the damped systems

evaluated to obtain the poles as well as on the experimentally extracted model. It can be noted

that although the maximum reachable damping ratio is not attainable before the destabilisation

of the system (in this specific case or for any other ones), the knowledge of the pole-TZ distance

is still highly valuable. Indeed, having a high value of the maximum reachable damping translates

to a system that exhibits its closed-loop poles further into the left half plane and a good authority

for the corresponding mode.

MicroLab Box

ADC

ADCDAC

DAC C(s)

white
noise

SSC

Figure 8: Top and side views of the control scheme (solid lines) and the performance index loop
(dashed lines) for the experimental study of the first considered configuration. (ADC: Analog-to-
Digital-Converter; DAC: Digital-to-Analog-Converter; SSC: Sensor Signal Conditioner)

In addition to the analysis of the closed-loop poles convergence, the comparison between the

loop gain functions (i.e. the multiplication of the open-loop system dynamics with the controller)

can be performed. It is indeed possible to experimentally measure the loop gain function between

each actuator/sensor pair by cutting the loop within the MicroLabBox (between the controller and

the digital-to-analogue converter, see Fig. 8) and by injecting directly white noise to the actuator

while measuring the output of the controller. The benefit of such approach is that it allows to avoid
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(c) Configuration 3
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(d) Configuration 4

Figure 9: Comparison between the simulated (coloured solid lines) and the experimental (black
crosses) closed-loop poles convergence when applying the MIMO control architecture for the four
considered configurations.
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stability concerns when applying high gain values and, consequently, it allows to study the dynamics

of the experimental setup for such unreachable gains in closed loop condition. The comparison

between the experimental loop gains and the numerically estimated ones for the five pairs of MFC

patches and for g = 12438 are shown in Figs. 10 to 12 (this gain value provides the maximum

reachable damping for second mode when considering the first configuration). As it can be seen,

the loop gain functions obtained experimentally are perfectly following the numerically estimated

ones. This therefore confirms again the proper correlation between the experimentally extracted

model and the experimental setup results, which demonstrates the experimental validation of the

linear link between the pole-TZ distance and the maximum reachable damping as shown in Fig.

11b.
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(b) Response of the pair 2

Figure 10: Comparison between the experimental and the simulated loop gain functions with
g = 12438: (a) on pair 1, (b) on pair 2

6 Conclusion

The direct link between the pole-zero distance and the maximum reachable damping ratio is

well established in collocated active control when dealing with low authority SISO systems. In

this study, the possibility to extend this well-known link from SISO systems to MIMO ones is

investigated. It is shown that such an extension is possible when the considered system presents

the three following conditions: (1) the transducers are collocated and present a small authority

on the system which leads to the presence of a TZ in the vicinity of each pole of interest, (2)

the considered system possesses a small modal density in the frequency bandwidth of interest,
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Figure 11: Comparison between the experimental and the simulated loop gain functions with
g = 12438: (a) on pair 3, (b) on pair 4

and (3) a LAC is used in the feedback loop. When those three conditions are satisfied, each

open-loop pole within the bandwidth of interest converges towards its surrounding TZ once in

closed-loop, forming therefore independent modal loops in the root locus. It is shown that in

such a case, the analytical expression of the closed-loop pole convergence is similar to the one

observed in specific SISO systems, the only difference being that the anti-resonances are replaced

by the TZs. Consequently, the direct link between the maximum damping ratio and the pole-

TZ distance is confirmed and the intended extension is validated. This conclusion has first been

illustrated on two numerical systems: a cantilever beam and a simply supported plate, both

equipped with two collocated pairs of piezoelectric patches. Moreover, the proposed extension has

been experimentally validated on a cantilever beam, also equipped with two pairs of piezoelectric

patches. It is shown that the numerical and the experimental systems present the three required

properties and that the linear link between the maximum reachable damping ratio and the pole-

TZ distance appears accordingly. This linear link between the pole-TZ distance and the damping

in specific MIMO systems introduced in this study could provide valuable information on the

possible performance once in closed-loop while requiring only open-loop knowledge. Requiring

only the open-loop knowledge translates by reasonable computational cost, which can lead to a

possible extension of this study: the use of this link to build a new sensor-actuator placement

criterion for MIMO systems. Indeed, such placement criterion would allow to obtain the position

of the transducers that maximises the maximum reachable damping once in closed-loop while
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Figure 12: Comparison between the experimental and the simulated loop gain functions with
g = 12438 on pair 5

requiring only open-loop calculations. Such extension could be the subject of further research.
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