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Abstract

The aim of this paper is to provide several counter-examples to multifractal formalisms
based on the Legendre spectrum and on the large deviation spectrum. In particular these
counter-examples show that an assumption of homogeneity and/or of randomness on the
signal is not sufficient to guarantee the validity of the formalisms. Finally, we provide
examples of function spaces in which the formalism is generically non valid.
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1 Introduction

Multifractal analysis has been developped both in the mathematical side and in the signal
processing side. In both contexts, it allows to better understand variation of smoothness in
the given data - which can be a measure, a deterministic function or a random process, a
signal or an image.

As soon as the concept of continuity has been defined in the nineteenth century, examples
of continuous but nowhere differentiable functions have been proposed. Some of them - such
as the Weierstrass functions [40] - are monofractal, which means that their Hölder regularity
is the same everywhere. However, other functions have been revealed to be more complex
such as the Riemann function [19]: the regularity of such functions changes at each point.
To better describe this phenomenon, the multifractal spectrum (or spectrum of singularities)
of a function has been introduced. It gives a geometrical description of the singularities of a
function by computing the Haussdorff dimension of its iso-Hölder sets, see Definition 2.3.

Such a computation is a priori hopeless for numerical data. In the 80’s, experimental
datas of turbulence show irregular and regular regions at different scales. Frisch and Parisi
were the first to propose a multifractal formalism in their seminal paper [37] : the idea be-
hind the formalism is to compute these changes of smoothness on some quantities numerically
computables such as the increments of the signal. The multifractal formalism claims then
that this numerical spectrum coincide with the theoretical multifractal spectrum.
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Obvious counter-examples exist for the formalism based on increments, and several refine-
ments have been proposed. In particular, formalisms based on wavelet coefficients have been
considered and have widely been used (see e.g. [23, 24, 3, 20, 36, 1, 29]). They are based on
two noteworthy properties of wavelet expansions. First, the decay rate of the wavelet coeffi-
cients around a given point gives a charaterization of the Hölder regularity at this point [17].
Secondly, wavelets are unconditional bases of many function spaces [35, 11], which allows to
study the validity of the formalism from a functional analysis point of view. Indeed, one of the
main problems in multifractal analysis consists in the determination of the range of validity
of each formalism. They do not hold in complete generality but important theoretical results
have strongly justified their validity. Let us point out the fact that both formalisms are true
for self-similar functions (and processes) [21], and that they are generically valid in Sobolev,
Besov spaces and more general appropriate spaces [16, 15, 2].

The main drawback of the different formalisms based on wavelet coefficients is their limita-
tion to increasing estimation of spectra. It appears that this issue can be overcome by relying
on the so-called wavelet leaders of the functions. The wavelet leaders can be seen as local
suprema of wavelet coefficients, see Definition 2.4, and they allow furthemore to get more
robust estimations. The introduction of these new coefficients led to the so-called wavelet
leaders method based on the leader Legendre spectrum [25, 26, 28], see Subsection 2.3. From
monofractal fractional browian motions to multifractal random walks [5], compound Poisson
cascades or the lacunary wavelet series [22], numerous random processes satisfy this formalism.

However, concatenation of signals [18] and random wavelet series [4] provide non-concave
spectra and hence constitute simple counter-examples for the leader Legendre spectrum. The
leader large deviation spectrum, which is the more sophisticated and robust formalism (see
Definition 2.8), has the great advantage to provide non-concave spectrum. Hence, this for-
malism is robust to concatenation of datas [6]. Moreover, this method has been studied and
proved to be efficient in practice [12]. Let us finally mention that the concave hull of the leader
large deviation spectrum gives the leader Legendre sepectrum [7, 12], so that its validity in
the concave case in equivalent to the validity of the leader Legendre spectrum.

A first negative result concerning the two methods based on the wavelet leaders has been
proposed in [27]: a counter-example has been constructed for each admissible leader Legen-
dre spectrum (i.e. any concave continuous function) for which the multifractal spectrum is
reduced to three points. Note that this function has very particular properties on the distri-
bution of wavelet coefficients: they are hierarchical and are decreasing at each scale in the
translation index. An open question mentioned in [27] and in [38] is to know whether homo-
geneity of the signal could ensure the validity of the formalism. The same question arises with
randomness. In this paper, we will answer these questions by the negative, providing several
counter-examples. Our motivation below is to understand how and why the multifractal for-
malisms fail in order to provide either more robust formalisms either numerical criterion to
test the validity of it in some further work.

The paper is organized as follow. Section 2 recalls the definitions of the multifractal
spectrum, of the leader Legendre spectrum and of the leader large deviation spectrum. After
recalling the construction of already known counter-examples, we introduce in Section 3 a first
method to construct systematic counter-examples by a duplication of the wavelet leaders. It
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does not give “natural” functions but allows to prove that homogeneity is not sufficient to
ensure the validity of the formalism. To obtain more realistic and random counter-examples,
we will first study lacunary wavelet series on Cantor set in the valid case in Section 4. The
main result is provided in Section 5, where we propose a complete study of the multifractality
of a lacunary wavelet series on a Cantor set which does not satisfy the formalism. Finally, we
prove in Section 6 that, concerning the decreasing part of the spectrum, the validity of the
formalisms based on the wavelet leders is still weaker by giving functional spaces in which
these formalisms are generically non-valid.

2 Multifractal analysis

We briefly recall in this section the main concepts used to define the multifractal spectrum
and the two numerical spectra based on wavelet leaders.

2.1 Hölder regularity and multifractal spectrum

Definition 2.1 Let x0 ∈ R and h > 0. A locally bounded function f : R → R belongs to
Ch(x0) if there exists C > 0 and a polynomial Px0 with degPx0 ≤ bαc such that

|f(x)− Px0(x)| ≤ C|x− x0|h

on a neighborhood of x0. The pointwise Hölder exponent of f at x0 is

hf (x0) = sup{h ≥ 0 : f ∈ Ch(x0)}.

The iso-Hölder sets of f are defined for every h ∈ [0,+∞] by

Eh(f) = {x0 ∈ R : hf (x0) = h}.

For multifractal functions, whose regularity changes at each point, an interesting information
may be not to describe precisely each isohölder set but rather to determine the Hausdorff
dimension of the set.

Definition 2.2 Let E ⊂ R and δ > 0. For s ∈ [0, 1], set

Hsδ(E) = inf

{∑
i∈N

diam(Ai)
s : E ⊂

⋃
i∈N

Ai and diam(Ai) < δ ∀i ∈ N

}
.

The δ-dimensional Hausdorff measure of E is Hs(E) = limδ→0Hsδ(E) and the Hausdorff
dimension of E is given by

dimH(E) = inf{s ≥ 0 : Hs(E) = 0} = sup{s ≥ 0 : Hs(E) = +∞}.

We use the usual convention that dimH(∅) = −∞.
To perform a multifractal analysis of f consists in determining its multifractal spectrum,

also called spectrum of singularities.

Definition 2.3 The multifractal spectrum Df of a locally bounded function f is the function

Df : h ∈ [0,+∞] 7→ dimH(Eh(f)).
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2.2 Wavelets and wavelet leaders

The knowledge of the multifractal spectrum of a function gives a geometrical idea of the
repartition of its Hölderian singularities. Unfortunately, for real datas, this theoretical point
of view is not adapted and it is hopeless to perform a multifractal analysis of the signal
function. It is replaced by multifractal formalisms which are heuristic formulas which can be
computed using global quantities. Except the original one, they are all based on a wavelet
analysis of the signal. We introduce in this subsection some definitions and notations about
wavelet basis and we refer e.g. to [10], [11], [33], [35], [39] for the existence of such bases, the
relation with multiresolution analysis and their role in functional analysis.

An orthonormal wavelet basis on R is given by two functions ϕ and ψ with the property
that the family

{ϕ(· − k) : k ∈ Z} ∪ {2
j
2ψ(2j · −k) : j ∈ N, k ∈ Z}

forms an orthonormal basis of L2(R). Therefore, for all f ∈ L2(R), we have the following
decomposition

f =
∑
k∈Z

Ckϕ(· − k) +
∑
j∈N

∑
k∈Z

cj,kψ(2j · −k)

where the wavelet coefficients of f are given by

Ck =

∫
R
f(x)ϕ(x− k)dx

and

cj,k = 2j
∫
R
f(x)ψ(2jx− k)dx.

Note that we do not use the L2 normalisation to avoid a rescaling in the definition of the
wavelet leaders, see Definition 2.4 below. Note also that the definition of the wavelet coeffi-
cients makes sense even if f does not belong to L2(R).

Usually, the following compact notations using dyadic intervals are used for indexing
wavelets. If λ = λj,k = [k2−j , (k + 1)2−j [, we write cλ = cj,k and ψλ = ψj,k = ψ(2j · −k).
These notations are justified by the fact that the wavelet ψλ is essentially localized on the
cube λ in the following way : if the wavelets are compactly supported then

∃C > 0 such that ∀λ supp(ψλ) ⊂ C.λ

where C.λ denotes the interval of same center as λ and C times wider.

Definition 2.4 Let λ be a dyadic cube and 3λ the cube of same center and three times wider.
If f is a bounded function, the wavelet leader dλ of f is given by

dλ = sup
λ′⊂3λ

|cλ′ |.

The pointwise Hölder regularity of the function f at a point x0 can be determined using
the wavelet leaders [25]. Let x0 ∈ R, the notation λj(x0) refers to the dyadic cube of width
2−j which contains x0 and

dj(x0) = dλj(x0) = sup
λ′⊂3λ(x0)

|cλ′ |.
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Moreover, we say that the wavelet basis is r-smooth if ϕ and ψ have partial derivatives up
to order r and if these partial derivatives have fast decay. In this case, the wavelet ψ has a
corresponding number of vanishing moments [35].

Theorem 2.5 [25] Let h > 0 and x0 ∈ R. Assume that f is a bounded function and that the
wavelet basis is r-smooth with r > [h] + 1.

1. Suppose f is in Ch(x0). Then there exists C > 0 such that

(1) ∀j ≥ 0, dj(x0) ≤ C2−hj .

2. Conversely, suppose (1) holds and that f belongs to Cε(R) for some ε > 0. Then f
belongs to Ch

′
(x0) for all h′ < h. In particular, hf (x0) ≥ h.

3. Suppose f ∈ Cε(R). Then hf (x0) = lim infj→+∞
log(dj(x0))

log(2−j)
.

In what follows, we will thus always assume that the wavelet ψ is r-smooth with r large
enough.

2.3 Formalisms

In what follows, we will mainly work with functions defined on [0, 1]. For all j ≥ 0, Λj will
refer to the set of all dyadic intervals of [0, 1] of scale j. The first formalisms introduced were
based on increments then on wavelet coefficients [23, 24, 3, 20, 36, 1, 29]. As mentioned above,
more robusts formalisms have then been introduced, that allow to deal with the decreasing
part of spectrum and with non-concave spectrum. One of the most popular is the one based
on wavelet leaders, see [25, 26, 28].

Let us define the structure function

Sfj (p) = 2−j
∑
λ∈Λj

(dλ)p,

for j ∈ N et p ∈ R, where dλ denote the wavelet leaders of the function f under study (note
that if we replace dλ with |cλ| we obtain the formalism based on wavelet coefficients which
only provides an increasing spectrum). The scaling function is then given by

ηf (p) = lim inf
j→+∞

(
log(Sfj (p))

log(2−j)

)

and finally, the Legendre spectrum of singularity is defined by

Lf (h) = inf
p∈R

(1− ηf (p) + hp).

The properties of the Legendre spectrum is recalled in the following proposition (see Propo-
sition 5 of [27] for example).
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Proposition 2.6 The Legendre spectrum Lf is a concave function. If we suppose that there
exists C1, C2, A,B such that

(2) ∀j ∈ N, ∀λ ∈ Λj , C12−Bj ≤ dλ ≤ C22−Aj

and if we denote by

Hmax := min{A > 0 : (2) holds for some C2}

and
Hmin := max{B > 0 : (2) holds for some C1},

then Lf satisfies

1. 0 ≤ Lf ≤ 1 on [Hmin, Hmax] and Lf = −∞ otherwise,

2. there exists H1 and H2 such that Lf is strictly increasing on [Hmin, H1], strictly decreas-
ing on [H2, Hmax] and constant equal to 1 on [H1, H2].

Definition 2.7 Any function L which satisfies the conditions of Proposition 2.6 is called an
admissible Legendre spectrum.

Since Lf is a concave function, it can satisfy the formalism only for concave multifractal
spectrum. To meet this problem, a new formalism based on large deviation estimates of
wavelet leaders have been derived [6, 12].

Definition 2.8 The leader large deviation spectrum of f is defined for every h ≥ 0 by

ρf (h) = lim
ε→0+

lim sup
j→+∞

log #{λ ∈ Λj : 2−(h+ε)j ≤ dλ < 2−(h−ε)j}
log 2j

and for h = +∞ by

ρf (+∞) = lim
A→+∞

lim sup
j→+∞

log #{λ ∈ Λj : dλ < 2−Aj}
log 2j

.

The leader large deviation spectrum is a upper semi-continuous function on [0,+∞) and its
maximum is equal to 1.

Proposition 2.9 [12] Let f ∈ Cε([0, 1]). If ρf = −∞ outside a compact set, then

Df ≤ ρf ≤ Lf .

In addition, if ρf is concave then ρf = Lf .

In particular, functions or processes which do not satisfy the formalism based on the leader
large deviation spectrum do not either satisfy the formalism based on the leader Legendre
spectrum. Therefore, in next sections we will mainly focus on the leader large deviation spec-
trum.

The different spectra we consider have been introduced as global notions, but they can
also be defined locally. It allows to define homogeneity of a function for the Hölder regularity.
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Definition 2.10 Let Ω ⊂ R be a nonempty open set. The Ω-local multifractal spectrum of f
is defined by

DΩ
f (h) = dimH(Eh ∩ Ω).

Clearly, one has d(H) = supΩDΩ
f (h). The Ω-local leader large deviation spectrum is defined

by
ρΩ
f (H) = inf

ϕ∈D,supp(ϕ)⊂Ω
ρΩ
fϕ(H).

We say that a function f is Hölder-homogeneous if the function DΩ
f is independent of Ω. It

is profile-homogeneous if the function ρΩ
f (H) is independent of Ω.

3 First counter-examples

We will describe in this section three counter-examples. Even if (or because) these toy-
examples are very simple they have the great interest to reveal two main ways to fail the
formalisms. The first one is what we call a duplication of coefficients. The corresponding
counter-examples may have some self-similarity properties but there is a shift between it and
the scale of the wavelets. This is the case in Subsections 3.2 and 3.3 and more intersingly in
Section 5. The other way is to introduce a weaker regularity for the wavelet leaders only at
very rare scales, such that other exponents remain in the leader large deviation spectrum. It
is what is done in Subsection 3.4 and in a generic way in Section 6.

3.1 Known counter-example

To our knowledge, the first sophisticated counter-example was given in [27]. It is a counter-
example for both Legendre and large deviation spectra, both on the increasing and on the
decreasing parts of the spectrum. More precisely, it states the following.

Proposition 3.1 [27] For any admissible Legendre spectrum L whose support is not reduced
to a single point, there exists a function f such that Lf = L and

1. Df (Hmin) = Df (Hmax) = 0

2. Df (H1) = Df (H2) = 1

3. Df (H) = −∞ if H /∈ {Hmin, H1, H2, Hmax}

where Hmin, H1, H2, Hmax are as in Proposition 2.6.

The construction is explicit and robust to the leader large deviation spectrum (i.e. ρf =
Lf ) but the wavelet coefficients of the function f are very structured (hierarchichal and de-
creasing in the translation index) which makes the graph of the function very particular with
bigger oscillations as x grows. We refer to [27] for the construction in the more general case
but give the flavour of the construction on two simple cases.

Let us consider two positive numbers α < β and let η ∈ (0, 1) denotes a proportion. We

consider the wavelet series f =
∑

j∈N
∑2j−1

k=0 cj,kψj,k where

cj,k =

{
2−αj if k < b2ηjc
2−βj otherwise.
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If x 6= 0, one clearly has dj(x) = 2−βj if j is large enough, hence hf (x) = β. It follows that
Df (β) = 1 and Df (α) = 0. On the other side, one has that the sequence of wavelet coefficients
is hierarchical and

#{λ ∈ Λj : cj,k = 2−αj} = b2ηjc
so that ρf (α) = η > 0.

This construction can be easily generalized to construct an example with two “wrong”
exponents in the increasing part of the leader large deviation spectra. We fix three positive
numbers α < β < γ and we consider a proportion η ∈ (0, 1). We set

cj,k =


2−αj if k < b2ηjc
2−βj if b2ηjc ≤ k < bC2ηjc
2−γj otherwise.

where the constant C is fixed in the interval (1, 21−η). The choice of this constant insures
that

2ηj

2j
>
C2η(j+1)

2j+1

for all j ∈ N, so that the sequence of wavelet coefficients is again hierarchical. Hence, ρf (α) =
ρf (β) = η, while the regulartiy is given by γ except at x = 0.

3.2 On asymetric Cantor Set

Let C denote the asymetric Cantor set obtained by removing at each step the second quarter
of each interval. This set satisfies the box-counting, i.e.

dimB C = dimHC =
logϕ

log 2
,

where ϕ = 1+
√

5
2 is the golden ratio. For every n ∈ N0, let Cn denote the set obtained at the

nth step of the construction. We fix two positive numbers α < β and we consider the wavelet

series f =
∑

j∈N
∑2j−1

k=0 cj,kψj,k where the coefficients are defined by

cj,k =

{
2−αj if λj,k ⊆ Cbj/2c
2−βj otherwise.

The wavelet characterization of the Hölder exponent given in Proposition 2.5 directly implies
that

hf (x) =

{
α if x ∈ C
β otherwise.

In particular, Df (α) = logϕ
log 2 . Note also that at any step n of the construction and for any

l ∈ {0, . . . , n}, the set Cn contains
(
n
l

)
intervals of lenght (1

4)n−l(1
2)l. Moreover, in each of

these intervals, there are 22n(1
4)n−l(1

2)l = 2l dyadic intervals of scale 2n. It follows that there
are

n∑
l=0

(
n

l

)
2l = 3n

coefficients equal to 2−αj at the scale j = 2n. Using a similar argument for the scales
j = 2n+ 1, one obtains

ρf (α) =
log 3

2 log 2
6= logϕ

log 2
.
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3.3 From any function satisfying the formalism

The previously presented counter-examples are inhomogeneous. In this subsection, we propose
a general construction which allows to construct many counter-examples to the formalism,
amoung which homogeneous functions. The existence of such counter-examples was an open
question of [27] and somehow homogeneity of the function is often seen as a way to ensure
the validity of the multifractal formalism [38].

The idea is to start from any function f satisfying the formalism and to construct a new
wavelet series by sticking together several copies of the wavelet leaders of f . The Hölder reg-
ularity of this new function will be controlled by the regularity of f , while its large deviation
spectrum will be modify arbitrarly close to 1.

Let f be any uniformy Hölder function such that ρf = Df . We denote by cλ its wavelet
coefficients and by dλ its wavelet leaders. For every real m > 1, we consider the wavelet series
gm defined by

(3) gm =
∑
j∈N

2j−1∑
k=0

Cmj,kψj,k,

with
Cmj,k = sup

λ′⊆λbj/mc,k̃
|cλ′ |,

where λbj/mc,k̃ is the unique dyadic interval of scale bj/mc that contains λj,k. Clearly, gm
still satisfies a uniform Hölder condition and the wavelet series defining it is convergent. Note
also that the sequence of wavelet coefficients of gm is hierarchical, so that its wavelet leaders,
which we will denote Dm

j,k, are simply given by Dm
j,k = dλbj/mc,k̃ .

Proposition 3.2 For every h ≥ 0, one has ρgm(h) =
m−1+Dgm (h)

m .

Proof. If the wavelet leaders dbj/mc,k of f is of order 2−hj , it gives birth to 2j−bj/mc coeffi-
cients of scale j of gm of the same order. Hence one has

#{λ ∈ Λj : 2−(h+ε)j ≤ Dm
λ < 2−(h−ε)j} = 2j−bj/mc#{λ̃ ∈ Λbj/mc : 2−

(hm+εm)j
m ≤ dλ̃ < 2−

(hm−εm)j
m }

and it follows that

ρgm(h) = 1− 1

m
+
ρf (hm)

m
=
m− 1 +Df (hm)

m

since by assumption, ρf = Df .
To conlude, it suffices to show that Dgm(h) = Df (hm). If x ∈ [0, 1], one has Dm

λj(x) =

dbj/mc(x) and it leads to

lim inf
j→+∞

logDm
j (x)

log 2−j
=

1

m
lim inf
j→+∞

log dbj/mc(x)

log 2−bj/mc
.

Using the wavelet characterization of the Hölder exponent given in Proposition 2.5, we obtain

hgm(x) =
hf (x)
m , hence the conclusion. �
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Corollary 3.3 For any admissible concave spectrum L whose support is not reduced to a
single point, there exists a Hölder-homogeneous and profile-homogeneous function f such that
Lf = L and

Df 6= Lf .

Proof. Constructions of deterministic functions which satisfy the Legendre formalism and
hence the large deviation spectrum have been proposed by Jaffard in [18] or more recently
by Coiffard, Melot and Willer in [9]. It is easy to check that these constructions are both
Hölder and profile-homogeneous. The procedure described in this section gives a family of
functions gm which are still Hölder and profile-homogeneous but with different spectra. More
precisely, we start with an admissible Legendre spectrum L such that L(Hmin) > 0 and
L(Hmax) > 0. Then, for any 1 < m ≤ 1

1−min(L(Hmin),L(Hmax)) , the function L̃ = mL + 1 −m
is also an admissible spectrum and hence L̃(·/m) also. Then, there exists a Hölder and
profile homogeneous function f which satisfies Df = L̃(·/m). Propositions 2.9 and 3.2 imply
then that the associated function gm constructed in (3) is a Hölder and profile-homogeneous
function with Lgm = L and Dgm = mL+ 1−m. �

3.4 Slowly oscillating exponents

Let us fix α < β two positive numbers such that m = β
α ∈ N\{0, 1}. We consider the wavelet

series f =
∑

j∈N
∑2j−1

k=0 cj,kψj,k where the coefficients are defined by

cj,k =

{
2−αj if there exists n ∈ N such that j = mn

2−βj otherwise.

Once again, the wavelet characterization of the Hölder exponent given in Proposition 2.5
ensures that the Hölder exponent is constant and equal everywhere to α. Moreover, the series
is clearly Hölder-homogeneous. However, one has

max{2−αmn+1
, 2−β(mn+1)} = 2−αm

n+1
= 2−βm

n

This last relation implies that at scales j = mn+ 1, the wavelet leaders are given by 2−β(j−1).
In particular, ρf (β) = 1 while Df (β) = −∞.

Let us mention that this construction will be proved to be “generic” in specific function
spaces in Section 6. Let us also note that in this example, the equality Df = ρf holds in
the increasing part, i.e. until reaching the value 1. This second property can be modified by
replacing the wavelet coefficients by

cj,k =


2−αj if there exists n ∈ N such that j = mn and λj,k ∩ C 6= ∅
2−γj if λj,k ∩ C = ∅
2−βj otherwise

where γ > β and where C is a given Cantor set. One directly computes that Df (α) = dimHC,
Df (β) = −∞ and Df (γ) = 1, while ρf (β) = dimHC.
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4 Lacunary wavelet series on Cantor sets

The aim of this section is to introduce and study lacunaray wavelet series, as introduced by
Jaffard in [22], but defined on an arbitrary symmetric Cantor set instead of the whole interval
[0, 1]. The proofs are rather classical, still they are presented as an introduction to the more
technical model studied in Section 5. Note also that, for the model studied in this section, the
formalisms are satisfied both for the Legendre and the leader large deviation spectrum so it
does not provide a counter-example. However the determination of the multifractal spectrum
in this case turns to be very useful to obtain the lower bound of the multifractal spectrum of
the counter-example studied in Section 5.

Let us denote by C(r) the symmetric Cantor set with ratio of dissection r < 1
2 given by

the following iterative construction. Let C0 = [0, 1]. We remove from C0 the open middle
interval of length 1−2r, leaving two closed intervals of length r. We call C1 the union of these
intervals. At step n in the construction, if we have inductively constructed Cn as a union of
2n closed intervals of length rn, we remove the open middle interval of length (1− 2r)rn from
each of the intervals of the step N and we define Cn+1 as the union of the remaining 2n+1

closed intervals of length rn+1. Finally, we define the Cantor set C(r) by

C(r) =
⋂
n∈N

Cn.

The Hausdorff dimension of C(r), denoted in what follows by γ, is given by

γ = dimHC(r) = − log 2

log r
,

see for example [13, 34].
Let us consider two parameters α > 0 and η ∈ (0, γ). The parameter α will be related to

the uniform Hölder regularity of the random wavelet series while the parameter η characterizes
the lacunarity of this series at each scale on the Cantor set. The model is given by the random
wavelet series f =

∑
j∈N

∑
λ∈Λj

cλψλ with

cλ =

{
2−αjξλ if λ ∈ Γj ,

0 otherwise,

where

Γj = {λ ∈ Λj : λ ⊆ Cnj} with nj =

⌊
j

log2 r
−1

⌋
and where (ξλ)λ denotes a sequence of independent random Bernoulli variables of parameter
2(η−γ)j . Note that the random wavelet coefficients of scale j are located on the intervals of
Cnj which are of order 2j ∼ rnj . Since the Cantor set C(r) satisfies the box-counting, the
number of random wavelet coefficients at scale j is given by 2γj . Consequently, one obtains

(4) E[#{λ ∈ Λj : cλ = 2−αj}] = 2ηj .

Theorem 4.1 Almost surely,

Df (h) =


hη
α si h ∈ [α, αγη ]

1 si h = +∞
−∞ otherwise.

11



Let us start by studying the maximal regularity of the lacunary wavelet series. Clearly, if
x /∈ C(r), then 3λj(x) ∩ C(r) = ∅ for j large enough and hf (x) = +∞.

Lemma 4.2 Almost surely, there is J ∈ N such that

sup
λ′⊆λ

cλ′ ≥ 2
−α
η

(γj+log2 γj)

for every λ ∈ Γj with j ≥ J . In particular, hf (x) ≤ αγ
η for every x ∈ C(r).

Proof. For every j ≥ 0, let us consider the event

Aj = {∃λ ∈ Γj such that sup
λ′⊆λ

cλ′ < 2
−α
η

(γj+log2 γj)}.

We fix the scale j0 = b 1
η (γj + log2 γj)c that satisfies 2−αj0 ≥ 2

−α
η

(γj+log2 γj). By the indepen-

dence of the Bernoulli random variables and since there is about 2γ(j0−j) dyadic intervals in
Γj0 inside a dyadic interval λ ∈ Γj , we obtain

P[Aj ] ≤
∑
λ∈Γj

P[∀λ0 ⊆ λ with λ ∈ Γj0 , ξλj0 = 0]

≤ 2γj(1− 2(η−γ)j0)2γ(j0−j)

≤ 2γj exp(−2γ(j0−j)2(η−γ)j0)

≤ 2γj exp(−2−γj+ηj0)

≤ C

(
2

e

)γj
for some positive constant C and j large enough. The conclusion follows easily using the
Borel-Cantelli lemma and Theorem 2.5. �

Hence, the range for the possible values of the Hölder exponent of points belonging to
C(r) is [α, αγη ]. Let us now describe the iso-Hölder sets of f . Let us start by giving a covering
of C(r) using balls centered at the dyadic points associated to non-zero coefficients. For this
purpose, let us introduce for every scale j the random set Fj defined by

Fj = {k ∈ {0, . . . , 2j − 1} : cj,k = 2αj}.

Corollary 4.3 Almost surely, one has

C(r) ⊆ lim sup
j→+∞

⋃
k∈Fj

B
(
k2−j , 2

− η
γ

(1−εj)j
)

where

εj =
log2 γj

ηj
.

Proof. Fix x ∈ C(r). Lemma 4.2 implies that almost surely (on an event that does not
depend on x), for every scale j large enough, there exists λ(j0, k0) ⊆ λj(x) with cλ(j0,k0) =

2−αj0 ≥ 2
−α
η

(γj+log2 γj). In particular, ηj0 ≤ γj + log2 γj ≤ γj + log2 γj0 and it follows that

|x− k02−j0 | < 2−j ≤ 2
− 1
γ

(ηj0−log2 γj0)
= 2

− η
γ

(1−εj)j0 .

12



�

Based on the previous result, let us now introduce limsup sets that will allow to describe
the iso-Hölder sets of f . For every δ ∈ (0, 1], we consider the random set

Eδ(f) := lim sup
j→+∞

⋃
k∈Fj

B
(
k2−j , 2−δ(1−εj)j

)
where εj is defined in Corollary 4.3. If the context is clear, we will simply write Eδ. The next
result is classic.

Lemma 4.4 Let us fix δ ∈ (0, 1).

1. If x ∈ Eδ, then hf (x) ≤ α
δ .

2. If x /∈ Eδ, then hf (x) ≥ α
δ .

Finally, we consider

Gδ = Gδ(f) :=
⋂

0<δ′<δ

Eδ′ \
⋃

δ<δ′≤1

Eδ′ if δ < 1 and G1 :=
⋂

0<δ′<1

Eδ′ .

Since the points lying outside C(r) have an infinite Höler exponent, Lemma 4.4 direcly gives
that

(5) Gδ =
{
x ∈ [0, 1] : hf (x) =

α

δ

}
.

Consequently, in order to compute the multifractal spectrum of f , it suffices to study the
Hausdorff dimension of the sets Gδ. We also already know that we can restrict ourselves to
the values of δ belonging to [ ηγ , 1]. The obtention of an upper bound for dimHGδ is easy if
one knows the cardinality of Fj . It is the aim of the following lemma.

Lemma 4.5 Almost surely, for every ε > 0, there is J ∈ N such that

2(η−ε)j ≤ #Fj ≤ 2(η+ε)j

for every j ≥ J .

Proof. We know from (4) that E[Fj ] = 2ηj . The result follows then directly from Chebyshev
inequality combined with Borel-Cantelli lemma. �

Proposition 4.6 Almost surely, for every δ ∈ [ ηγ , 1], one has

dimHGδ ≤
η

δ

and Hη/δ(Eδ′) = 0 for all δ′ > δ.

13



Proof. For δ′ < δ, we use the set Eδ′ as a covering of Gδ. Lemma 4.5 implies that almost
surely (on an event that does not depend on δ and δ′), for every ε > 0, there is J ∈ N such
that ∑

j≥J

∑
k∈Fj

2−δ
′(1−εj)sj ≤

∑
j≥J

2(η+ε−δ′(1−εj)s)j < +∞

if s > η+ε
δ′(1−ε) , since εj ≤ ε for j large enough. Hence Hs(Gδ) < +∞ and therefore,

dimH(Gδ) ≤ s.
For the second part, remark that Eδ′ ⊆

⋂
0<δ′′<δ′ Eδ′′ . By proceeding as previously, one

gets that dimHEδ′ ≤ η
δ′ . The conclusion follows easily. �

Obtaining a lower bound for the Hausdorff dimension of Gδ reguires ubiquity arguments.
We will use the following result of [8]. It is simplified for the particular application we have
in mind.

Theorem 4.7 (General mass transference principle) [8] Let X be a compact set in Rn
and assume that there exist s ≤ n and a, b, r0 > 0 such that

(6) ars ≤ Hs(B ∩X) ≤ brs

for any ball B of center x ∈ X and of radius r ≤ r0. Let s′ > 0. Given a ball B = B(x, r)
with center in X, we set

Bs′ = B
(
x, r

s′
s

)
.

Assume that (Bn)n∈N is a sequence of balls with center in X and radius rn such that the
sequence (rn)n∈N converges to 0. If

Hs
(
X ∩ lim sup

n→+∞
Bs′
n

)
= Hs(X),

then

Hs′
(
X ∩ lim sup

n→+∞
Bn

)
= Hs′(X).

Proposition 4.8 With probability one, for every δ ∈ [ ηγ , 1], dimH(Gδ) ≥ η
δ .

Proof. This result is a simple application of Theorem 4.7. Indeed, using Corollary 4.3, we
know that almost surely,

C(r) ⊆ lim sup
j→+∞

⋃
k∈Fj

B
(
k2−j , 2

− η
γ

(1−εj)j
)
.

By multiplying the radius of the balls by a constant independant of j, we may moreover
assume that the balls are centrered at points of the Cantor set C(r). Note that C(r) is a
limit of an IFS and satisfy the open set condition and then (6), see [34]. Consequently, the
assumptions of Theorem 4.7 are satisfied with s = γ, s′ = η

δ and rj = 2−δ(1−εj)j . Therefore
one has

Hη/δ
C(r) ∩ lim sup

j→+∞

⋃
k∈Fj

B
(
k2−j , 2−δ(1−εj)j

) = Hη/δ(C(r)).
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Since η/δ ≤ γ, we obtain Hη/δ(Eδ) ≥ 0 and dimH(Eδ) ≥ η/δ.
Let us now turn to the dimension of Gδ. Remark that the union and the intersection ap-

pearing in the definition of Gδ can be taken countable by considering subsequences converging
to δ. We have

H
η
δ (Gδ) = H

η
δ (
⋂
δ′<δ

Eδ′)−H
η
δ (
⋃
δ′>δ

Eδ′) = H
η
δ (
⋂
δ′<δ

Eδ′)

since the η
δ -dimensional Hausdorff measure of Eδ′ vanishes if δ′ > δ using Proposition 4.6

(note that this union does not appear in the case δ = 1). It follows that

H
η
δ (Gδ) = H

η
δ (
⋂
δ′<δ

Eδ′) ≥ H
η
δ (Eδ) > 0,

and it follows that dimH(Gδ) ≥ γ ηδ . �

The proof of Theorem 4.1 is a direct consequence of the relation (5) together with Propo-
sitions 4.6 and 4.8. As a consequence, we prove now that the leader large deviation spectrum
leads to the correct multifractal spectrum.

Corollary 4.9 Almost surely, Df (h) = ρf (h) for every h ∈ [0,+∞].

Proof. From the construction of the lacunary wavelet series f and using Lemma 4.2, it is
clear that ρf (h) = −∞ if h /∈ [α, αγη ] ∪ {+∞} and that ρf (+∞) = 1. So, let h ∈ [α, αγη ].
Then, one has

#{λ ∈ Λj : 2−(h+ε)j ≤ dλ ≤ 2−(h−ε)j} ≤
bh+ε
α
jc+1∑

j′=bh−ε
α
jc

#Fj′ ≤ Cj2(η+ε)h+ε
α
j

for some constant C > 0 and j large enough, where we have used Lemma 4.5. The upper
bound for ρf (h) follows directly. The lower bound is given by the general inequality Df ≤ ρf .

�

5 Duplicated lacunary wavelet series on a Cantor set

Let K denote the symmetric Cantor set C(1
4) obtained by removing at each step the centered

half of each interval (second and third quarter) and let Cn denote the set obtained at the nth

step of the construction. For every j ∈ N, we define the set

Γj = {λ ∈ Λj : λ ⊆ Cbj/4c}.

Let 0 < η < 3/4. We consider the random wavelet series f defined by f =
∑

j∈N
∑

λ∈Λj
cλψλ

with

cλ =

{
2−αjξλ if λ ∈ Γj ,

0 otherwise,

where (ξλ)λ denotes independent random Bernoulli variables of parameter 2(η−3/4)j .
Notice that at step n, the set Cn is formed by 2n intervals of length 2−2n. Each of these

intervals contains 2j/2 dyadic intervals of scale j = 4n, while for a classical lacunary wavelet
series, they contains only one dyadic intervals of scale j = 2n.
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Remark 5.1 Note that with the natural definition of the classical case described in Section
4, one would have set Γj = {λ ∈ Λj : λ ⊆ Cbj/2c}. The model presented here could thus be
a first sight similar to Section 3 since the selected scales j = 4n are multiples of the natural
one 2n. However, we duplicate the supports of the random coefficients, and not the non-
zero coefficients themselves. A second difference lies in the fact that we do not work directly
on the wavelet leaders, which is more natural, and we introduce randomness. The example
of Section 3 for the particular case of classical lacunary wavelet series on K would lead to
D(h) = h1[α/2,α/2η](h).

The main result of this section is given by the computation of the exact multifractal
spectrum of the lacunary wavelet series f together with its large deviation spectrum.

Theorem 5.2 1. If η ∈ [1/4, 3/4), then almost surely

Df (h) =


hη+1/4

α − 1
2 if h ∈ [α, α/(η + 1/4)]

1 if h = +∞
−∞ otherwise

and

ρf (h) =


hη
α if h ∈ [α, α/(η + 1/4)]

1 if h = +∞
−∞ otherwise.

2. If η ∈ (0, 1/4], then almost surely

Df (h) =


hη+1/4

α − 1
2 if h ∈ [2α/(4η + 1), 2α]

hη
α if h ∈ [2α, α/2η]

1 if h = +∞
−∞ otherwise

and

ρf (h) =


hη
α if h ∈ [α, α/2η]

1 if h = +∞
−∞ otherwise.

Before presenting the proof of this result in the following subsections, let us make a few
comments and introduce some notations.

• In both cases, the Hausdorff dimension of the iso-Hölder set of the maximal finite
regularity is exactly given by the Hausdorff dimension of the Cantor. This result is
expected because it is clear that if x is a point outside the Cantor K, then λj(x) /∈ Γj
for j large enough.

• One could of course replace in the model the coefficients cλ = 0 by cλ = 2−γj with
any exponent γ larger than the maximal regularity on the Cantor set. It will give
Df (γ) = ρf (γ) = 1. It represented in Figure 5.1.
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Figure 1: Large deviation and singularity spectra with α = 0.4 and η = 0.5 (left), η = 0.2
(right).

• For j ≥ 0, we denote by Fj the set

Fj = {λ ∈ Λj : cλ = 2−αj}.

Since one only needs to consider in Fj dyadic intervals of Γj and since #Γj = 23j/4, one
directly gets

E[#Fj ] = 2ηj .

The leader large deviation spectrum evaluted at α is equal to η, what could thus be
expected.

• For every j, let us define the subset Rj of Γj by setting

Rj = {λ ∈ Λj : λ ∩K 6= ∅}.

The dyadic intervals of Γj \Rj will be removed in the following steps of the construction
of the Cantor set K, up to step 2n since the set C2n contains dyadic intervals of length
2−j . In particular, one has Rj = {λ ∈ Λj : λ ∩ C2n 6= ∅} and it follows that

#Rj = 2j/2.

Even though their support will be removed in the construction of the Cantor set K, the
coefficients associated to intervals of Rj have nevertheless an influence on the wavelet
leaders of points in K and then on the spectra. This will clearly appear in the proof of
Proposition 5.8.

• If one denotes by Gj the subset of Fj defined by

Gj = {λ ∈ Rj : cλ = 2−αj},

one obtains that
E[#Gj ] = 2(η−1/4)j .

We notice here that if η < 1/4, there will be very few wavelet coefficients of order 2−αj

at every scale j. More precisely, the supremum of the number of non-zero coefficients
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at scale j whose support intersects K will be almost surely bounded in j as proved in
Lemma 5.3 below. In particular, the regularity α might not be attained. This will be
confirmed by Lemma 5.5 that shows that in this case, the minimal regularity is 2α

4η+1 .

• Let us fix λ ∈ Rj . If λ0 ⊆ λ is a dyadic interval of scale j0 ≤ 2j, then λ0 ∈ Γj0 .
A non-zero wavelet leader dλ = 2−hj for h ≤ 2α comes from a non-zero coefficient
cλ0 = 2−αj0 ∼ 2−hj of scale j0 of order h

αj ≤ 2j and

#{λ0 ⊆ λ : λ0 ∈ Λj0} = 2j0−j .

If we consider now the scale j0 = 2j + 4, only the dyadic subintervals of λ of scale j0
included in the first and the last quarter of λ remain in Γj0 . Consequently,

#{λ0 ⊆ λ : λ0 ∈ Λj0} = 2j+3 < 2j0−j .

This explains the different behaviors in the computation of the multifractal sectrum,
according to the position of h with respect to 2α. Note that the second case correspond-
ing to h ≥ 2α will never occurs if the series is not too lacunar, that is if η ≥ 1/4. Indeed
in that case, the maximal regularity for the point of the Cantor set will be smaller than
2α, see Lemma 5.6.

The computation of the expectations of Fj and Gj together with Chebyshev inequality
combined with Borel-Cantelli lemma give directly the following lemma.

Lemma 5.3 Almost surely, for every ε > 0, there is J ∈ N such that

2(η−ε)j ≤ #Fj ≤ 2(η+ε)j and 2(η−1/4−ε)j ≤ #Gj ≤ 2(η−1/4+ε)j

for every j ≥ J .

Let us end this introduction to our model by providing the following concentration lemma.
It states that the non-zero coefficients are well distributed and will be useful to obtain both
large deviation and multifractal spectra.

Lemma 5.4 Almost surely, for every ε > 0, there are infinitely many scales j such that
every interval of length 2−(η+1/4−ε)j centered on dyadic numbers contains at most 22εj non-
zero coefficients of scale j.

Proof. Let us fix ε > 0. For every dyadic interval λ ∈ Λj , let us denote by λ−b the dyadic
interval of scale j − b that contains λ. Remark that the random variables that counts the
number of non-zero coefficients of scale j in a interval of length 2−(η+1/4−ε)j centered on
a dyadic interval of scale j follows a binomial law Bin(n, p) of parameters n ≤ 2(3/4−η+ε)j

and p = 2(η−3/4)j , so that its expectation is smaller than 2εj . Let Aj denote the event
“there is a dyadic interval λ ∈ Λj such that for all b ∈ {0, . . . , N − 1}, the interval of length
2−(η+1/4−ε)(j−b) centered on λ−b contains more than 22ε(j−b) non-zero coefficients”. Markov
inequality leads to

P[Aj ] ≤
∑
λ∈Λj

N−1∏
b=0

P[λ−b contains more than 22ε(j−b) non-zero coefficients]

≤
∑
λ∈Λj

N−1∏
b=0

2−ε(j−2b)

≤ 2j(1−εN)22ε(N−1)
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which is the general term of a convergent series if N is large enough. �

5.1 Computation of Df
Let us start by studying the range for the possible values for the Hölder exponent of the points
in the Cantor set. First, let us show that in the very lacunar case η < 1/4, the regularity
α is not observed. Consider β < 2α

4η+1 . If there were a point x0 ∈ K such that hf (x) = β,

we would have dj(x0) ≥ 2−j(β+ε) for infinitely many scales j and some ε ∈ (0, 2α
4η+1 − β).

But, because of the important lacunarity of the series, for η < 1/4, the probability to have
infinitely many intervals λ which intersect the Cantor with a cλ 6= 0 is null. Even more,
as we will prove in the next lemma, with probablity equal to one, one needs to go at least

2α
4η+1 log2 |λ| scales below before having a non-zero coefficient on a λ′ ⊂ λ.

Lemma 5.5 Let η < 1/4. Almost surely, for all x ∈ K one has hf (x) ≥ 2α
4η+1 .

Proof. Let us fix h ∈ (α, 2α
4η+1) and let Aj denote the event

Aj = {∃λ ∈ Rj such that |dλj | ≥ 2−hj}.

Then

P[Aj ] ≤
∑
λ∈Rj

P[∃λ′ ⊆ 3λ such that λ′ ∈ Γl with j ≤ ` ≤ h

α
j and cλ′ = 2−α`]

≤
∑
λ∈Rj

∑
j≤`≤ h

α
j

3 · 2`−j2(η−3/4)`

≤ 3 · 2−j/2
∑

j≤`≤ h
α
j

2(η+1/4)`

≤ 3
h

α
j2−j/22(η+1/4) h

α
j

which is the general term of a convergent series since h < 2α
4η+1 . By taking a dense sequence

(hn)n∈N in (α, 2α
4η+1), we get the conclusion. �

An upper bound of the maximal regularity - which will be proved to be optimal later - of
the lacunary wavelet series is obtained in the following lemma and depends whereas η ≤ 1/4
or not.

Lemma 5.6 Almost surely, there is J ∈ N such that

sup
λ′⊆λ
|cλ′ | ≥

2
− α

2η
(j+log2 j) if 0 < η ≤ 1/4,

2
− α
η+1/4

(j+log2 j) if 1/4 < η < 3/4.

for every λ ∈ Rj with j ≥ J . In particular, almost surely for all x ∈ K, one has hf (x) ≤ α
η+1/4

if 0 < η < 1/4 and hf (x) ≤ α
2η if 1/4 ≤ η < 3/4.
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Proof. We start with the easiest case 1/4 < η < 3/4. Let j ≥ 0 and let us define the event

Aj = {∃λ ∈ Rj such that dλ < 2
− α
η+1/4

(j−log2 j)}.

Let us fix j0 = b 1
η+1/4(j + log2 j)c so that 2−αj0 ≥ 2

− α
η+1/4

(j−log2 j). Using the assumption

η > 1/4, one gets j0 ≤ 2j for j large enough. Consequently, if λ ∈ Rj , all the dyadic
cubes λ0 ⊆ λ of scale j0 belong to Γj0 and may then potentially have a non-zero coefficient.
Consequently, the number of random dyadic intervals λ0 ⊆ λ with λ ∈ Λj0 is equal to 2j0−j .
As done in the proof of Lemma 4.2, the Borel-Cantelli lemma gives the conclusion.

In the case η ≤ 1/4, we define similarly as previously

Aj = {∃λ ∈ Rj such that dλ < 2
− α

2η
(j+log2 j)}.

Let j0 = b 1
2η (j + log2 j)c. Since η ≤ 1/4, one has j0 > 2j. Again, we need to count how

many dyadic cubes λ0 ⊆ λ belong to Γj0 . At the scale m = 2j, all the possible dyadic cubes
of size 2−m are in Γm because λ intersects K so is included in Cj/2. After that, the set losts
half of its length each four steps and we find that, writing `0 = j0 − 2j, it remains around
2j+3`0/4 = 23j0/4−j/2 dyadic cubes λj0 ⊆ λj in Γj0 . Again, the Borel-Cantelli lemma allows to
conclude. �

By combining Lemmas 5.5 and 5.6, we obtain that the Hölder exponent of any point of
the Cantor set lies in [ 2α

4η+1 ,
α
2η ] if η ≤ 1/4 and [α, α

η+1/4 ] if 1/4 < η < 3/4. Using the same
arguments as in the proof of Corollary 4.3, we also get the following random covering of K.

Corollary 5.7 Almost surely, one has

K ⊆


lim sup
j→+∞

⋃
k∈Fj

B
(
k2−j , 2−2η(1−εj)j

)
if 0 < η ≤ 1/4,

lim sup
j→+∞

⋃
k∈Fj

B
(
k2−j , 2−(η+ 1

4
)(1−εj)j

)
if 1/4 < η < 3/4

where

εj =


log2 j
2ηj if 0 < η ≤ 1/4,

log2 j
(η+1/4)j if 1/4 < η < 3/4.

Following the same idea as in the classical case, we consider for every δ ∈ (0, 1] the random
sets

Eδ = lim sup
j→+∞

⋃
k∈Fj

B
(
k2−j , 2−δ(1−εj)j

)
,

and

Gδ := K ∩

 ⋂
0<δ′<δ

Eδ′ \
⋃

δ<δ′≤1

Eδ′

 if δ < 1 and G1 := K ∩
⋂

0<δ′<1

Eδ′ .

One has again that the iso-Hölder sets of the lacunary wavelet series are given by

Gδ = {x ∈ [0, 1] : hf (x) =
α

δ
}
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Figure 2: The points at a distance less than 2−δ
′j of Cbj/2c with δ′ ≤ 1/2 cover the set Cbj/4c.

for every δ ∈ (0, 1]. It suffices then to compute the Hausdorff dimensions of the sets Gδ for δ
in [2η, 4η+1

2 ] if η ≤ 1/4 and in [η + 1/4, 1] if 1/4 < η < 3/4.

As in the classical case, the union and the intersection appearing in the definition of Gδ
can be taken countable by considering subsequences converging to δ. For this reason, in what
follows, everything can be made countable by fixing a dense sequence (δ′n)n∈N of [0, 1] and
estimate the Hausdorff dimension of each Eδ′ .

Proposition 5.8 1. If η ∈ [1/4, 3/4), then almost surely

dimH(Gδ) =
η + 1/4

δ
− 1

2

for every δ ∈ [η + 1/4, 1].

2. If η ∈ (0, 1/4], then almost surely

dimH(Gδ) =

{
η
δ if δ ∈ [2η, 1

2 ]
η+1/4
δ − 1

2 if δ ∈ [1
2 ,

4η+1
2 ].

Proof. Let us start with the upper bound. Both cases are treated together. For every δ′ < δ
and J ∈ N, we note that the set⋃

j≥J

⋃
k∈Fj

B
(
k2−j , 2−δ

′j
)
∩K

forms a covering of Gδ. Since we intersect with K, for a fixed j ≥ J , we have to count the
number Nδ′,j of non-zero coefficients associated to dyadic intervals λj,k wich are in Cbj/4c and

at a distance less than 2−δ
′j of the set Cbj/2c. It will then suffices to study the convergence

of the series ∑
j≥J

Nδ′,j2
−δ′sj .

• If δ′ ≤ 1/2, then 2−δ
′j ≥ 2−2n for j = 4n. Consequently, the considered intervals

included in Cbj/4c and at a distance less than 2−δ
′j of Cbj/2c are all the intervals of

Cbj/4c. Lemma 5.3 implies that Nδ′j ≤ 2(η+ε)j so that∑
j≥J

Nδ′,j2
−δ′sj ≤

∑
j≥J

2(η+ε)j2−δ
′sj < +∞

if s > η+ε
δ′ , which implies in turn that dimH(Gδ) ≤ η/δ.
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Figure 3: The points at a distance less than 2−δ
′j of Cbj/2c if δ′ > 1/2 give an intermediate

step of the construction of the Cantor set.

• If δ′ > 1/2, we have to consider the k ∈ Fj such that λj,k is at a distance less than 2−δ
′j

of the set Cbj/2c. Hence, we have to count the number of dyadic interval λj,k wich are in

Cbj/4c and at a distance less than 2−δ
′j of Cl where l is of order δ′j/2 and is formed by

intervals of length 2−δ
′j . This number is bounded by C2(1−δ′/2)j for some constant C

independent of j. Using Markov inequality and the Borel Cantelli lemma as in Lemma
5.3, we get that almost surely, Nδ′,j ≤ 2(1/4+η−δ′/2+ε)j . It follows that∑

j≥J
Nδ′,j2

−δ′sj ≤
∑
j≥J

2(1/4+η−δ′/2+ε)j2−δ
′sj < +∞

if s > 1/4+η+ε
δ′ − 1

2 . It follows that dimHGδ ≤ 1/4+η
δ − 1

2 on an event of probability one.

Combining both cases together, we get the announced upper bounds. Let us now turn
to the lower bounds. As done in the proof of Proposition 4.8, we simply need to estimate
dimH(Eδ) from below. Then, classical properites of the Hausdorff dimension will give the
conclusion.

Let us start by assuming that either η > 1/4 and δ ≥ η+ 1/4, or η ≤ 1/4 and δ > 1/2. In
both cases, δ ≥ 1/2. Fix ε > 0. As done previously, it suffices to consider in the definition of
Eδ the non-zero coefficients cj,k where λj,k belongs Cbj/4c to and is at a distance at most 2−δj of

Cbj/2c, whose number is almost surely greater than 2(1/4+η−δ/2−ε)j . From Lemma 5.4, we know

that there are more than 2(1/4+η−δ/2−2ε)j non-zero coefficients located on distincts intervals of
Cl, where l is of order δj/2, since the size of an interval of Cl is of order 2δj ≤ 2−(η+1/4−ε)j . The
position of these coefficients can be seen as the position of the non-zero coefficients of a classical
lacunary wavelet series L on the Cantor

⋂
l∈NCl with 2(1/4+η−δ/2−2ε)2l/δ non-zero coefficients

located on intervals on length 2−2l. It corresponds to a lacunarity 1
δ (1/4 + η− δ/2− 2ε). The

Hausdorff dimension of Eδ(f) is then larger than the Hausdorff dimension of the set E1(L) of
minimal regularity of this new lacunary wavelet series. It follows from Proposition 4.8 that

dimHEδ(f) ≥ 1/4 + η − 2ε

δ
− 1

2
.

Let us now focus on the case δ ∈ [2η, 1/2] which only exists for η ≤ 1/4. As in the classical
case, we use an ubiquity argument. Note that the argument of the general mass transference
could not have been applied in the case we just dealt for great values of δ for the following
reason. The assumptions of Theorem 4.7 require that the balls are centered in X = K. For
δ > 1/2, if k2−j /∈ K, the ball B(k2−j , 2−δj) of Eδ does not necessarily meet the Cantor
set K (even by multiplying the radius with a constant independent of j). At the opposite,
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if δ < 1/2, all balls B(cj,k, 2
−δj) of Eδ intersects the Cantor K, and by doubling it we can

suppose that each ball of Eδ is centered in K. Applying Theorem 4.7 as in the classical case
thanks to Lemma 5.6, we get

Hη/δ
K ∩ lim sup

j→+∞

⋃
k∈Fj

B(k2−j , 2−δ(1−εj)j)

 = Hη/δ(K) > 0

since η
δ ≤

1
2 . We conclude that dimH(Eδ) ≥ η

δ . �

5.2 Computation of ρf

Let us explain the idea of the computation of the leader large deviation spectrum. Roughly
speaking, a non-zero coefficient cj,k = 2−αj will give birth to a wavelet leader equal to 2−hj

′

for j′ = h
αj. Since the non-zero coefficients are well distributed on the Cantor set K by

Lemma 5.4, there will be at scale j′ around #Fj wavelet leaders of order 2−hj
′
. Lemma 5.3

implies then that ρf (h) = hη
α . In particular, ρf (α) = η as expected.

Note that the possible values for h are already known. Indeed, fom Lemma 5.6, we know
that almost surely, the wavelet leaders associated to dyadic intervals λ ∈ Rj satisfy

dλ ≥

{
2
−( α

2η
+ε)j

if 0 < η ≤ 1/4

2
−( α

η+1/4
+ε)j

if 1/4 < η < 3/4

for j large enough. Dyadic intervals λ ∈ Γj \ Rj contains less random dyadic subintervals
appearing in the construction of f than dyadic intervals of Rj , so that they cannot have
smaller non-zero wavelet leaders.

More precisely, in the case η ∈ (1/4, 3/4), the same arguments as those of the proof of
Lemma 5.6 give that almost surely, for the dyadic intervals λ ∈ Γj \ Rj and for every ε > 0,

if dλ 6= 0, then dλ ≥ 2
−( α

η+1/4
+ε)j

for j large enough. Consequently the support of the large
deviation spectra is included in [α, α

η+1/4 ].

In the very lacunar case η ∈ (0, 1/4), we know that if λ′ ⊆ λ is a dyadic interval of scale
j′ ≥ 2j with λ ∈ Γj \Rj , then λ′ /∈ Γj′ . Consequently, the wavelet leader dλ is either equal to

0 or to 2−αj
′

with j′ < 2j, in which case dλ ≥ 2−2αj ≥ 2
−( α

2η
)j

. It follows that the support of
the large deviation spectra is included in [α, α2η ].

Proposition 5.9 Almost surely, one has

ρf (h) =


hη
α if h ∈ [α, hmax]

1 if h = +∞
−∞ otherwise.

where

hmax =

{
α
2η if η ∈ (0, 1/4]
α

η+1/4 if η ∈ (1/4, 3/4).
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Proof. The result is clear if h /∈ [α, hmax]. Let us then fix h ∈ [α, hmax] and ε > 0. For every
scale j large enough, one has almost surely

#{λ ∈ Λj : 2−(h+ε)j ≤ dλ ≤ 2−(h−ε)j} ≤
bh+ε
α
jc+1∑

j′=bh−ε
α
jc

#Fj′ ≤ Cj2(η+ε)h+ε
α
j

for some constant C > 0 and j large enough, where we have used Lemma 5.3. The upper
bound for Lf (h) follows directly.

The lower bound in the case η ∈ (0, 1/4] and h ∈ [2α, α/2η] follows directly from Proposi-
tions 2.9 and 5.8. Hence, we can assume that either η ∈ (0, 1/4] and h < 2α, or η ∈ (1/4, 3/4).
Let j′ be a scale such that every interval of length 2−(η+1/4−ε)j′ contains at most 22εj′ non-
zero coefficients. We know from Lemma 5.4 that almost surely there are infinitely many
such scales. Given j = b α

h+εj
′c, one direcly compute that 2−j ≤ 2−(η+1/4−ε)j′ . This relation

implies that every λ ∈ Λj contains at most 22εj′ non-zero coefficients of scale j′. Applying
again Lemma 5.3, one gets

#{λ ∈ Λj : dλ ≥ 2−(h+ε)j} ≥ #Fj′2
−2εj′ ≥ 2(η−3ε)h+ε

α
j .

This inequality implies that almost surely

νf (h) := lim
ε→0

lim sup
j→+∞

#{λ ∈ Λj : dλ ≥ 2−(h+ε)j}
log(2j)

≥ hη

α

for every h ∈ [α, hmax] if η ∈ [1/4, 3/4), and for every h ∈ [α, 2α) if η ∈ (0, 1/4]. We now refer
to Lemma 3.5 of [6] which states that νf is the increasing hull of ρf . This result leads to the
conclusion since νf is strictly increasing. �

6 Functional spaces for which the formalism is generically
non-valid (decreasing part)

In this section, we show that the validity of the formalisms based on the wavelet leaders is
weak for the estimation of the decreasing part of the multifractal spectrum by exhibiting
functional spaces on which these formalisms are generically not satisfied. The idea is similar
to the one developped in Subsection 3.4.

A sequence (σj)j∈N of real positive numbers is called admissible if there is a constant
C > 0 such that

C−1σj ≤ σj+1 ≤ Cσj
for every j ∈ N. Under this assumption, if one sets

σj = inf
k∈N

σj+k
σk

and σj = sup
k∈N

σj+k
σk

for every j ∈ N, then the sequence (log σj)j∈N is subadditive and the sequence (log σj)j∈N is
superadditive. Fekete’s lemma states that the limits

s(σ) = lim
j→∞

log σj

log 2j
and s(σ) = lim

j→∞

log σj
log 2j
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exists and are finite. They are defined as the lower and upper Boyd indices of σ respectively.
They can be seen as indicators to measure the dyadic growth of the admissible sequence. For
example, if the sequence σ behaves as a dyadic sequence up so some logarithmic correction,
then s(σ) = s(σ). On the other side, given any positive real numbers α < β, one can construct
an admissible sequence σ such that

s(σ) = α and s(σ) = β,

see e.g. [14, 31]. This sequence oscillates slowly (so that it is admissible) between the dyadic
behaviors 2−αj and 2−βj . Indeed, for every ε > 0, one can easily get the existence of a
constant D > 0 such that

(7) D−12j(s(σ)−ε) ≤ σj ≤
σj+k
σk
≤ σj ≤ D2j(s(σ)+ε)

for every j, k ∈ N, and s(σ) and s(σ) are the smallest and the biggest quantities respectively
satisfying this relation. Given an admissible sequence σ, Fekete introduced the so-called
Besov spaces of generalized smoothness. He obtained that these spaces are well defined, in
the sense that there are independant of the chosen wavelet basis. The link with Hölder spaces
of generalized smoothness is done in [30]. In this paper, we will then adpot the definition
based on the wavelet coefficients (equivalent at least if s(σ)− s(σ) < 2) .

Let σ be an admissible sequence such that s(σ) > 0. We say that a function f belongs to
the Hölder space Λσ([0, 1]) if the wavelet coefficients of f satisfy

‖f‖Λσ([0,1]) := sup
j∈N

sup
k∈{0,...,2j−1}

σj |cj,k| < +∞

The aim of this section is to prove that if s(σ) 6= s(σ), a generic function of Λσ([0, 1]) does
not verify the multifractal formalism. It gives a complement of informations to the work done
in [32], where the authors proved that an adapted formalism is generically satisfied in these
spaces. Note however that none of the results imply the other.

Proposition 6.1 Let σ be an admissible sequence such that 0 < s(σ) < s(σ). The set of
functions f ∈ Λσ([0, 1]) which do not satisfy the formalism contains a dense open set. In
particular, it is Baire generic.

Proof. For every N ∈ N, we set

CN =
{
f ∈ Λσ([0, 1]) : σj2

N |cj,k| ∈ N \ {0} ∀j ∈ N ,∀k ∈ {0, . . . , 2j − 1}
}
.

Let UN be the open set defined by

UN =
{
g ∈ Λσ([0, 1]) : ∃f ∈ CN such that ‖f − g‖Λσ([0,1]) < 2−N−1

}
.

For any g ∈ UN with wavelet coefficients (ej,k), there exists f ∈ CN with wavelet coefficients
(cj,k) such that ‖f − g‖Λσ([0,1]) < 2−N−1. It implies that

|ej,k| ≤ |cj,k|+ |ej,k − cj,k| ≤ σ−1
j (‖f‖Λσ([0,1]) + 2−N−1)

and
|ej,k| ≥ |cj,k| − |ej,k − cj,k| ≥ 2−Nσ−1

j − 2−N−1σ−1
j = 2−N−1σ−1

j .
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It follows that if g belongs to the set R defined by

R =
⋃
N∈N

UN ,

then there is a constant C > 0 such that its sequence of wavelet coefficients (ej,k) satisfies

(8) C−1 ≤ σj |ej,k| ≤ C

The assumption s(σ) 6= s(σ) implies directly that

s(σ) ≤ α := lim inf
j→+∞

log σj
log 2j

< lim sup
j→+∞

log σj
log 2j

=: β ≤ s(σ).

In particular, using (7), the values of
log ej,k
log 2j

oscillate uniformly in k between the indices α
and β. It follows than the Hölder exponent of g is everywhere equal to α.

However, since the sequence (σj)j∈N is admissible, it oscillates slowly. Hence, larger
exponents are detected by the large deviation spectrum. Indeed, one knows that for every
ε > 0, there are infinitely many scales j such that σj ≥ 2(β−ε)j . Let us fix such a scale j.
Equation (7) gives

D−12(j′−j)(s(σ)−ε) ≤
σj′

σj

for every j′ ≥ j, so that

sup
j′≥j

σ−1
j′ ≤ Dσ

−1
j sup

j′≥j
2(j−j′)(s(σ)−ε) ≤ Dσ−1

j ≤ D2−(β−ε)j .

Equation (8) implies then that

sup
λ′⊆3λ(j,k)

|eλ′ | ≤ C sup
j′≥j

σ−1
j′ ≤ CD2−(β−ε)j

for every k ∈ {0, . . . , 2j − 1}.
To conclude, let us prove that the set

⋃
N∈N CN is dense in Λσ([0, 1]). If g ∈ Λσ([0, 1])

and ε > 0, we fix N such that 2−N < ε and we construct the function f via its sequence of
wavelet coefficients cj,k by setting

cj,k =

{
σ−1
j 2−N [σj2

Nej,k] if σj2
N |ej,k| ≥ 2,

σ−1
j 2−N if σj2

N |ej,k| < 2.

It follows that c ∈ CN and |σj2Nej,k − σj2Ncj,k| ≤ 1, which implies

σj |ej,k − cj,k| = 2−N |σj2Nej,k − σj2Ncj,k| ≤ 2−N < ε

for every j, k. �
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