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Abstract 

Drought is a natural phenomenon caused by a lack of precipitation over a 

long period in a specific area. It happens throughout the world, affecting large 

areas and causing significant human and economic losses. Recently, climate 

change has become more visible worldwide. In Vietnam, a visible consequence 

of climate change is an increase in frequency and severity of drought. Recently, 

severe drought occured in the Central Highlands of Vietnam due to the continuing 

El Niño-Southern Oscillation (ENSO) phenomena, causing varying degrees of 

damage to agriculture and residents' livelihoods in 2014, 2015, and 2016. 

The Central Highland of VietNam is an important agricultural area of 

Vietnam. It holds the Srepok River basin that plays a significant role in the 

Central Highland and where this study was located. This study examines regional 

socio-natural climate vulnerability and adaptive response capacities of local 

people to drought in the Srepok River basin region of Central Highland. As a 

mean of population vulnerability reduction, a monitoring system for the forecast 

of primary agriculture products such as coffee crops is proposed.  

The findings of this study indicated that water (sensitivity) and livelihood 

strategies (adaptive capacity) are two major causes of high vulnerability to 

drought for all districts and surveyed communities.  The study also found that 

there is a significant difference in climate change perceptions and observations 

of climate change-related extreme events, depending on different socio-economic 

and demographic household characteristics: in particular, education, preferred 

media sources and income sources have significant effects on local people’s 

perceptions regarding drought. Besides, this study is the first to develop and 

assess a coffee yield forecasting method at the regional scale for Dak Lak 

province, in the Central Highlands of Vietnam, by using the Crop Growth 

Monitoring System Statistical Tool (CGMSstatTool – CST) software and 

vegetation biophysical variables (NDVI, LAI, and FAPAR) derived from satellite 

remote sensing (SPOT-VEGETATION and PROBA-V). 

 These results might help assess the needs in terms of actions and designing 

site-specific intervention strategies to reduce the vulnerability of agriculture 

smallholders to climate change. 



viii 
 

Keywords: livelihood vulnerability, drought, perception, drought trends, coffee 

yields, prediction model, LAI, FAPAR, NDVI, phenological metrics, 

CGMStatTool, Spirits sofware tool, Central Highland of Vietnam. 

  



ix 
 

Table of Contents 

Acknowledgments ............................................................................................... v 

Abstract ............................................................................................................. vii 

Table of Contents ............................................................................................... ix 

Abbreviations and Symbols .............................................................................. xiii 

List of Figures................................................................................................... xvi 

List of Tables .................................................................................................. xviii 

Chapter 1. Introduction ............................................................................... 1 

1.1. Research framework ............................................................................ 1 

1.1.1. General context. .................................................................................. 1 

1.1.2. Drought definitions .............................................................................. 3 

1.1.3. Drought history in Vietnam ................................................................. 4 

1.2. Aims and objectives ............................................................................ 7 

1.3. The dissertation outline ....................................................................... 8 

Chapter 2. Assessment of livelihood vulnerability to drought in the 

Central Highlands of Vietnam........................................................................ 11 

Abstract .......................................................................................................... 11 

2.1. Introduction ....................................................................................... 11 

2.2. Study area .......................................................................................... 14 

2.3. Methodology ...................................................................................... 14 

2.3.1. Livelihood vulnerability index ........................................................... 15 

2.3.2. IPCC – Vulnerability index (LVI-PCC) ............................................. 18 

2.3.3. Data collection .................................................................................. 19 

2.4. Results and discussion ....................................................................... 20 

2.4.1. Drought in the Krong No district ...................................................... 22 

2.4.2. Livelihood’s vulnerability in the Krong No district ........................... 24 

2.4.3. Livelihood’s vulnerability of five communes ..................................... 26 



x 
 

2.5. Discussion .......................................................................................... 28 

2.6. Conclusion ......................................................................................... 29 

Acknowledgement ......................................................................................... 30 

Supplemental data .......................................................................................... 30 

Chapter 3. Comparing local people’s perceptions of climate change and 

drought using scientific observations in the Central Highlands of Vietnam.. 

  ................................................................................................... 31 

Abstract .......................................................................................................... 31 

3.1. Introduction ....................................................................................... 31 

3.2. Study area .......................................................................................... 34 

3.3. Methodology ...................................................................................... 35 

3.3.1. Data collection .................................................................................. 35 

3.3.2. Data analysis ..................................................................................... 36 

3.3.2.1. Household data analysis ................................................................ 36 

3.3.2.2. Meteorological data analysis. ....................................................... 36 

3.4. Results and discussion ....................................................................... 38 

3.4.1. The meteorological data analysis ...................................................... 38 

3.4.1.1. Analysis of annual, seasonal, and monthly precipitation. ............. 38 

3.4.1.2. Analysis of extreme events related to precipitation ....................... 41 

3.4.1.3. Drought analysis............................................................................ 44 

3.4.1.4. Analysis of annual, seasonal, and monthly temperature. .............. 46 

3.4.2. Perceptions of local people concerning concepts relating to climate 

change and drought ....................................................................................... 48 

3.4.3. Perceptions of local people regarding climate change as related to 

extreme events. ............................................................................................... 49 

3.4.4. Perceptions of local people regarding the impacts of drought in their 

locality in recent years. .................................................................................. 52 



xi 
 

3.4.5. Comparison between perception’s local people and meteorological 

data  ........................................................................................................... 53 

3.4.5.1. Precipitation and temperature ....................................................... 53 

3.4.5.2. Onset and cessation of rainy season. ............................................. 54 

3.4.5.3. Drought events ............................................................................... 55 

3.5. Discussion .......................................................................................... 56 

3.6. Conclusion ......................................................................................... 58 

Acknowledgements ........................................................................................ 59 

Supplementary material ................................................................................. 60 

Chapter 4. Early prediction of coffee yield in the Central Highlands of 

Vietnam using a statistical approach and satellite remote sensing vegetation 

biophysical variables ....................................................................................... 67 

Abstract .......................................................................................................... 67 

4.1. Introduction ....................................................................................... 68 

4.2. Study area .......................................................................................... 73 

4.3. Methodology ...................................................................................... 74 

4.3.1. Phenological variables from remote sensing time series .................. 76 

4.3.1.1. Vegetation biophysical variables. .................................................. 76 

4.3.1.2. Processing of satellite images in SPIRITS software ...................... 77 

4.3.2. Official coffee yield datasets.............................................................. 78 

4.3.3. Crop yield forecasting model in the CST software ............................ 79 

4.4. Results ............................................................................................... 82 

4.4.1. Model performance ........................................................................... 82 

4.4.2. Coffee yield predictions for 2020 ...................................................... 87 

4.5. Discussion .......................................................................................... 90 

4.6. Conclusions ....................................................................................... 92 

Acknowledgements: ....................................................................................... 93 



xii 
 

Chapter 5. General conclusions and outlook ............................................ 94 

5.1. General conclusion ............................................................................ 94 

5.1.1. Livelihood vulnerability to drought ................................................... 95 

5.1.2. Local people’s perceptions of climate change and drought .............. 95 

5.1.3. Coffee yield estimation using remote sensing data (NDVI, FAPAR, LAI)

  ........................................................................................................... 96 

5.2. Outlook .............................................................................................. 98 

References .................................................................................................... 102 

 

  



xiii 
 

Abbreviations and Symbols 

AC  Adaptive capacity 

Adj.R2 Adjusted coefficient of determination  

adn Largest decrease between subsequent periods 

Aup Largest increase between subsequent periods 

BMT  Buon Ma Thuot 

C(d)  Estimated for each day of each year. 

CDD  Consecutive dry days 

CGLS Copernicus Global Land Service  

CGMS Crop Growth Monitoring System 

CRED   Centre for Research on the Epidemiology of Disassters  

CST CGMSstatTool - the Crop Growth Monitoring System 

Statistical Tool 

CV  Coefficient of variation  

CWD  Consecutive wet days 

D  Drought 

ddn Relative date of (last) Largest decrease 

dmn Relative date of (first) Minimum value 

dmx Relative date of (last) Maximum value 

dup Relative date of (first) Largest increase 

E  Exposure 

ENSO The El Niño-Southern Oscillation 

EU European Union  

F Food 

FAPAR Fraction of Absorbed Photosynthetically Active 

H  Health 

JRC Joint Research Centre  

LAI Leaf Area Index 

LMB   Lower Mekong Basin  

LMCS Land Monitoring Core Service  

LOO Leave one out 

LS Livelihood strategy 

LVI   Livelihood vulnerability index  

MAPE Mean absolute percentage error  



xiv 
 

MARD Ministry of Agriculture and Rural Development  

MARS Monitoring Agriculture with Remote Sensing 

MODIS Moderate-Resolution Imaging Spectroradiometer 

NAFOSTED  Vietnam National Foundation for Science and Technology 

Development  

NDVI Normalized difference vegetation index 

R(n) The daily precipitation  

R20mm  Number of heavy precipitation days 

R25mm  Number of very heavy precipitation days 

R95p  Very wet days 

RMSEp Root mean square error of prediction 

rrg Relative range (Maximum – Minimum) 

RRMSE Relative root mean square error  

RSD The Residual Standard Deviation  

rsd Relative Standard deviation (with N as denominator, not N-1) 

RX1day  Max 1-day precipitation amount 

RX5day  Max 5-day precipitation amount 
 

The climatological annual daily average.  

S  Sensitivity 

SDII  Simple daily intensity index 

SDP Sociodemographic profile  

SN  Social networks 

SPI  Standardised Precipitation Indices  

SPI12 Standardised Precipitation Indices with 12-month timescales 

SPI3  Standardised Precipitation Indices with three-month timescales 

SPI6 Standardised Precipitation Indices with six-month timescales 

SPIRITS  Software for the Processing and Interpretation of Remotely 

sensed Image Time Series 

STD Standard deviation  

vav Average value (or Mean) 

VI-IPCC   
Vulnerability Index-Intergovernmental Panel on Climate 

Change 

vmn Minimum value 

vmx Maximum value 



xv 
 

VND  Vietnamese dong 

VNDMA  Vietnam Disaster Management Authority 

W  Water 

WBI Wallonie-Bruxelles International  

 

  



xvi 
 

List of Figures 

Figure 1.1. Outline of the thesis........................................................................ 10 

Figure 2.1  Location of the study area .............................................................. 14 

Figure 2.2. Drought frequency in three rain gauges in Krong No district. ....... 22 

Figure 2.3. Percentage of households struggling for food and lacking water in 

Krong No district ............................................................................................... 23 

Figure 2.4. Vulnerability spider diagram of the livelihood vulnerability index 

(LVI) major components (a) and Vulnerability Index-Intergovernmental Panel on 

Climate Change (VI-IPCC) major components pyramid diagram (b) for the 

Krong No District in Dak Nong Province, Vietnam.......................................... 24 

Figure 2.5. Contributing factors of livelihood vulnerability index (LVI) major 

components (a) and Vulnerability Index-Intergovernmental Panel on Climate 

Change (VI-IPCC) major components (b) for the five communities in the Krong 

No District in Dak Nong Province, Vietnam. .................................................... 28 

Figure 3.1.  Location of Dak Lak province and the three surveyed districts .... 35 

Figure 3.2. Time series of onset and cessation dates, and durations of the rainy 

season for different weather stations (BMT, Buon Ho and Ban Don stations) and 

the whole study area (mean). ............................................................................. 41 

Figure 3.3. Monthly boxplot precipitation and distribution of monthly 

precipitation for each year, in the study area of Dak Lak province; (a). monthly 

boxplot precipitation, (b). distribution of monthly precipitation ....................... 42 

Figure 3.4.  (a). Evolution of Standardised Precipitation Index (SPI3, SPI6, 

SPI12) from 1981–2018 for the study area. Blue and red colours denote positive 

and negative values, respectively. (b). Variances of SPI3 – SPI6 – SPI12 using a 

moving average of 12 months with the red line showing trend of variances of each 

SPI (SPI3, SPI6, SPI12). ................................................................................... 46 

Figure 3.5. Percentage of households in the eight communes of the study area 

perceiving changes related to local (a) precipitation, (b) temperature, (c) season

 ........................................................................................................................... 52 

Figure 4.1. Dak Lak province with the agricultural perennial planted area in 

green. ................................................................................................................. 74 

Figure 4.2. General workflow of the coffee yield forecasting method. ............ 75 

Figure 4.3. Time trend for official coffee yield of Dak Lak province for the period 

20002019. ........................................................................................................ 82 



xvii 
 

Figure 4.4. Adjusted R-squared and RMSEp of the eight best coffee yield models 

based on phenological variables derived from NDVI, FAPAR and LAI for the 

20002019 time period. ..................................................................................... 85 

Figure 4.5: Correlation between the phenological variables derived from NDVI, 

FAPAR, and LAI for the 2000–2019 time period and selected in the eight best 

coffee yield models... ......................................................................................... 86 

Figure 4.6: Pearson correlation coefficient of the 11 phenological variables, 

computed over the period of dekad 1 (start of January) to dekad 18 (end of June) 

of the years 2000 to 2019, between the three biophysical satellite products LAI, 

NDVI and FAPAR. ........................................................................................... 87 

Figure 4.7. Scatter plot of observed versus model-predicted coffee yields for the 

years 2000 to 2020, using the eight best selected models based on satellite data 

for the period from dekads 1 to 18 (models 1 to 4) and for the period from dekads 

5 to 15 (models 5 to 8).. ..................................................................................... 89 

  

  



xviii 
 

List of Tables 

Table 1.1.  Drought Events in Vietnam from 1952-2020 ................................... 6 

Table 2.1. Major components and sub-components comprising the Livelihood 

Vulnerability Index (LVI) developed for 5 communities in Krong No district, Dak 

Nong province. .................................................................................................. 15 

Table 2.2. Major components are framed under Exposure, Sensitivity and 

Adaptive capacity contributing factors to vulnerability. ................................... 18 

Table 2.3. The result of values of LVI subcomponents for the five communities 

in the Krong No District in Dak Nong Province, Vietnam ................................ 20 

Table 2.4. LVI components calculation for five communes in Krong No district

 ........................................................................................................................... 21 

Table 2.5. VI-IPCC contributing factors calculation for five communities and 

Krong No district in Dak Nong Province, Vietnam .......................................... 21 

Table 2.6. The result of SPI6 in Krong No district ........................................... 23 

Table S. 1. The influence of rainfall station per commune according to the 

Thiessen Polygon Method ................................................................................. 30 

Table 3.1. List of eight precipitation extremes used in this study .................... 37 

Table 3.2. Descriptive statistics of onset, cessation and duration of rainy seasons 

over 37 years for the three stations and the whole study area. .......................... 38 

Table 3.3. Mann-Kendall trend test and Sen’s slope for monthly, seasonal and 

annual precipitation for each station and for the entire study area (using Thiessen 

polygons to calculate the average amount of precipitation over the whole study 

area using the three stations) ............................................................................. 39 

Table 3.4. Slope of trends in climatic extreme indices of precipitation for the 

three stations and the whole study area (average values of the three stations) .. 43 

Table 3.5. Mann-Kendall trend and Sen’s slope for annual and seasonal 

minimum and maximum temperatures in Dak Lak province ............................ 47 

Table 3.6. Barnard test performed between respondents’ characteristics and their 

perceptions of climate change and extreme events, including drought ............. 50 

Table A. 1. Summary of households interviewed ............................................. 60 

Table A. 2. The surveyed information analyzed in this research. ..................... 60 

Table A. 3. Descriptive statistics for annual precipitation data series over the 

period 1981–2018 at three rainfall stations ....................................................... 61 



xix 
 

Table A. 4. Descriptive statistics for annual temperature data series over the 

period 1981–2018 at Buon Ma Thuot station .................................................... 62 

Table A. 5. Summary of demographic and farming characteristics .................. 62 

Table 4.1. Remote sensing vegetation biophysical products used in this study and 

downloaded from Copernicus Global Land Service (CGLS)  

(https://land.copernicus.vgt.vito.be/) ................................................................. 78 

Table 4.2. The 11 phenological variables derived from FAPAR, LAI, and NDVI 

time series (extracted using the time statistics function of SPIRITS (Eerens and 

Haesen 2013) for 2 periods: dekads 5 to 15 and dekads 1 to 18, from 2000 to 

2020). ................................................................................................................. 78 

Table 4.3. Details of the eight best coffee yield models for the Dak Lak province 

based on phenological variables derived from NDVI, FAPAR and LAI for the 

20002019 time period, with their related statistical perfomrances.. ................ 84 

Table 4.4. Coffee yield predictions for 2020 based on each model .................. 88 

  

 



1 
 

Chapter 1. Introduction 

1.1.  Research framework 

1.1.1. General context. 

Recently, there has been an increasing frequency of extreme weather and 

climate events. These extreme events favour the natural disasters, especially those 

related to floods and severe droughts (Cunha et al., 2019). According to the 

Centre for Research on the Epidemiology of Disasters (CRED) (Wallemacq, 

2019), in 1998-2017, extreme weather events and geophysical disasters killed 1.3 

million people. In addition, they impacted a further 4.4 billion people, while the 

majority (91%) of all the cause was floods, storms, drought and other extreme 

weather events. 

Drought is a silent and pervasive hazard, which originates from the deficit 

of water availability, with devastating impacts on agriculture, water supply and 

the environment (Dow, 2010; Popova et al., 2014; Yu et al., 2014), causing 

economic losses and damages to the ecosystem (Dahal et al., 2016; Wilhite, 2000; 

Wilhite et al., 2007). Droughts happen virtually at all climatic zones and high and 

low precipitation areas and are a frequent phenomenon that negatively impact 

natural habitats, ecosystems, society and the economy (Tfwala et al., 2020). In 

addition, drought has marked impacts on vegetation, air, soil, wildlife; its 

conditions enhance forest fires risk and land degradation processes and may cause 

forest mortality, reduce primary production and change biodiversity (Barbosa et 

al., 2020; Vicente-Serrano et al., 2020). 

Droughts have been increasingly common in recent years as rainfall 

intensity has increased and the number of wet days has decreased. Drought tends 

to increase in severity and frequency, and the trend is more significant for longer 

drought time scales. Recent studies show that agricultural production has 

declined significantly in many parts of the world, including Asia, due to drought's 

increased frequency and severity (Bakker and Downing, 2000; Dahal et al., 2016). 

For example, the severe Australian drought in 2006 reduced the national winter 

cereal crop by 36%, leaving many farmers in a financial crisis (Wong et al., 2010). 

In the Kingdom of Eswatini, the drought in 2015-2016 occurred, and there were 

severe adverse effects, causing a 30% reduction in incomes, especially in the 

agricultural sector (Tfwala et al., 2020). Recently, most regions in Brazil faced 
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the most extreme droughts of the last 60 years (Bevacqua et al., 2021; Cunha et 

al., 2019). In 2014, a severe drought affected the water supply of 28 million 

people in southeastern Brazil (Bevacqua et al., 2021; Melo et al., 2016).  From 

1980 to 2019, the U.S. has sustained 26 drought events, losing the nation cost at 

least $249 billion, with an average cost of more than $9.6 billion for each event 

(NOAA, 2020). According to estimates in a new analysis led by UC Merced 

researchers, the 2021’s drought directly affected the California agriculture sector, 

losing about $1.1 billion and nearly 8750 full – and part-time jobs. (Lorena 

Anderson, 2022; Medellín-Azuara et al., 2022)   

 In Thailand, Cambodia, Laos and Vietnam, drought events have severe 

influences on the socio-economic state of these countries and affect about 85% 

to 90% of the livelihoods of poor communities and people living in rural areas in 

the Lower Mekong Basin (LMB) region (MRC, 2019). The LMB, including 

Thailand, Cambodia, Laos, and Vietnam, has been experiencing extreme drought 

events in 1992, 1999, 2003, and 2015-2016. They led to massive economic losses 

due to crops damages, adverse effects on the environment and people’s 

livelihoods (MRC, 2019). The recent extreme drought in 2016 caused 1.7 billion 

USD damages in Thailand and caused water shortages in 18 out of 25 provinces 

affecting 2.5 million people in Cambodia. Total 2016 drought costs were assessed 

at 669 million USD, and costs to recover damages approximately amounted to 

1.5 billion USD in Vietnam (MRC, 2019). 

El Nino weather events have become more frequent in the last 50 years, 

causing more typhoons, floods and droughts (Oxfam, 2008). There has been more 

droughts in the south of Vietnam in recent years, which have tended to last longer. 

Hoc (2002) reveals a series of drought events in the Central Highlands of Vietnam 

from 1994 to 1998 that affected winter-spring crops. 

In 2016, the El Nino weather event has been blamed in Vietnam for the 

country's worst drought in 90 years, with drought affecting 52 of the country's 63 

provinces; 18 provinces have been declared states of emergency (FAO, 2016a). 

Droughts would increase in some areas due to rising temperatures and/or rainfall 

shortfalls during the dry season (e.g. spring and summer in the Southern Central, 

spring in the South and winter in the North) (Tran et al., 2016).  
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1.1.2. Drought definitions 

The precise drought definition depends on several aspects, such as the main 

influences on the hydrological, economic, environmental or social factors 

analysed and the related processes and impacts (Barbosa et al., 2020). Drought is 

caused by lack of precipitation, high temperature, overuse, and overpopulation. 

Droughts are to be discriminated from aridity, a stable climatic characteristic, and 

from water shortage, a situation where the climatologically available water 

resources are inadequate to satisfy long-term average water demands (Barbosa et 

al., 2020). Drought includes four main classifications: those are meteorological, 

hydrological, agricultural, and socioeconomic (Thao et al., 2019; Wilhite, 2000; 

Wilhite and Glantz, 1985) 

 Meteorological drought is a period with an unusual precipitation 

insufficiency concerning the long-term average conditions for a region 

(Barbosa et al., 2020). Over time, the meteorological drought leads to other 

drought categories, such as agricultural, hydrological or socioeconomic 

droughts.  

 Agricultural drought is a consequence of the characteristics of meteorological 

drought impact on agriculture, precipitation scarcities, differences between 

actual and potential evapotranspiration, and soil moisture shortage cause of 

limited water availability for irrigation on agriculture (natural vegetation and 

crops) (Aksoy et al., 2018). 

 Hydrological drought is associated with the impacts of periods of 

precipitation deficits on the surface or sub-surface water supply  such that 

streamflow, reservoir and lake levels, and groundwater table decline 

(Barbosa et al., 2020).  

 A socioeconomic drought links the supply and requirement of some 

economic goods or services (e.g., fruits, vegetables, grains, meat, and 

hydroelectric power) with meteorological, hydrological, and agricultural 

drought (Wilhite, 2000). Socioeconomic drought happens when economic 

goods demand can not be satisfied due to a weather-related shortage in water 

availability. 

Besides four classical definitions of drought, Crausbay et al. (2017) 

proposed a new type of drought – ecological drought – combining the ecological, 

climatic, hydrological, socioeconomic and cultural dimensions of drought. They 
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define ecological drought “as an episodic deficit in water availability that drives 

ecosystems beyond thresholds of vulnerability, impacts ecosystem services, and 

triggers feedbacks in natural and/or human systems” (Crausbay et al., 2017). The 

environment indicates the many interactions between microbial fauna, wildlife, 

plants, soil features, atmosphere, water and human effects. Many of the 

consequences of drought on various ecosystems may be traced back to these 

human factors such as human activities that can have a significant impact on 

desertification; given that human management of these systems profoundly 

changes natural systems, they can also affect water and air quality and other 

processes such as forest mortality (Vicente-Serrano et al., 2020). Therefore, 

Vicente-Serrano et al. (2020) prefer to use “environmental” instead of “ecological” 

drought because they show it better represents the coupled nature of human-

environment interactions, including the human use (and misuse) of the 

environment that is key to this type of drought.  

1.1.3. Drought history in Vietnam 

In Vietnam, several drought events have occurred in the past, as shown in 

Table 1.1. This table reveals that drought occurred in the whole country from 

1952 until 2020. Recently, El Nino weather events have become more frequent 

causing more typhoons, floods and droughts (Oxfam, 2008; Van Viet, 2021). 

There has been more droughts in the south of Vietnam in recent years, which have 

tended to last longer. In 1976, drought affected 370000 hectares of crops in the 

northern and north-central regions. The drought destroyed 80,000 hectares of 

crops in six provinces of the Mekong River Delta in 1982.  

Similarly, in 1983, central and southern Vietnam lost 291000 hectares of 

cereals. In the winter-spring of 1992-1993, paddy production was decreased by 

559000 tons in the Mekong River Delta. Moreover, the central region of Vietnam 

has been experiencing severe drought in 1993 (Nguyen and Shaw, 2011). This 

drought spread throughout the whole country.  It caused losses suffered from 

approximately 175000 hectares, of which 35000 hectares were completely 

damaged, with 150000 tons of crops fully lost.   

Hoc (2002) reveals a series of drought events in the Central Highlands of 

Vietnam from 1994 to 1998 that affected winter-spring crops. According to the 

Ministry of Agriculture and Rural Development (MARD, 1998), Vietnam was 
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affected by a prolonged and widespread drought with two periods of drought from 

late 1997 to 1998 (OCHA, 1998), which led to enormous consequences for the 

agricultural production in VietNam; the first period from late 1997 to May 1998, 

affected more than 600000 households or three million people. About 380000 

tonnes of paddy equivalent, 11400 hectares were destroyed by forest fires due to 

drought, and 19360 ha of water areas used for aquatic production dried up. 

274000 households suffered from food scarcity. Total economic losses in the first 

period were estimated at VND 5290 billion (USD 407 million), excluding 

possible losses for future harvests due to a fall in production of some crops. From 

June to August 98, the second period had massive effects on agricultural 

production in Vietnam's Central and Central Highlands, affecting around 66000 

hectares of winter-spring rice, with 50000 ha destroyed. Moreover, over 74500 

hectares of rice were affected for summer-autumn crops, in which 41400 hectares 

were destroyed; 230000 residents did not have access to fresh water. In spring-

winter crop 1998-1999, about 361000 hectares were affected by water shortage 

in Mountainous areas in the North, Red River Delta, North-Centre, Mekong River 

(OCHA, 1999). 

Severe droughts had impacted all provinces in the Mekong Delta, Southern 

Central, and Central Highland regions since the end of 2015. Reporting period 

October 2015 - Mar 2016,  there were ten provinces in a state of drought 

emergencies, 976000 people did not have access to water for consumption and 

domestic use, 159000 hectares of paddy were damaged (Viet Hien, 2016). In 

Vietnam, the worst drought in 2016 has broken 90 years historical record for 

country water deficit, with 52 out of 63 provinces (83%) affected by drought; 

states emergency in 18 provinces were declared, as of June 2016  (FAO, 2016a). 

During the peak of the drought (February-May 2016), there were 2 million people 

lacking water for daily consumption, 1.1 million were food uncertain, 1.75 

million people lost revenues due to damaged or lost livelihoods because of 

drought and saltwater intrusion (Conille, 2018). 

The onset of the rainy season in 2019 in the Mekong was late compared to 

recent years, and its cessation ended early. As a result, the total annual flow of 

the Mekong river was lower than its annual average, even lower than the period 

2015 to 2016 when the record drought and saline intrusion occurred. It is the main 

reason for the early, deep, and prolonged drought and saline intrusion, affecting 
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residents and production in the Mekong Delta (IFRC, 2020). According to the 

Vietnam Disaster Management Authority (VNDMA), 10 out of 13 provinces with 

74 out of 137 districts in the Mekong River Delta are affected by drought and 

saltwater intrusion. More than 685000 people in the Mekong Delta were affected. 

Furthermore, the drought and saltwater intrusion influenced Agricultural 

production, led to losses of about 460000 hectares. In addition, the drought and 

saltwater intrusion limited access to safe water for 200000 households, who do 

not have usual and adequate access to water for consumption and other domestic 

use (IFRC, 2020). 

Table 1.1.  Drought Events in Vietnam from 1952-2020 

Regions 
Years of Drought 

Summer  Summer-Autumn Spring-Summer Winter-Spring 

Mountainous 

areas in the 

North 

1988, 1990, 

1991, 1993, 

1998. 

    1988, 1990, 1991, 

1993, 1994, 1996, 

1998, 1998, 1999, 

2009, 2014, 2015. 

Red River 

Delta 

1987, 1990, 

1998. 

    1960, 1961, 1962, 

1963, 1964, 1986, 

1987, 1988, 1991, 

1998, 1999, 2004, 

2005, 2007, 2008. 

North Central 

Regions 

1982, 1983, 

1988, 1992, 

1993, 1995, 

1996, 1998. 

1992, 1993, 1994, 

1998, 2004. 
1995, 1996 

1991, 1992, 1993, 

1994, 1998, 1999, 

2009, 2014, 201.5 

South Central 

Regions 

1983, 1993, 

1994, 1997, 

1998, 2000, 

2004, 2005, 

2014, 2015. 

1952, 1969, 1970, 

1971, 1977, 1978, 

1982, 1984, 1985, 

1993, 1998, 2000, 

2001, 2002, 2004, 

2005. 

  

1977-1978, 1983, 

1984, 1993, 1998, 

2002, 2004, 2005, 

2012, 2015, 2016. 

Central 

Highlands 

1997, 1998, 

2001, 2002, 

2004, 2005, 

2014, 2015, 

2016, 2020. 

1983, 1988, 1993, 

1995, 1997, 1998 

  

1994, 1995, 1996, 

1997, 1998, 1999, 

2014, 2015, 2016. 

Southeast 

Regions 

1988, 1990, 

1992, 1997, 

1998. 

1988, 1990, 1992, 

1998. 

  1987, 1988, 1990, 

1992, 1997, 1998, 

2014, 2015. 

Mekong River 

Delta 

1981, 1983, 

1984, 1985, 

1987, 1992, 

1994, 1998, 

2004. 

1981, 1982, 1988, 

1992, 1997, 1998, 

2019, 2020. 

  
1989, 1992, 1993, 

1998, 1999, 2004, 

2009, 2010, 2014, 

2015, 2016. 
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Source: Nguyen (2006), Hoc (2002), Nguyen and Shaw (2011), OCHA (2016, 1999, 

1998). And, International Federation of Red Cross And Red Crescent Societies, primary 

country: Vietnam (IFRC, 2020). 

1.2.  Aims and objectives 

Drought is a natural disaster and can not be prevented. However, drought 

damages can be mitigated by adaptation and mitigation strategies. Drought 

damages depend on the severity of drought and the interactions between 

socioeconomic and ecological vulnerability in vulnerable systems  (UNDP, 2021). 

Therefore, a better understanding of livelihood vulnerability to drought is a key 

to build resilience to droughts and develop adequate management and policy 

strategies. Besides, it is important to consider current local perception and coping 

capacities of droughts and climate change to assess their ability to reduce their 

vulnerability. When local people have a correct perception of risk, good adapting 

and coping capacities, the droughts' damages can be reduced. On the other hand, 

if the risk is not well identified by vulnerable population, if their capacity to adapt 

to this more risky new life environment is not present, few or no action to mitigate 

or reduce their vulnerability will be adopted what will even more increase their 

vulnerability.  

In the study area, agriculture production is the main source of income 

which is an essential reduction factor of the population vulnerability. At present, 

it is not possible to avoid farmers' income fall following the impact of droughts 

in the Central Highlands region. However, the provision of a crop yield 

forecasting tool is a first step that can help anticipate years with low production 

and therefore low income. This type of tool, if it is effective, can enable the 

Vietnamese authorities to prepare well for these difficult conditions and properly 

take care of populations in difficulty before humanitarian crises take hold; and 

thus it can reduce the population vulnerability during these difficult episodes 

linked to agricultural droughts.  

Therefore, the objective of this dissertation is to better understand 

population vulnerability to drought and other extreme weather events in the 

Central Highlands of Vietnam in the context of climate change.  

The purpose of the study was reached by undertaking the following tasks: 

 Assessing livelihood vulnerability to drought for selected areas using 

standard international vulnerability indices. 

https://reliefweb.int/organization/ifrc
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 Understanding local people's perceptions of drought and 

investigating the differences between their perceptions and 

meteorological recorded data in the selected areas.   

 Performing regional coffee yield forecasting using remote sensing 

data and statistical yield forecast models. 

1.3.  The dissertation outline 

The thesis is a set of scientific papers, one accepted and two submitted. 

Chapter 1 describes the background of the study and the study objectives. It 

also provides a general description of the research undertaken in the thesis. 

Chapter 2 studies livelihood vulnerability to drought in the study area. This 

chapter presented here has been published in the International Journal of 

Disaster Risk Science. In this chapter, the Livelihood vulnerability index  (LVI) 

and Vulnerability Index-Intergovernmental Panel on Climate Change (VI-IPCC) 

were used to evaluate the livelihood vulnerability of households to drought in the 

study area. Chapter 2 is based on the structure of the paper I. 

 Paper I: Nguyen Thi Thanh Thao, Dao Nguyen Khoi, Tran Thanh Xuan, 

Bernard Tychon: Assessment of livelihood vulnerability to drought in the 

Lower Mekong River Basin: a case sudy in Dak Nong province, Viet 

Nam. International Journal of Disaster Risk Science, accepted in 2019. 

After understanding aspects of livelihood vulnerability to drought in the 

study area, in the following steps, this study will find out about the awareness of 

locals related to drought because the perceptions of drought are one of the aspects 

that influence the effective reduction of drought damages. Therefore, chapter 3 

analysed local people's perceptions of climate change and related drought. 

Besides, this study investigates the differences between local people's perceptions 

and meteorological recorded data in this area. This chapter also analysed 

meteorological data to assess monthly precipitation and temperature distribution, 

extreme precipitation events, and precipitation and temperature trends. Finally, 

this chapter also reveals preliminary analysis results on the assessment of drought 

using the non-parametric Mann-Kendall trend test and Standardised Precipitation 

Indices to assess drought in the study area. Chapter 3 is based on the structure of 

the paper II. 

 Paper II: Nguyen Thi Thanh Thao, Dao Nguyen Khoi, Luong Van Viet, 

Joost Wellens, Marie Lang, Bernard Tychon: Comparing local people’s 

https://orbi.uliege.be/browse?type=journal&value=International+Journal+of+Disaster+Risk+Science
https://orbi.uliege.be/browse?type=journal&value=International+Journal+of+Disaster+Risk+Science
https://orbi.uliege.be/browse?type=journal&value=International+Journal+of+Disaster+Risk+Science
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perceptions of climate change and drought using scientific observations 

in the Lower Mekong Basin: a case study in Dak Lak province, Vietnam. 

The paper is submitted in Environment, Development and sustainability 

(ENVI) Journal. 

One of the methods to reduce drought impacts on agricultural population is 

to provide to decision makers a tool (model) to predict crop yields and production, 

in order to anticipate population livelihood reduction and prepare adapted 

support. The main crop of the study area is coffee. Therefore, chapter 4 presents 

an early regional prediction of coffee yield using a statistical approach and 

satellite remote sensing vegetation biophysical variables (NDVI, LAI, and 

FAPAR). Chapter 4 is based on the structure of the paper III. 

 Paper III: Nguyen Thi Thanh Thao, Dao Nguyen Khoi, Antoine Dennis, 

Luong Van Viet, Joost Wellens, Bernard Tychon: Early Prediction of 

Coffee Yield in the Central Highlands of Vietnam Using a Statistical 

Approach and Satellite Remote Sensing Vegetation Biophysical 

Variables. Remote Sens. 2022, 14(13), 

2975; https://doi.org/10.3390/rs14132975. Published: 22 June 2022 

 

Finally, Chapter 5 presents a summary and the conclusions of the study. 

Recommendations for future work are also presented. 

https://doi.org/10.3390/rs14132975
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Figure 1.1. Outline of the thesis 

  

Chapter 1 Introduction 

Background of the study and objectives 

 
Chapter 2 Assessment of livelihood vulnerability to drought in the studies area 

Calculating the livelihood vulnerability index (LVI) 

Calcuating the livelihood vulnerability index – IPCC (LVI-IPCC) 

Assessment the vulnerbility of study areas. 

 

Chapter 3 Comparing local people’s perception of climate change and drought 

with scientific observations in the study area. 

Analyze local people’s perceptions on climate change and related drought  

Meteorological data analysis (eight precipitation extremes: RX1day, RX5day, 

R95p, SDII, R20mm, R25mm, CDD, CWD) 

Trend analysis of annual, monthly and seasonal rainfall, temprature, 

Identify the onset and cessation of the rainy season.  

Trend of the onset and cessation of the rainy season. 

Analyze SPI 

Investigate the differences between the perceptions of local people and 

meteorological recorded data in this area 

 

Chapter 4. Early prediction of coffee yield in the Central Highlands of Vietnam 

using statistical approach and satellite remote sensing vegetation biophysical 

variables 

Model performance 

Coffee yield prediction for 2020 

Chapter 5  General conlusion and outlook 

General conclusion 

Outlook 
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Chapter 2. Assessment of livelihood vulnerability to drought 

in the Central Highlands of Vietnam. 

This chapter was adapted from the following publication: 

Nguyen Thi Thanh Thao, Dao Nguyen Khoi, Tran Thanh Xuan, Bernard Tychon: 

Assessment of livelihood vulnerability to drought in the Lower Mekong River Basin: a 

case sudy in Dak Nong province, Viet Nam. International Journal of Disaster Risk 

Science, Published in 2019. DOI: 10.1007/s13753-019-00230-4 

Abstract  

In recent years, droughts have strongly affected the Central Highlands of 

Vietnam and have resulted in crop damage, yield decline, and serious water 

shortage. This study investigated the livelihood vulnerability of five communities 

of farmers who are exposed to droughts in one of the more vulnerable regions of 

Vietnam—Dak Nong Province. A survey of 250 households was conducted in 

the five communities to collect data on the region’s sociodemographic profile, 

livelihood systems, social networks, health status, food and water security, 

drought conditions, and climate variability. Data were aggregated using a 

livelihood vulnerability index and the IPCC vulnerability index. The survey 

results indicate that Quang Phu community is the most vulnerable of the study’s 

communities, followed by Nam N’dir, Dak Nang, Duc Xuyen, and Dak D’ro in 

descending order of vulnerability. Water availability and livelihood strategies are 

the most important variables in determining the vulnerability of the five surveyed 

communities. In order to reduce vulnerability to droughts, water management 

practices and livelihood diversification in farming and nonfarming activities are 

recommended for the study area. 

Keywords: Agricultural drought, Livelihood vulnerability, Vietnam, 

Vulnerability indicators. 

2.1. Introduction 

Drought is a recurrent natural disaster that has negative impacts on water 

resources and socio-economy. Drought results from a considerable hydrological 

deficit due to climatic factors (e.g. decreases in rainfall) (Mohmmed et al., 2018) 

or human factors (e.g. land-use change) (Keesstra, 2007). Basically, drought is 

categorized in four major types, such as meteorological, hydrological, 

https://orbi.uliege.be/browse?type=journal&value=International+Journal+of+Disaster+Risk+Science
https://orbi.uliege.be/browse?type=journal&value=International+Journal+of+Disaster+Risk+Science
http://dx.doi.org/10.1007/s13753-019-00230-4
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agricultural, and socio-economic droughts, depending on its impacts 

(Thilakarathne and Sridhar, 2017). Recently, drought frequency and severity have 

significantly increased due to climate change (IPCC, 2013a). This generates large 

challenges of socio-economic development for developing countries, especially 

in agricultural sector. Panthi et al. (2016) indicated that people whose livelihood 

replies mostly on agricultural activities are particularly vulnerable in the 

developing countries. Therefore, studies on vulnerability assessment for impacts 

of climate change and natural disasters are necessary to improve knowledge of 

people’s vulnerability and to help decision-makers in implementing and planning 

climate change adaptation and disaster risk reduction. According to IPCC (2001), 

vulnerability is defined as the extent to which geophysical, biological, and 

societal aspects are disposed to, or at risk of, and are unable to deal with the 

adverse effect of climate change and variability. Vulnerability assessment depicts 

a varied set of approaches used to systematically integrate and consider 

interactions between humans and their environmental surroundings, including 

physical and social aspects (M.B. Hahn et al., 2009).  

In recent years, studies on vulnerability assessment in the context of 

climate change natural disasters have been gained more attentions from scientists. 

A number of approaches of the vulnerability assessment include historical 

narrative, comparative analysis, statistical analysis, indicator-based method, and 

agent-base modeling. Among these methods, the indicator-based method is 

widely used for assessing vulnerability to climate change and natural disasters 

(Mohmmed et al., 2018; Pandey and Jha, 2012; Salik et al., 2015). In the past 

decade, Livelihood Vulnerability Index (LVI) has been a useful and popular tool 

in assessing farmers’ vulnerability to climate change and natural disasters around 

the world (e.g. Addisu Legese et al. 2016; Panthi et al. 2016; Adu et al. 2018; Oo 

et al. 2018; Williams et al. 2018). Computed and improved by Hahn et al. (2009) 

based on Intergovernmental Panel on Climate Change (IPCC)’s definition of 

vulnerability, the LVI approach consists of various variables apprehending the 

level of smallholder farmers' exposure, sensitivity and adaptive capacity to 

natural disasters (e.g. drought and flood) and climate change. LVI provides 

measures to observe likely vulnerability over time and space and to identify the 

processes that contribute to vulnerability, prioritize strategies for its reduction, 

and assessing the efficiency of these strategies in different social and ecological 
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environments (Shah et al., 2013). Furthermore, Panthi et al. (2016) indicated that 

impact of climate change and natural disasters vary from area to area and 

vulnerability assessment is imperative to be investigated in a regional scale.  

Vietnam, a tropical and developing country in Southeast Asia, is identified 

one of the most vulnerable hotspots affected by climate change and natural 

disasters (drought and flood) (IMHEN and UNDP, 2015; IPCC, 2013b). In the 

past two decades, Vietnam suffered approximately 216 natural disasters which 

caused a loss of approximately 0.55% of Gross Domestic Product (GDP) per year 

(Eckstein et al., 2017). In the years 2015-2016, Vietnam, especially in the Central 

Highlands, had faced the most severe prolonged drought in the past 90 years, 

causing severe damage to agricultural production and farmer’s income (UNDP, 

2016a). The Central Highland plays an important place in Vietnam’s economy 

because this region is a biggest producer of coffee beans in Vietnam and Vietnam 

is the world’s second largest exporter of coffee. However, in a recent study 

conducted by Sam et al. (2018), they stated that the droughts in the Central 

Highlands of Vietnam are becoming more and more severe and prolonged in the 

near future. This will cause serious impacts on agriculture and people's livelihood 

in this region. Furthermore, poor and farming communities are identified to be a 

principal object affected by the climate change and natural disaster in the 

developing countries since they have insufficient adaptive capacity (IPCC, 

2007a). However, livelihood vulnerability of farmers to drought is not well 

reported in Vietnam, especially in the Central Highlands. A lack of knowledge of 

drought impacts on farmers’ livelihood is an obstacle to determine suitable 

livelihood strategies in order to increase farmers’ welfare in the context of 

drought.   

The objective of the present study was to assess livelihood vulnerability of 

farmers to drought in the Krong No District (Dak Nong province) in the Central 

Highlands of Vietnam. Five communities in the Krong No district, namely Quang 

Phu, Nam N’dir, Dak Nang, Duc Xuyen, and Dak D’ro, were selected for the 

investigation because they were the most vulnerable areas affected by the 

historical drought in the years 2015-2016 (FAO, 2016b). The results of this study 

are expected to help local governments find drought adaptations to enhance 

farmers’ adaptive capacity in the study area. 
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2.2.  Study area 

The Krong No District is located in the Central Highlands of Vietnam 

(Fig. 2.1). The district is positioned between latitudes 12°15′–12°30′N and 

longitudes 107°45′–108°05′E. This district has an average altitude higher than 

2,000 m with an area of 813 km2 and its population was about 70,604 people in 

2014 (Dak Nong Statistical Office, 2015). Krong No District experiences a 

tropical monsoonal climate with distinct dry and wet seasons. Rainfall is highly 

seasonal, is concentrated in the monsoon season, and lasts from April or May to 

November. Average annual temperature is around 25 °C. The months of July, 

August, and September have the largest precipitation, up to 320 mm. In the dry 

season, average temperature is around 20 °C and average precipitation is about 

4–5 mm in January and February. Average annual relative humidity is 

approximately 76% and the highest value is 89% in August. 

 
Figure 2.1  Location of the study area 

2.3.  Methodology 

In this study, the LVI and VI-IPCC were used to evaluate the livelihood 

vulnerability of households to drought in the Krong No District. The two 

vulnerability indices were selected for this study because they have been widely 

used in studies on assessing the vulnerability to climate change and disasters (e.g. 

Addisu Legese et al. 2016; Panthi et al. 2016; Adu et al. 2018; Oo et al. 2018; 

              (a) Dak Nong Province (grey area)            (b) Krong No District 

https://link.springer.com/article/10.1007/s13753-019-00230-4#Fig1
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Williams et al. 2018). In the following subsections, we provide the detailed 

methods of LVI and VI-IPCC used in this study. 

2.3.1. Livelihood vulnerability index 

According to Hahn et al. (2009), the LVI includes seven major 

components: sociodemographic profile (SDP); livelihood strategies (LS); social 

networks (SN); health (H); food (F); water (W); and natural hazard-induced 

disasters and climate variability. In this study, the LVI was calculated based on 

these seven major components, and each component contained a different number 

of subcomponents (Table 2.1) based on available data collected through a survey 

of households affected by the droughts of 2015–2016 in the study area. As 

subcomponents were evaluated on diverse scales, they were first standardized. 

Standardization was based on the Human Development Index (HDI) ) (UNDP, 

2007). 

 𝐼𝑛𝑑𝑒𝑥 𝑆𝑐 =
Sc−Smin

Smax−Smin
         (1) 

where Sc is the original value of the subcomponent for community c, Smin 

and Smax are minimum and maximum values reflecting low and high vulnerability 

of this subcomponent. 

Table 2.1. Major components and sub-components comprising the Livelihood 
Vulnerability Index (LVI) developed for 5 communities in Krong No district, Dak Nong 
province. 

Major 

components 

Subcomponents Unit Explanation of subcomponents 

relative to LVI 

Socio-

demographi

c profile 

(SDP) 

SDP1 -  Ratio of dependent 

people. 

- Higher value reflects less capacity 

to adapt 

SDP2 - Percentage of female-

headed households. 

% Higher value reflects less capacity 

to adapt 

Women typically have less 

adaptive capacity  

SDP3 - Percentage of household 

heads who have not attended 

school 

% Higher value reflects less capacity 

to adapt 

Education makes people more 

aware and able to adjust to change 

in environmental conditions 

Livelihood 

strategies 

(LS) 

LS1 - Livelihood diversification 

Index which was constructed as 

the inverse of the number of 

livelihood activities of 

- Higher value reflects more 

capacity to adapt 

Income diversification increases 

adaptive capacity.  

https://link.springer.com/article/10.1007/s13753-019-00230-4#Tab1
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households +1.  

LS2 - Percentage of households 

depending only on agriculture as 

a source of income 

% Higher value reflects less capacity 

to adapt 

Households depending only on 

agriculture are more vulnerable 

LS3 - Agricultural livelihood 

diversification index, which was 

constructed as the inverse of the 

number of crops cultivated by a 

household + 1 

- Higher value reflects more 

capacity to adapt 

Diverse crops reduce the risk of 

major losses 

Food (F) F1 - Percentage of households 

depending only on their farming 

products as a source for food 

% Higher value indicates vulnerable 

Limited source for food 

 

F2 (+) - Monthly living expense.  1000V

ND/mo

nth 

Higher value indicates less 

vulnerable 

F3 - Percentage of households 

struggling for food. Proportion of 

households reported that they had 

at least one month struggling for 

food. 

% Higher value indicates more 

vulnerable 

Social 

Network 

(SN) 

SN1 - Percentage of households 

not having access to 

communication media (TV/radio, 

telephone).  

% Higher value indicates more 

vulnerable. 

Communication media makes 

people aware of hazard occurrence 

and having better preparation 

SN2 - Percentage of households 

not having access to local 

government service.  

% Higher value indicates more 

vulnerable. 

These services strengthen adaptive 

capacity. 

SN3 - Percentage of households 

not having access to funds from 

government or other 

organizations.  

% Higher value indicates more 

vulnerable. 

Funds sources strengthen adaptive 

capacity. 

Health (H) H1 - Average distance to health 

facility.  

km Higher value indicates more 

vulnerable 

H2 - Percentage of households 

with family member with chronic 

illness.  

% Higher value indicates more 

vulnerable.  

People with chronic illness are 

more sensitive. 
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H3 - Percentage of households 

not participating in health 

insurance.  

% Higher value indicates more 

vulnerable. 

Water (W) W1 - Percentage of households 

using natural water sources from 

well or stream.  

% Higher value indicates more 

vulnerable. 

W2 - Percentage of households 

not having stable water from a 

water treatment plant.  

% Higher value indicates more 

vulnerable. 

Family with unstable water supply 

is more sensitive. 

W3 - Storage water volume of 

households 

m3 Higher value indicates more 

vulnerable. 

Drought (D) D1 - Frequency of drought (6-

month Standardized Precipitation 

Index (SPI^) 

% Higher value reflects more 

exposure 

D2 - Mean standard deviation of 

monthly precipitation  

- Higher variability implies higher 

exposure.  

D3 –Mean standard deviation of 

monthly maximum temperature. 

- Higher variability implies higher 

exposure. 

a1 USD = 23.25 VND (exchange rate on 2 September 2019); SPI6 = 6-month 
standardized precipitation index 

After standardizing subcomponents, major component index is calculated by 

the following equation. 

𝑀𝑗𝑐 =
∑ 𝑖𝑛𝑑𝑒𝑥𝑆𝑐

𝑛
𝑖=1

𝑛
          (2) 

where n is the number of sub-components in each major components and 

Mjc is value of major component j for community c. The LVI for community was 

calculated using the following equation:  

  𝐿𝑉𝐼 =
∑ 𝑤𝑀𝑖𝑀𝑖𝑐

𝑛
𝑖=1

∑ 𝑤𝑀𝑖
𝑛
𝑖=1

        (3) 

where wMi is the weight of each major component, which was estimated by 

the number of subcomponents that make up each major component.  

After calculating the major components and LVI, a radar chart was used to 

compare the vulnerability level of each major component for each community. 

The livelihood vulnerability index was scaled in the range from 0 (least 

vulnerable) to 1 (most vulnerable). 
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2.3.2. IPCC – Vulnerability index (LVI-PCC) 

This study used VI-IPCC to assess livelihood vulnerability based on the 

IPCC approach. VI-IPCC highlights three major components, including exposure, 

adaptive capacity and sensitivity. Drought will be framed under “exposure”, 

water, food and health sectors under “sensitivity”, and socio-demographic profile, 

livelihood strategy and social network under “adaptive capacity” (Table 2.2). 

Table 2.2. Major components are framed under Exposure, Sensitivity and Adaptive 

capacity contributing factors to vulnerability. 

IPCC contributing factors to vulnerability Major components 

Exposure Natural disaster and climate variability 

Adaptive capacity Socio-demographic profile 

Livelihood strategies 

Social networks 

Sensitivity Health 

Food 

Water 

The exposure is measured by using rainfall data from three rain gauges 

located in the study area. The sensitivity is measured by assessing the current 

state of the Dak Nong province’s food, water security and health status. The 

adaptive capacity is quantified by using the socio - demographic profile, types of 

livelihood strategies and existing social networks in the study area. The same sub-

components as for the LVI index as well as the equations 1 and 2 were used to 

calculate the VI-IPCC index. 

The VI-IPCC index is calculated as follows  

VI – IPCC = (exposure – adaptive capacity) x sensitivity  (4) 

The VI-IPCC index ranges from -1 (least vulnerable) to 1 (most 

vulnerable). IPCC-defined contributing factor (exposure, adaptive capacity and 

sensitivity) is calculated as below: 








n

1i Mi

n

1i ciMi

c

w

Mw
CF       (5) 
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where CFc is an IPCC-defined contributing factor (exposure, adaptive 

capacity and sensitivity) for community c, wMi is the weight of each major 

component determining factor, Mci is the major component for community c 

indexed i, and n is the number of major components in each contributing factor. 

After calculating contributing factor (exposure, adaptive capacity and 

sensitivity) and VI-IPCC, these results are described by using vulnerability 

triangle diagram to compare 2 or more study areas. Each vertex of triangle shows 

each contributing factor. 

2.3.3. Data collection 

This study used data from both primary and secondary sources. Secondary 

data on monthly precipitation measured at three rain gauges, including the Lak, 

Duc Xuyen and Dak Nong stations, were collected. The data were collected for 

the period 1981-2016 and obtained from the Hydro-Meteorological Data Center 

of Vietnam (HMDC). In order to estimate drought frequency, the Standardized 

Precipitation Index (SPI) was used based on the monthly precipitation data. The 

SPI for 6-month time scale was selected for estimate the drought frequency 

because it is suitable for describing the seasonal meteorological drought (Spinoni 

et al., 2014). The procedure of SPI calculation could be referred in McKee et al. 

(1993). 

Primary data was gathered from household questionnaire survey. A 

structured questionnaire was designed in relation to LVI’s components and sub-

components. The questionnaire contained socio-economic, demographic and 

livelihood information at community and district levels in the Krong No district. 

In addition, it contained questions related to drought, climate change perceptions, 

adaptive solutions and interventions that each stakeholder is able to support and 

apply to reduce the negative impacts of drought in each community. The sample 

size was calculated at a 95% confidence level, precision of ± 10% at an assumed 

coverage of 50% based on the probability proportional to size method. A 

household survey was carried out with 250 households who were selected at 

random in five communities of the Krong No district in the last April 2016, and 

approximately 50 households in each community, namely Quang Phu, Nam N’dir, 

Dak Nang, Duc Xuyen, Dak D’ro, respectively. Households were randomly 

selected from the household lists of all communities. The survey was carried out 



20 
 

by six interviewers who were trained. Household heads or other experienced 

members of the selected households were considered for the survey. Each 

interview lasted approximately 30 minutes and was conducted in Vietnamese 

language. Data were inputted, checked and analyzed using MS Excel version 16.0. 

Major surveys objective was to collect information on indicators mentioned in 

Table 2.1. 

2.4.  Results and discussion  

The collected information of the survey questionnaires is summarized in 

Table 2.3, which includes the result of indices in five communes, maximum and 

minimum values. Table 2.4 shows the result of LVI of the five communities and 

Krong No district after standardizing and aggregating into seven main 

components, including Socio-demographic profile (SDP), Livelihood strategies 

(LS), Food (F), Water (W), Health (H), Social networks (SN) and Drought (D). 

Table 3 is the result of VI – IPCC for the Krong No district, after aggregating the 

seven main components into three contributing factors, namely Adaptive capacity 

(Socio-demographic profile, Livelihood strategies, Social networks), Sensitivity 

(Health, Food, Water) and Exposure (Drought). 

Table 2.3. The result of values of LVI subcomponents for the five communities in the 
Krong No District in Dak Nong Province, Vietnam 

 Indices Unit Quang 

Phu 

Dak 

D’ro 

Dak 

Nang 

Nam 

N’dir 

Duc 

Xuyen 

max min 

 SDP1 - 0.32 0.21 0.26 0.36 0.29 1 0 

 SDP2 % 13.95 2.44 4.88 21.43 7.55 100 0 

 SDP3 % 28.57 10.26 0.00 16.67 2.70 100 0 

 LS1 - 0.47 0.39 0.43 0.41 0.42 0.50 0.25 

 LS2 % 88.37 80.49 87.80 78.57 73.58 100 0 

 LS3 - 0.32 0.30 0.32 0.32 0.31 0.500 0.143 

 F1 % 30.23 34.15 29.27 33.93 16.98 100 0 

 F2(+) 1000d/ 

month 

1431.63 1821.46 1790.49 1464.46 2288.87 6000 0 

 F3 % 30.23 36.59 14.63 32.14 32.08 100 0 

 W1 % 100.00 56.10 100.00 98.21 37.74 100 0 

 W2 % 76.74 51.22 75.61 73.21 64.15 100 0 

 W3(+) m3 2.01 1.33 1.03 1.99 0.87 10 0 

 H1 m 1582.50 1398.78 1235.90 1607.27 1416.98 5000 10 

 H2 % 65.12 43.90 36.59 46.43 50.94 100 0 

 H3 % 37.21 4.88 29.27 35.71 20.75 100 0 

 SN1 % 6.98 4.88 7.32 10.71 1.89 100 0 

 SN2 % 65.12 48.78 56.10 80.36 71.70 100 0 

 SN3 % 53.49 26.83 14.63 46.43 33.96 100 0 

https://link.springer.com/article/10.1007/s13753-019-00230-4#Tab1
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 D1 % 16.06 16.37 16.58 16.57 16.86 100 0 

 D2 mm 88.25 81.64 73.16 72.38 71.06 168.90 5.68 

 D3 Celsius 2.03 2.03 2.03 2.03 2.03 2.29 1.75 

SDP = Sociodemographic profile; LS = Livelihood strategy; F = Food; W = Water; 
H = Health; SN = Social networks; D = Drought 

Table 2.4. LVI components calculation for five communes in Krong No district 

 
Quang Phu 

Dak 

D’ro 

Dak 

Nang 

Nam 

N’dir 

Duc 

Xuyen 

Krong No 

district 

SDP 0.248 0.113 0.103 0.246 0.130 0.168 

LS 0.748 0.603 0.692 0.637 0.624 0.661 

F 0.455 0.468 0.380 0.472 0.370 0.429 

W 0.855 0.647 0.884 0.839 0.644 0.774 

H 0.446 0.255 0.301 0.381 0.333 0.343 

SN 0.419 0.268 0.260 0.458 0.358 0.353 

D 0.399 0.387 0.370 0.369 0.367 0.378 

LVI 0.510 0.392 0.427 0.486 0.404 0.444 

SDP = Sociodemographic profile; LS = Livelihood strategy; F = Food; W = Water; 
H = Health; SN = Social networks; D = Drought; LVI = Livelihood vulnerability index 

Table 2.5. VI-IPCC contributing factors calculation for five communities and Krong No 
district in Dak Nong Province, Vietnam 

 
Quang 

Phu 

Dak 

D’ro 

Dak 

Nang 

Nam 

N’dir 

Duc 

Xuyen 

Krong No 

district 

Adaptive 

capacity (AC) 0.496 0.631 0.607 0.505 0.586 0.565 

Sensitivity (S) 0.586 0.457 0.522 0.564 0.449 0.515 

Exposure (E) 0.399 0.387 0.370 0.369 0.367 0.378 

VI-IPCC -0.057 -0.112 -0.124 -0.077 -0.099 -0.096 

The VI-IPCC (Vulnerability Index—Intergovernmental Panel on Climate Change) is 
scaled and ranges from − 1 (least vulnerable) to + 1 (most vulnerable) 

The results indicate that the vulnerability of the Krong No District (average 

of five communities) estimated by the LVI and VI-IPCC indices is moderate 

based on the vulnerability scales of 0 to 1 for LVI and − 1 to 1 for VI-IPCC. 

Specifically, the values of LVI and VI-IPCC are 0.444 and − 0.096. Considering 

the vulnerability of the five communities, the LVI and VI-IPCC values indicated 



22 
 

that households of the Quang Phu community are the most vulnerable, followed 

by Nam N’dir, Dak Nang, Duc Xuyen, and Dak D’ro communities 

(Tables 2.3, 2.4). 

2.4.1.  Drought in the Krong No district 

Using the Thiessen polygon method to analyze the station rainfall and 

drought spatial correlation, the two rain gauges whose rainfall is closely 

correlated with droughts in the study region are the Duc Xuyen and Lak stations. 

The Duc Xuyen station rainfall in particular is correlated with droughts in the 

whole Dak D’ro community, most of Nam N’dir and Duc Xuyen communities, 

and a part of Dak Nang community. The Lak station rainfall has a close 

correlation with droughts in the Quang Phu community and the remaining part of 

the Dak Nang and Duc Xuyen communities (Fig. 2.1). Besides, Fig. 2.2 and 

Table 2.5 specify the drought levels of the three rain gauges. The associated areas 

of Duc Xuyen station tend to be more heavily affected by droughts than the other 

areas. Quang Phu, whose rainfall is closely related to the Lak station, is the least 

drought-affected community compared to the other communities. In general, 

drought frequency of Krong No District is about 16% in which moderate drought 

occupies more than 66% of the area, severe drought occupies about 20%, and 

extreme drought afflicts about 14%. This suggests that drought in Krong No is a 

great threat that should be taken into special consideration, especially in those 

regions measured by the Duc Xuyen station. 

 

Figure 2.2. Drought frequency in three rain gauges in Krong No district. 

  

https://link.springer.com/article/10.1007/s13753-019-00230-4#Tab3
https://link.springer.com/article/10.1007/s13753-019-00230-4#Tab4
https://link.springer.com/article/10.1007/s13753-019-00230-4#Fig1
https://link.springer.com/article/10.1007/s13753-019-00230-4#Fig2
https://link.springer.com/article/10.1007/s13753-019-00230-4#Tab5
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Table 2.6. The result of SPI6 in Krong No district 

SPI6* Lak 

(1981 – 

2010) 

Duc Xuyen 

(1981 – 2016) 

Dak Nong 

(1981 – 2013) 

Total events 355 427 391 

Moderate drought (-1 ÷ -1.49) 37 49 21 

Severe drought (-1.5 ÷ -1.99) 16 10 15 

Extremely drought (≤ -2) 4 13 9 

Total drought events (≤-1) 57 72 45 

Drought frequency 0.16 0.17 0.12 

* SPI drought class classification (T.B. McKee et al., 1993)  

Since the income of households is intensely dependent on farming, the 

condition of food security is frail in the study area. Nearly 30% of Krong No 

Districts households struggle with food availability; and, according to our survey, 

this period of difficulty falls in the months when the crop has not yet been 

harvested (from January to May, with a peak in March, Fig.2.3). It is noteworthy 

that the period of food shortage also coincides with the time when households 

lack water for domestic use as well as irrigation (this deficit period also falls 

between January and May, peaks in March, Fig. 2.3). Once drought seriously 

occurs, it severely affects the lives of households. Drought leads to crop failure 

and lack of water, making the people’s lives more difficult in the next period. 

 

 

Figure 2.3. Percentage of households struggling for food and lacking water in Krong No 
district 
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https://link.springer.com/article/10.1007/s13753-019-00230-4#Fig3
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2.4.2. Livelihood’s vulnerability in the Krong No district 

Figure 4a presents the diagram for the seven major components of LVI for 

the Krong No District. There are two imbalance aspects—Water (0.774) and 

Livelihood strategies (0.661). These aspects are the two main factors that increase 

the vulnerability of the district. The Sociodemographic aspect of Krong No is 

quite good. Our surveys show that the sociodemographic profile of most 

households indicates a relatively low vulnerability (0.168). The burden imposed 

by a large-sized family, as well as a female-headed household, has significantly 

decreased since 25 years ago when the family planning program was successfully 

implemented in rural areas. In the last 10 years, small-sized families and the 

number of children going to school have increased, which contribute to mitigate 

the vulnerability of the district. 

 

Figure 2.4. Vulnerability spider diagram of the livelihood vulnerability index (LVI) 
major components (a) and Vulnerability Index-Intergovernmental Panel on Climate 
Change (VI-IPCC) major components pyramid diagram (b) for the Krong No District in 
Dak Nong Province, Vietnam. Note: SDP = Sociodemographic profile; LS = Livelihood 
strategy; F = Food; W = Water; H = Health; SN = Social networks; D = Drought; 
AC = Adaptive capacity; E = Exposure; S = Sensitivity 

Water source is the dreadful issue in the district. Our survey reveals that 

approximately 70% of households lack sufficient water for domestic use and 

irrigation in the dry season. In three out of the five surveyed communities, 100% 

(a) LVI major components   (b) VI-IPCC major components 

https://link.springer.com/article/10.1007/s13753-019-00230-4#Fig4
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of households are dependent on natural water sources and lack access to a central 

water supply system (W1 and W2, Table 2.2). Once a dry season is prolonged, 

the district becomes one of the most vulnerable places in the country. The other 

main reasons are that households significantly depend on farming and rural 

poverty has not been completely eliminated. In addition to water, the second 

prominent problem is the livelihood strategy of the households. Households in 

Krong No have poor, undiversified livelihood strategies, and they are considered 

a vulnerable community even when droughts do not occur. This is attributed to 

the fact that the livelihood of more than 80% of households depends entirely on 

farming and small-scale livestock production. Most members of these households 

do not have a job that generates a stable salary; when a drought happens, it leads 

to severe crop failure and a great impact on the livelihood of households, because 

they have no other source of income to compensate for the loss. As a result, there 

is no money to cover living expenses and this leads to food and water shortages, 

disease, and poverty year after year. 

The VI-IPCC index also indicates that the vulnerability of the district is at 

a medium level (− 0.096) based on the vulnerability scale of − 1 to + 1. The VI-

IPCC result is presented in a spider chart (Fig. 2.4a) and in different format using 

three contributing factors (calculated in Eq. 4), aggregated from the seven major 

components in Fig. 2.4a, and displayed in a pyramid chart (Fig. 2.4b). In general, 

the adaptive capacity of households just surpasses the average (approximately 

0.6), but is not strong enough to respond to the impacts of drought. Sensitivity 

shows that the living standard of the community is still low and needs more 

support from the government. The VI-IPCC indicates that both adaptive capacity 

(AC) and sensitivity (S) should be taken into consideration during drought 

mitigation efforts in which sensitivity (water, food, and health) should be 

prioritized. The result suggested that household adaptive capacity also needs to 

be addressed directly, because community capacity is the key to solving 

economic, social, and environmental problems. Oo et al. (2018), in addressing 

similar issues in Myanmar, stated that lack of households adaptive capacity is a 

main cause of high vulnerability to the impacts of climate change and disasters. 

Studies in West Africa and in the Himalayas indicated that knowledge (Obayelu 

et al. 2014) and income (Aryal et al. 2014) are key factors in determining 

household adaptive capacity and reducing household vulnerability. When 

https://link.springer.com/article/10.1007/s13753-019-00230-4#Tab2
https://link.springer.com/article/10.1007/s13753-019-00230-4#Fig4
https://link.springer.com/article/10.1007/s13753-019-00230-4#Equ4
https://link.springer.com/article/10.1007/s13753-019-00230-4#Fig4
https://link.springer.com/article/10.1007/s13753-019-00230-4#Fig4
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knowledge and economy combine to make a community strong, that society will 

be able to improve its quality of life on their own initiative. Once drought takes 

place and lasts, strengthened social institution will have enough vitality to 

survive, mitigate, and recover from drought damages. 

2.4.3. Livelihood’s vulnerability of five communes 

Vulnerability of the five communities in the Krong No District in 

decreasing order is: Quang Phu, Nam N’dir, Dak Nang, Duc Xuyen, and Dak 

D’ro (Table 2.3). Quang Phu (LVI = 0.510) needs special attention, followed by 

Nam N’dir (LVI = 0.486). Table 2.3 indicates in detail the vulnerability aspects 

of each community. Through this table, it is easy to see what specific issues need 

to be addressed for each community. This study presents two aspects that need 

special attention for all five communes—water availability and diversified 

livelihood strategies for the residents. Although on issues of water sources, all 

five communes have serious concerns, the Dak Nang, Quang Phu and Nam N’dir 

communities are the three most vulnerable areas in the water component with 

very high LVI values of 0.884, 0.855, and 0.839, respectively (Table 2.3). The 

water issue seems to be extremely critical, especially when the prolonged dry 

season leads to droughts that severely affect the lives of the local people. In terms 

of livelihood strategies, the table also shows that all five communities need 

attention because their vulnerability is relatively high, and Quang Phu and Dak 

Nang are considered as the two most vulnerable communities. Finally, the social 

network component (SN) shows that Quang Phu and Nam Nam N’dir are two 

communities needing more attention because adequate communication facilities 

and support policies are not widely present in either community. Quang Phu and 

Nam N’dir also need more food and health support than do others. Therefore, it 

is necessary to have appropriate policies for these two communities so that once 

support policies are proposed and implemented, those initiatives will be effective. 

For Quang Phu, the order of priority is for support policies that sustain people’s 

livelihoods and reduce the impact of the natural element—drought. The priority 

sequence is as follows: water > livelihood strategies > food > health > social 

networks > sociodemographic profile. For Nam N’dir, priority is proposed as 

follows: water > livelihood strategies > food > social 

networks > health > sociodemographic profile. 

https://link.springer.com/article/10.1007/s13753-019-00230-4#Tab3
https://link.springer.com/article/10.1007/s13753-019-00230-4#Tab3
https://link.springer.com/article/10.1007/s13753-019-00230-4#Tab3
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Figure 2.5 indicates that livelihood vulnerability in the five communities 

mainly comes from two contributing factors—adaptive capacity (AC) and 

sensitivity (S). In terms of adaptive capacity, VI-IPCC considers household 

sociodemographic profile, livelihood strategies, and social networks; and in terms 

of sensitivity, it considers water, food, and health component. Figure 2.5 also 

clearly shows differences in these two factors, and between two communities 

(Quang Phu and Nam N’dir) and the other communities. The communities are 

ranked in order of capacity from low to high: Quang Phu > Nam N’dir > Duc 

Xuyen > Dak Nang > Dak D’ro. In general, Dak D’ro has the best adaptive 

capacity in comparison with the other communities, partly because of its location 

nearing the district center, whereas Quang Phu is the farthest distance from local 

site to district administrative support center. Finally, the impacts of drought are 

indirectly shown by the components of the sensitivity factor. The order of 

sensitivity from high to low are: Quang Phu > Nam N’dir > Dak Nang > Dak 

D’ro > Duc Xuyen. Again, Quang Phu and Nam N’dir are the two communities 

with a higher vulnerability factor than the other communities. In summary, all 

results show that Quang Phu and Nam N’Dir are the two vulnerability hotspots 

of Krong No District. 

 

 

(a) LVI major components 
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(b) VI-IPCC major components 

 

Figure 2.5. Contributing factors of livelihood vulnerability index (LVI) major 
components (a) and Vulnerability Index-Intergovernmental Panel on Climate Change 
(VI-IPCC) major components (b) for the five communities in the Krong No District in 
Dak Nong Province, Vietnam. Note: SDP = Sociodemographic profile; LS = Livelihood 
strategy; F = Food; W = Water; H = Health; SN = Social networks; D = Drought; 
AC = Adaptive capacity; E = Exposure; S = Sensitivity 

2.5.  Discussion 

The results of this study indicate that water availability and effective 

livelihood strategies are the most important factors in determining livelihood 

vulnerability for the five surveyed communities in Krong No District. According 

to the survey results, most households in the study area mainly depend on natural 

sources of water because of the absence of a community water supply system and 

almost universally their livelihoods lack diversity because they rely only on 

agriculture for income. This dependence produces high vulnerability to the 

impacts of climate change and climate variability, especially water shortage in 

the dry season (M.B. Hahn et al., 2009). In addition, the water problem is 

attributed to a high reliance of farming on water (Pandey et al., 2015; J. Panthi et 

al., 2016). Water problems for the study area may increase, because the 

streamflow is predicted to significantly decrease in the future, especially in the 

dry season (Sam et al., 2018). Under the impacts of drought, the study area must 

find alternative water resources, such as wells, ponds, or rainwater harvesting. 

Moreover, new water management practices, such as drip irrigation, irrigation 

supplements, and the adoption of stress-tolerant crop varieties, need to be 

introduced to solve current and future water deficit problems. 
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Because the main livelihood system of the five surveyed communities in 

the district is farming, the main income of these communities is more likely to be 

affected adversely by droughts. The low values of the livelihood diversification 

indices (LS1 and LS3) of these communities are a reason for the high 

vulnerability of existing livelihood strategies. This finding is consistent with the 

insights of Aryal et al. (2014) and Oo et al. (2018). Antwi-Agyei et al. (2013), 

who pointed out that a household is judged less vulnerable if there are more than 

two income sources in a family to improve livelihood diversification. In the face 

of drought impacts, livelihood stability for households in the five communities is 

emphasized, and livelihood diversification in terms of a mixture of farming and 

nonfarming activities is recommended to reduce vulnerability from drought 

impacts on households. 

In general, the LVI and VI-IPCC indices are effective in determining 

household vulnerability for the five study areas. By using these indices, the 

vulnerability level between different sites within a study area can be compared. 

However, the same two indices may not be readily compared with other 

investigations in more distant regions because of different subcomponents 

(indicators) and contexts. Indeed, Hahn et al. (2009) suggested that selection of 

subcomponents significantly affects the assessment result of household 

livelihood vulnerability to climate change and natural hazards. Panthi et al. 

(2016)  also contend that local environment affects the frame and design of the 

subcomponents. Selection of appropriate subcomponents is a challenge in the use 

of vulnerability indices. As this study demonstrates, extensive literature review, 

expert consultation, and stakeholder consultation are recommended for designing 

subcomponents of the vulnerability indices (LVI and VI-IPCC). 

2.6.  Conclusion 

In this study, livelihood vulnerability of farmers in Krong No District, 

Dak Nong Province on the Central Highlands of Vietnam was investigated by 

using two vulnerability indices: LVI and VI-IPCC. The main findings can be 

summarized as follows: (1) results of LVI and VI-IPCC indicated that the Krong 

No District is at a medium level of livelihood vulnerability under the impacts of 

drought (0.444 and − 0.096); (2) considering the vulnerability of five surveyed 

communities, the overall LVI and VI-IPCC values from the major components 

pointed out that households of the Quang Phu community are the most vulnerable 
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to drought, with indices of 0.510 and − 0.057, followed by Nam N’dir, Dak Nang, 

Duc Xuyen, and Dak D’ro communities; and (3) this study also indicated that 

water (sensitivity) and livelihood strategies (adaptive capacity) are two major 

causes of high vulnerability to the impacts of drought for the district and all 

surveyed communities. Therefore, this study recommends increasing investment 

in water management practices and livelihood diversification. In future research, 

vulnerability under some policy interventions will be investigated to see the 

effectiveness of planned activities in reducing livelihood vulnerability of 

communities of the area. 
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Supplemental data 

Table S. 1. The influence of rainfall station per commune according to the Thiessen 
Polygon Method 

Station Quang 

Phu 

Dak D’ro Dak Nang Nam N’dir Duc Xuyen 

Lak 1 0.62 0.06 0 0 

Duc Xuyen 0 0.38 0.90 0.95 1 

Dak Nong 0 0 0.04 0.05 0 

Total 

Thiessen 

1 1 1 1 1 
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Chapter 3. Comparing local people’s perceptions of climate 

change and drought using scientific observations in the 

Central Highlands of Vietnam 

Abstract 

The main purpose of this study was to analyse local people’s perceptions 

of climate change and of climate change-related drought in rural areas of Daklak 

province in the Central Highlands of Vietnam, located in the Lower Mekong 

Basin. In addition, this study investigated the differences between the perceptions 

of local people and the meteorological recorded data in the area. A sample of 354 

households was selected using a simple random sampling method. Data were 

collected from face-to-face interviews with respondents, based on a structured 

questionnaire. The study found that there is a significant difference in climate 

change perceptions and observations of climate change-related extreme events, 

depending on different socio-economic and demographic household 

characteristics: in particular, education, preferred media sources and income 

sources have significant effects on local people’s perceptions regarding drought. 

The limits of human perception of slow processes such as climate change or 

processed noised by strong interannual variability are also shown. If important 

agreements are observed between farmers’ perception and meteorological data 

for clear trends like global warming, the perceptions are most often in 

disagreement with meteorological observations when it comes to describing 

trends in precipitation (volume and duration) due to a much less marked trend 

and a very high interannual variability. Regarding drought occurrence, the 

majority (95%) of respondents’ perceptions align correctly with scientific 

observation based on the SPI index. These results provide useful information to 

local governments and policymakers in building strategies to mitigate the risk of 

adverse impacts of climate change and drought.  

Keywords: Climate change; drought; perception; trend analysis; Vietnam 

3.1.  Introduction 

Today, people all over the world face the reality of climate variability, 

which in many parts of the world has been shown to cause increased 

unpredictability of extreme weather events (Eckstein et al., 2019). Additionally, 



32 
 

the Intergovernmental Panel on Climate Change (IPCC, 2018) has reported 

several regional climate change findings, including extreme temperature rises in 

many places, increasing in frequency and intensity, as well as heavier amounts of 

precipitation in some cases and more intense or frequent droughts in others. 

Between 1999 and 2018, approximately 495,000 people died globally and USD 

3.54 trillion of losses were suffered (in purchasing power parity) as a direct result 

of more than 12,000 extreme weather events (Eckstein et al., 2019). Drought is 

an extreme weather event. It is defined as the naturally occurring phenomenon 

that exists when precipitation is reduced or deficient over an extended period of 

time. This shortage will be reflected in decreasing surface and subsurface water 

levels, causing significant hydrological imbalances that adversely impact land 

resource production systems, ecosystems and societies (Rezaei et al., 2016). 

In recent years, the Lower Mekong Basin, including Thailand, Cambodia, 

Laos and Vietnam, experienced extreme drought in 1992, 1999, 2003 and 2015–

2016. This has led to massive economic losses from damage to crops and adverse 

effects on the environment and people’s livelihoods (MRC, 2019). The recent 

extreme drought in 2016 cost Thailand USD 1.7 billion in damage, and in 

Cambodia caused water shortages in 18 out of 25 provinces, affecting 2.5 million 

people. In Vietnam, the total costs of the 2016 drought were assessed at USD 669 

million, and costs to recover damages amounted to approximately USD 1.5 

billion (MRC, 2019).  

Vietnam has been identified as one of the countries most vulnerable to 

climate change and natural disasters (drought and flood) (IMHEN and UNDP, 

2015; IPCC, 2013b; Thao et al., 2019). From 1999–2018, Vietnam suffered from 

approximately 226 natural disasters, leading to a loss of 0.47% of annual Gross 

Domestic Product (Eckstein et al., 2019). During the dry season of 2015–2016, 

with the effects of the El Niño phenomenon, Vietnam and especially the Central 

Highlands faced the most severe droughts in 90 years, causing tremendous 

damage to agricultural production and farmers’ incomes (UNDP, 2016b). The 

Central Highlands region is part of the Lower Mekong Basin and plays a critical 

role in Vietnam’s economy. The region is the biggest producer of coffee beans in 

Vietnam, ranking second in export (Thao et al., 2019). Nevertheless, a recent 

study found that in the near future droughts in the Central Highlands of Vietnam 

will become increasingly extreme and prolonged (Sam et al., 2019). Thus, 

https://www.merriam-webster.com/dictionary/significant
https://www.merriam-webster.com/dictionary/critical
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agriculture and people’s livelihoods in this region will continue to be challenged 

by the adverse effects of drought. While the occurrence of droughts cannot be 

stopped, they can be predicted by implementing available technological 

innovations (FAO, 2017). Similarly, the impact of droughts can be reduced and 

mitigated by appropriate adaptation strategies. Adaptation strategies can be 

carried out by farmers themselves or by government policies targeted at 

supporting appropriate and effective adaptation measures. However, these 

strategies seem to be ineffective without an understanding of local people’s 

perceptions of climate change and drought (Monirul Alam et al., 2017). Famers 

perceptions of climate change and their responses to change are the two main 

elements of the climate change adaptation process (Monirul Alam et al., 2017). 

Moreover, according to Hartter et al. (2012), in order to develop suitable 

adaptation strategies it is important to take action on natural changes and to 

understand how climate change and its related hazards—in this case drought—

are perceived, experienced and interpreted by local people. Farmers’ interest in 

climate primarily concerns the need to predict the weather to adjust their cropping 

decisions (Callo-Concha, 2018; Roncoli, 2006). Therefore, a comparison 

between local people’s perceptions of drought and scientific observations is 

important for identifying the main issues related to the role of local people’s 

perception and knowledge in drought risk management, and in making 

suggestions for developing adaptation strategies that can mitigate the negative 

impacts of climate change—such as drought—on people's livelihoods. Recent 

studies tend to be primarily concerned with the potential of local and traditional 

knowledge to provide useful insights on local climatic systems, as well as with 

peoples’ vulnerability, resilience and response capabilities (Adger and Pulhin, 

2014). However, the combined local and scientific knowledge is still limited due 

to an incomplete understanding of local knowledge systems, and the lack of 

approaches and tools to integrate both together (Adger and Pulhin, 2014; Kahsay 

et al., 2019; Kettle et al., 2014).  

This study’s objectives were, first, to analyse the perceptions of local 

people regarding climate change and droughts in Dak Lak province in the Central 

Highlands of Vietnam. Three districts, namely Buon Don (Eanuol, Cuor Knia and 

Tan Hoa communes), Cu M’gar (Ea Kiet, Ea Tar and Ea M’droh communes) and 

Easup (Eale and Cu Kbang communes), were selected for this study because they 

https://dictionary.cambridge.org/dictionary/english/suitable
https://dictionary.cambridge.org/dictionary/english/primarily
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were the areas most affected by the historical drought in 2015–2016 (FAO, 

2016b). Next, the findings of the study of local people’s perceptions related to 

climate change and droughts were compared with meteorological data. We expect 

studies such as this one to help local governments develop drought-adaptation 

strategies to enhance the adaptive capacities of local people living in the study 

area.   

3.2.  Study area 

The study was carried out in Dak Lak province, located in the Central 

Highland of Vietnam in the Lower Mekong River Basin (Figure 3.1). The total 

area is 13,125 km2 and in 2019 the population of Dak Lak province counted 2.127 

million people, with 44 ethnic groups (Dak Lak Statistical Office, 2020). The 

Kinh ethnic group accounts for the greatest portion of Daklak’s population (70%). 

The remaining population (30%) includes ethnic minorities such as the Ede, 

M’nong, Thai, Tay and Nung ethnic groups. In Dak Lak province, agriculture is 

the main source of local livelihood. The area’s geographic coordinates are from 

107°28'57" to 108°59'37" east longitude and from 12°9'45" to 13°25'06" north 

latitude, with a range elevation of 400–800 m. Generally, the area’s climate varies 

depending on the altitude: below 300 m it is hot all year round, it is hot and humid 

from 400–800 m, and colder above 800 m. Seasonal rainfall may hinder the 

development of agricultural production. There are two distinct seasons in Dak 

Lak province: a rainy season from May to October with approximately 80–85% 

of annual rainfall and a dry season from November to April which is normally 

dry and sunny (15–20% of annual rainfall). Dak Lak province is an agricultural 

area with perennial crops such as coffee, pepper, cashew and fruits. The region 

also produces annual crops including rice, maize, sweet potato, vegetables, 

sugarcane, groundnut and soybean (CCAFS-SEA, 2016). 
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Figure 3.1.  Location of Dak Lak province and the three surveyed districts 

3.3.  Methodology 

3.3.1. Data collection 

Data collection and field surveys were conducted during the 2019 dry-

season months of March and April. Information was collected at the commune 

level on climatic phenomena and their impact on farming practices. The 

questionnaire contained information related to socio-economic and demographic 

characteristics, and to farming practices at commune and district levels in Dak 

Lak province (the survey was implemented in eight communes spread over three 

districts, see Table A.2). It also included questions related to climate change, local 

droughts and adaptation solutions adopted to mitigate the negative impacts of 

drought in each commune (Table A.2). Before data collection began, the 

structured questionnaire was tested with ten respondents. Expert advice was also 

sought to confirm the adequacy of the survey questions and to avoid any unclear 

or misleading questions. A total of 354 households were surveyed from eight 

communes in three districts of Dak Lak province, namely: Ea Nuol, Tan Hoa and 

Cuor Knia (Buon Don district); Ea Tar, Ea Mdroh and Ea Kiet (Cu M’gar 

district); and Eale and Cu Kbang (Ea Sup district). These were the most 

vulnerable areas affected by the historical drought of 2015–2016 (FAO, 2016b). 

Selection of households was done by taking the number of people in each 

commune respecting the required sample size. The sample size was calculated at 

a 95% confidence level with a 5.21% margin of error, at an assumed coverage of 

50% based on the probability proportional to size method. The households were 
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selected by simple random sampling. Each respondent was interviewed in the 

Vietnamese language for approximately 30 minutes. The targeted number of 

households in each commune, shown in Table A.1, depended on the population 

size of each commune. In case of non-respondents, the interviewers continued 

with the next household until the targeted number of households in each 

commune was reached. Table A.2 shows the survey information analysed in this 

research. 

3.3.2. Data analysis 

3.3.2.1. Household data analysis 

Surveyed data were recorded in Microsoft Excel 2010 for descriptive 

statistical analysis; missing data were rejected based on a simple deletion 

approach (Acock, 2005). In addition, Barnard’s exact test (Erguler, 2016) was 

applied using RStudio (version 3.6.2) to better understand household profiles and 

local perceptions regarding drought-related climate change. For instance, higher 

educated and literate people are supposed to be able to access various information 

sources, and hence have a better understanding of issues related to climate change 

and drought (Habiba et al., 2012; Manandhar et al., 2015). If Barnard’s exact test 

shows a statistically significant difference at the 95% confidence level (p-value 

≤ 0.05), the null hypothesis is rejected. Then, the findings of local people’s 

perceptions were compared to the results of meteorological data analysis to assess 

the differences between local people’s experiences and the measured climate 

change data related to drought and extreme events. 

3.3.2.2. Meteorological data analysis. 

In this study, meteorological data for the 1981–2018 period were used, 

with daily precipitation data recorded from three rain gauges (Buon Me Thuot, 

Ban Don and Buon Ho) and temperature data recorded from one weather station 

(Buon Ma Thuot station) (Figure 3.1). These data were collected from the Hydro-

Meteorological Data Centre of Vietnam. Meteorological data were analysed to 

assess monthly precipitation and temperature distribution, extreme precipitation 

events, and precipitation and temperature trends. The non-parametric Mann-

Kendall trend test was used to calculate trends with RStudio’s (version 3.6.2) 

‘Kendall’ package (McLeod, 2011). In addition, descriptive statistics such as 

minimum, maximum, median and mean values, standard deviation (STD), 
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coefficient of variation (CV), skewness and kurtosis were analysed to better 

understand the data characteristics. Furthermore, precipitation extremes (Table 1) 

were estimated using Rclimdex 1.1 (version 1.0) (Wang and Feng, 2004).  

Table 3.1. List of eight precipitation extremes used in this study 
Types Indices Name Definitions Unit 

Intensity 

indices 

RX1day Max 1-day 

precipitation amount 

Monthly maximum 1-day 

precipitation 

mm 

RX5day Max 5-day 

precipitation amount 

Monthly maximum 5-day 

precipitation 

mm 

R95p Very wet days Annual total PRCP when 

precipitation >95th percentile 

mm 

 

SDII Simple daily intensity 

index 

Annual total precipitation divided 

by the number of wet days 

mm/day 

Frequency 

indices 

R20mm Number of heavy 

precipitation days 

Annual count of days with daily 

precipitation ≥20mm 

days 

R25mm Number of very heavy 

precipitation days 

Annual count of days when 

precipitation ≥25mm 

days 

Duration 

indices 

CDD Consecutive dry days Maximum number of consecutive 

days with precipitation <1mm 

days 

CWD Consecutive wet days Maximum number of consecutive 

days with precipitation ≥1mm 

days 

 

To identify the onset and cessation of the rainy season, the study used the 

method of Liebmann et al. (2012) to calculate ‘anomalous accumulation’ of 

precipitation on the day (d) (C(d)), as follows 

𝐶(𝑑) = ∑ [𝑅(𝑛) − �̅�]𝑑𝑎𝑦
𝑛=1  (1) 

where, R(n) is the daily precipitation and �̅� is the climatological annual 

daily average. C(d) is estimated for each day of each year. Start and end dates of 

the rainy season are defined by finding, respectively, the minimum and maximum 

curvature points in the cumulative daily precipitation anomaly. 

In this study, the Standardised Precipitation Indices with three-month, six-

month and 12-month timescales (SPI3, SPI6 and SPI12, respectively) (T. B. 

McKee et al., 1993) were calculated to assess short-, medium-, and long-term 

drought episodes. SPI is calculated based solely on precipitation. SPI3 presents 

the drought effect on agricultural practices, SPI6 shows droughts’ impact on 

reservoir levels and river discharges, and SPI12 generally shows the effect on 
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groundwater. Three-month, six-month and 12-month accumulation periods were 

used, allowing an integration over the whole-year cycle (Meresa et al., 2016). 

3.4.  Results and discussion 

3.4.1. The meteorological data analysis 

3.4.1.1.  Analysis of annual, seasonal, and monthly precipitation. 

The research used the mean rainy season onset and cessation over 38 years 

(1981–2018) to analyse the trend. From Table 3.2, the results found that mean 

rainy season onset is at 118 Julian days (27 April) and the cessation at 298 Julian 

days (23 October) for the whole study area. Based on the Mann-Kendall trend 

test analyser, trends were calculated for our 38-year rainfall dataset for the three 

rain gauge stations in the study area. The estimated Mann-Kendall Z values and 

magnitude of Sen’s slope for each station and for the whole study area for 

monthly, annual and seasonal timescales are shown in Table 3.3. Seasonal 

timescales are computed over a period of 38 years for each station and the entire 

study area.  

Table 3.2. Descriptive statistics of onset, cessation and duration of rainy seasons over 37 
years for the three stations and the whole study area. 

  Parameter Min Max Mean STD CV 

Buon Ma 

Thuot 

Onset (Julian day) 79 166 123 14.64 0.12 

Cessation (Julian day) 263 348 292 19.22 0.07 

Duration (day) 115 214 171 22.73 0.13 

Ban Don 

Onset (Julian day) 80 145 119 15.06 0.13 

Cessation (Julian day) 265 332 294 15.78 0.05 

Duration (day) 127 228 176 23.74 0.13 

Buon Ho 

Onset (Julian day) 76 179 128 21.06 0.16 

Cessation (Julian day) 261 348 301 21.99 0.07 

Duration (day) 101 226 175 27.92 0.16 

Study area* 

Onset (Julian day) 91 145 118 12.92 0.11 

Cessation (Julian day) 265 348 298 16.95 0.06 

Duration (day) 127 244 180 22.80 0.13 

* Study area meteorological variables were obtained by Thiessen Polygons spatial 
interpolation 
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The months of August and October for the Buon Ma Thuot station show 

decreasing trends with the 99% significance level. Statistically decreasing trends 

were found in September at the 90% significance level for the Buon Ma Thuot 

and Buon Ho stations. We found no significant trends for most of the monthly, 

annual and seasonal precipitations for the Ban Don station (Table 3.3).  

Table 3.3. Mann-Kendall trend test and Sen’s slope for monthly, seasonal and annual 
precipitation for each station and for the entire study area (using Thiessen polygons to 
calculate the average amount of precipitation over the whole study area using the three 
stations) 

Time series 

Ban Don 

Buon Ma 

Thuot Buon Ho Study Area 

Z 
Sen's 

slope 
Z 

Sen's 

slope 
Z 

Sen's 

slope 
Z 

Sen's 

slope 

January 0.06 0 1.41 0 2.76 0.09** 1.84 0.04+ 

February -0.58 0 -0.92 0 -0.55 -0.01 -1.09 -0.02 

March -0.76 -0.04 1.04 0.175 -0.54 -0.04 -0.08 -0.01 

April 0.55 0.52 -0.30 -0.26 -0.35 -0.25 -0.08 -0.08 

May 1.04 1.58 -0.75 -0.958 0.15 0.31 -0.18 -0.12 

June 0.00 0.02 -0.93 -1.535 -1.26 -1.66 -0.70 -0.67 

July 0.28 0.4 0.73 0.7 1.33 1.67 0.83 1.06 

August -1.61 -1.86 -2.11 -3.1* -0.83 -1.20 -1.87 -2.15+ 

September 1.11 1.86 1.89 2.73+ 1.66 2.18+ 1.61 1.78 

October -1.53 -2.03 -2.21 -3.96* -1.48 -2.47 -1.48 -2.76 

November -0.01 -0.01 0.50 0.43 0.88 1.07 0.48 0.48 

December 0.93 0 1.20 0.24 1.56 0.50 1.35 0.34 

ANNUAL -0.60 -1.33 -1.06 -4.07 0.78 3.01 -0.20 -0.47 

Rainy season -0.08 -0.51 -1.66 -7.13+ -0.91 -3.88 -1.43 -4.05 

Dry season -0.72 -1.69 0.98 2.79 2.52 5.63* 1.82 3.22+ 

Onset of rainy season -1.08 -0.29 -0.22 -0.06 0.08 0 -1.62 -0.36 

Cessation of rainy 

season -1.43 -0.34 -1.16 -0.3 -0.92 -0.33 -0.75 -0.18 

Duration of rainy 

season. -0.40 -1.15 -0.63 -0.19 -1.22 -0.6 -0.37 -0.11 

Note: **, *, and + indicate that the trends are significant at 99%, 95% and 90% levels of 
confidence, respectively  

The study revealed that the dry-seasonal rainfall had an upward trend at the 

95% significance level (values of Z and Sen’s slope are 1.82 and 3.22, 

respectively). Meanwhile, the rainy-seasonal rainfall showed a downward trend 
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with negative values of Z and Sen’s slope, but not statistically significant because 

of the high inter-annual variability of the recorded meteorological data (as shown 

in Table A.3). In addition, over the entire study area, seven months (Feb, Mar, 

Apr, May, Jun, Aug, Oct) give a negative Z value, indicating a decreasing trend, 

while the other months (Jan, Jul, Sep, Dec) indicate an increasing trend (Table 

3.3). However, the trends are not statistically significant, except for January and 

August, which both have a 90% level of significance. The estimated Sen’s slope 

(S) was also analysed separately for each month. The months of Febuary, March 

and April gave gently decreasing slope magnitudes, the month of January showed 

a significant increasing trend, and August a significant decreasing trend at 90% 

level of significance (Table 3.3). Figure B.1 presents the annual rainfall variations 

(trends) over the study area and for each station between 1981–2018. From Figure 

B.1 and Table 3.3 it can be seen that there are no significant changes in annual 

precipitation data. 

If we look at the monthly rainfall trends (Table 3.3), the rainy seasons had 

a negative trend except for July and September. Among the dry seasons, 

November, December and January had a positive rainfall trend. 

Figure 3.2 shows time series of onset and cessation dates and rainy season 

durations for the three weather stations and the study area mean. Onset dates are 

between the middle of March and June, and cessation dates are between the 

middle of September and November. The rainy season duration trend for the last 

38 years (1981–2018) shows a slight increase, suggesting a longer rainy season. 

In fact, there are no significant trends for the onset, cessation and duration of the 

rainy season at the three stations (+ mean) because of the high inter-annual 

variation of the precipitation data. 
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Figure 3.2. Time series of onset and cessation dates, and durations of the rainy season 
for different weather stations (BMT, Buon Ho and Ban Don stations) and the whole study 
area (mean). Blue areas indicate rainy seasons, red areas indicate dry seasons; blue line 
indicates rainy season durations, red line indicates rainy season duration trend. 

3.4.1.2.  Analysis of extreme events related to precipitation  

The summary of the descriptive annual precipitation statistics of the study 

area is presented in Table A.3. The results indicated that western Ban Don 

province had a higher CV (0.2) than east and central Dak Lak province (0.16 and 

0.14, respectively); in other words, rainfall in the west of Dak Lak province 

showed more year-to-year variability than east and central Dak Lak province. The 

average annual precipitation of the whole study region is 1619 mm; it ranges 

between the highest values recorded at Buon Ma Thuot station (1854 mm) and 

the lowest ones at Buon Ho station (1563 mm).  

The 37-year precipitation dataset was analysed on a monthly basis in order 

to determine the months with the greatest rainfall values in the study area (Figure 

3.3). The monthly boxplot (Figure 3.3a) shows that the wettest month of the year 

is August, followed by September and October. The months with the lowest 
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rainfall are January, February and December. In addition, it can be seen that the 

major rainfall events start in May, reach their peak in August and September, and 

remain high until October. In the monthly time series (Figure 3.3), the monthly 

rainfall distribution for the complete dataset is illustrated; it indicates a clear 

monthly rainfall peak in July 2010.  

 
Figure 3.3. Monthly boxplot precipitation and distribution of monthly 

precipitation for each year, in the study area of Dak Lak province; (a). monthly boxplot 
precipitation, (b). distribution of monthly precipitation 

Extreme precipitation trends for the whole study area for the period 1981–

2018 were assessed using Thiessen polygons of the study area’s three stations. 

We found no significant trend for the eight indices used, due to the high inter-

(a)  

(b) 
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annual variability of the recorded meteorological data. Regarding the intensity 

indices, slope of mean values RX5day decreased lightly, and RX1day, SDII and 

R95p increased gently during the study period, but the trends are not significant 

at 5% significance level (Figure B.2). The annual mean values of RX5 ranged 

from 86.3 mm/5 days to 297.1 mm/5 days. For the annual mean values of RX1day, 

the highest value was 186.4 mm in 2010 and the smallest 51.7 mm in 1999. The 

values of R95p varied between 54.5 mm and 1264.5 mm from 1981–2018, with 

the lowest level in 1994 and the highest in 2010. Regarding duration indices, the 

mean values of consecutive dry days (CDD) had a gently increasing trend, while 

the slope of the trend of consecutive wet days (CWD) decreased gently.  

Table 3.4. Slope of trends in climatic extreme indices of precipitation for the three 

stations and the whole study area (average values of the three stations) 

Station 
RX1day 

(mm) 

RX5day 

(mm) 

SDII 

(mm/day) 

R20mm 

(days) 

R25mm 

(days) 

CDD 

(days) 

CWD 

(days) 

R95p 

(mm) 

Ban Don 0.049 -0.457 0.003 0 0.028 -0.143 -0.046 0.899 

BMT -0.026 0.149 -0.006 -0.047 -0.019 -0.035 -0.082 0.181 

Buon Ho -0.073 0.968 0.006 0.013 0.027 -0.355 -0.024 0.312 

Study area 0.091 -0.364 0.009 0.045 0.057 0.015 -0.087 0.266 

Note: **, *, and + indicate that the trends are significant at 99%, 95% and 90% levels of 

confidence, respectively  

Regarding duration indices, the results of Table 3.4 illustrate that the trends 

of CDD and CWD tend to decrease for most stations. However, increasing trends 

of CDD were found for the whole study area. The mean values of CDD varied 

from 35 to 135 days, with the highest value at Ban Don station and the lowest at 

Buon Ho station. A longer CDD was observed in the western station (Ban Don) 

while shorter durations were detected in north-eastern and central parts. 

Moreover, the number of CWD indicated a decreasing trend for most of the 

stations. CWD values were between 8 and 28 days. 

For the frequency indices (R20mm, R25mm), there were no significant 

differences in the spatial distributions. The values of R20mm and R25mm ranged 
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from 12–37 days and 9–33 days, respectively. Additionally, both R20mm and 

R25mm showed no longer precipitation durations for the southern station (BMT 

station) than for northern ones (Ban Don and Buon Ho stations).  

The values of SDII over the study area fluctuated between 8.8–17.7 

mm/day. Higher values of precipitation intensity of 27.8 and 25 mm/day were 

found in western areas. The values of R95p of Buon Ma Thuot, Ban Don and 

Buon Ho have gently increasing trends. 

3.4.1.3.  Drought analysis 

Figure 3.4a presents the three-month SPI, six-month SPI and 12-month SPI 

patterns for the study area using the weighted (derived from the Thiessen 

polygons method) average precipitation 1981–2018 dataset. This figure 

illustrates how different categories of droughts have occurred over the years. The 

maximum number of drought events are found to occur in Buon Ma Thuot station 

(144 events) for the three-month SPI across the 1981–2018 period (with threshold 

values SPI <-0.5). For whole study area, there were 131 drought events on SPI3, 

128 events on SPI6 and 100 events on SPI12. Among the 131 total drought events 

(SPI3), 53.4% are slight drought, 25.2% moderate drought, 12.2% severe drought 

and 9.2% extreme drought; with 21.5% of severe droughts occurring in Buon Ma 

Thuot station. Values of SPI3, SPI6 and SPI12 showed extreme droughts in 1983, 

1995, 2004, 2005, 2015 and 2016. Meanwhile, SPI3, which is often used to 

monitor agricultural drought, seems to show drier conditions over the last 15 

years, especially in 2015, with extreme and severe drought conditions in the first 

and last three months of that year. The analysis of short, medium and long-term 

SPI values demonstrated that drought was a frequent event in the study area of 

Dak Lak province. Moreover, SPI values indicated that dry conditions last longer 

and are more frequent.  

The results of the Mann-Kendal analysis applied to the variance of SPI 

values and variance trends, using a moving average of 12 months, are presented 

in Figure 3.4b. The p-values of all SPIs show that the climate trends (flood, 

drought or both) were significantly changing. The slopes of all trends were 

significantly positive, clearly showing more variability in climate phenomena 

(flood, drought). 
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SPI values 
Extremely wet              >2.0  
Severe wet                   1.5 1.99 
Moderate wet           1  1.49 
Slight wet           0.5  0.99 
Normal      -0.49   0.49 
Slight drought             -0.99  -0.5 
Moderate drought       -1.49  -1 
Severe drought     -1.99 -1.5 
Extreme drought         -2 and less 
  

(a). 
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(b). 

Figure 3.4.  (a). Evolution of Standardised Precipitation Index (SPI3, SPI6, SPI12) from 
1981–2018 for the study area. Blue and red colours denote positive and negative values, 
respectively. (b). Variances of SPI3 – SPI6 – SPI12 using a moving average of 12 months 
with the red line showing trend of variances of each SPI (SPI3, SPI6, SPI12). 

3.4.1.4.  Analysis of annual, seasonal, and monthly temperature. 

The descriptive statistics for minimum and maximum temperature were 

calculated using daily temperature data from the Buon Ma Thuot station for the 

period 1981–2018. Table A.4 and Figure B.3 show that the highest monthly 

minimum and maximum temperatures of 25.7°C and 38.7°C are measured in 

April, and the lowest monthly minimum and maximum temperatures of 10.3°C 

p-value <1.23 e-05

z-value = 4.37

Sen's slope =0.0005

0

0.5

1

1.5

2

Oct-80 Dec-88 Mar-97 May-05 Aug-13

V
ar

ia
n

ce
 o

f 
S

P
I3

p-value <2.2e-09

z-value = 5.98

Sen's slope = 0.0009

0

0.5

1

1.5

2

2.5

3

Oct-80 Dec-88 Mar-97 May-05 Aug-13

V
ar

ia
n

ce
 o

f 
S

P
I6

p-value = 5.29e-05

z-value = 4.04

Sen's slope = 0.0006

0

0.5

1

1.5

2

2.5

3

3.5

Oct-80 Dec-88 Mar-97 May-05 Aug-13

V
ar

ia
n

ce
 o

f 
S

P
I1

2



47 
 

and 16.7°C are recorded in December. The table also shows a slight negative 

skewness in minimum (-1.02) and maximum temperatures (-0.22). Both 

minimum and maximum temperature also had slight positive kurtosis (1.4 and 

0.11, respectively) as shown in Table A.4. 

As Table 3.5 shows, minimum temperature trends in rainy seasons are 

positive, with a Sen’s slope of 0.052 and a Z-value of 5.98 at 99% confidence 

level. The rainy season trend for Tmax was significantly increasing at 99% 

confidence level with Sen’s slope 0.035 and Z-value 4.4. 

Table 3.5. Mann-Kendall trend and Sen’s slope for annual and seasonal minimum and 
maximum temperatures in Dak Lak province 

Time series 
Tmin Tmax 

Z Sen's slope Z Sen's slope  

January 0.55 0.009 1.94 0.043+ 

February -2.56 -0.044** 1.61 0.034 

March -2.43 -0.031* 1.9 0.042+ 

April -0.77 -0.011 1.3 0.022 

May 1.67 0.013+ 0.67 0.013 

June 5.63 0.035*** 0.34 0.006 

July 5.59 0.037*** -1.52 -0.01 

August 5.29 0.038*** 0.75 0.011 

September 5.62 0.034*** 0.29 0.003 

October 3.94 0.033*** 1.24 0.014 

November 4.01 0.046*** 1.52 0.028 

December 2.97 0.035** 1.22 0.024 

ANNUAL 3.17 0.017** 2.26 0.018* 

Dry -1.37 -0.013 -0.3 -0.004 

Rainy 5.98 0.052*** 4.40 0.035*** 

Note: ***, **,*, and + indicate that the trends are significant at 99,9%, 99%, 95% and 
90% level of confidence, respectively 

For monthly temperature trends, minimum temperatures from May to 

December showed a (significantly) positive trend with Z values varying between 

1.67 and 5.63, and a negative trend was seen in February and March. On the other 

hand, maximum monthly temperatures were only found to increase in a 

significant way in January and March. 
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The results demonstrated that both annual maximum and minimum 

temperature trends were positive. There were also significant trends at 95% and 

90% levels of significance, respectively. The increasing slopes of 0.018°C/year 

for maximum temperature and 0.017°C/year for minimum temperature are 

shown in Table 3.5. A significant rising trend of annual minimum and 

maximum temperatures illustrates that there is an alarming global warming 

signal expressed over the entire study area.  

3.4.2. Perceptions of local people concerning concepts relating to climate 

change and drought  

Agricultural practices depend on weather conditions, therefore farmers 

must pay attention to local weather and climate variations. Of all respondents, 

approximately 56% had heard of climate change from various sources such as 

mass media, communication with friends or at school (Figure B.4). Climate 

change information also came from radio/television and internet/mobile phone, 

respectively for 46.6% and 13.8% of respondents, as presented in Figure B.4. 

These access sources are limited and thus the climate change awareness of local 

people seems limited. Approximately 46% of the surveyed households 

perceived climate change concepts and 46.6% understood that climate change 

has already increased some extreme events in number and intensity. This 

demonstrates that access to information on climate change is an important issue 

that influences the likelihood of local people taking measures to mitigate the 

risk of adverse effects of climate change. 

Table A.5 presents the characteristics of the surveyed households. 

Respondents interviewed in this survey were 51.1% male, 48.9% female and 

had different degrees of farming experience. Length of farming experience 

varied and ranged: 0 years (0.6%), 1- 10 years (19.5%), between 10 and 19 years 

(41.9%), between 20 and 29 years (26%) and >=30 years (18%). Demographic 

characteristics were further used in Barnard’s exact test to test the relationship 

between local people’s demographic characteristics and their perceptions 

relating to climate change and drought (Table 3.6). The analysis found that 

gender, education, ethnic group and the ability to access information are factors 

that significantly influence local people’s perceptions of climate change and 

drought; with statistically significant values for gender at a 95% confidence 
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level and for education, ethnic group and ability to access information at a 

99.9% confidence level (Table 3.6). 

3.4.3. Perceptions of local people regarding climate change as related to 

extreme events. 

Irrespective of interviewees’ demographic profile, over 91% of 

interviewees had noticed changes in climate (precipitation and temperature) and 

extreme events over time (Figures 3.5 and Figure B.5). Regarding annual mean 

precipitation and temperature, the results showed that over 95% of the surveyed 

respondents had noticed a decrease in rainfall and over 95% had noticed 

temperatures increasing over the last 5–10 years (Figures 3.5). A large 

proportion of interviewees (96%) had noticed considerable climatic changes in 

the last 5–10 years. In addition, Barnard’s exact test did not show any significant 

differences in perceptions of climate change and drought between interviewees 

with less than or equal to 30 years farming experience and residence time and 

those with over 30 years farming experience and residence time (see Table A.5). 

Moreover, Barnard’s exact test also illustrated that there were no significant 

differences in climate change perception between respondents with and without 

agricultural income sources. However, there was a significant difference in 

perceptions relating to drought between respondents with agricultural and non-

agricultural income sources (see Table A.5). These results are in agreement with 

those of (Manandhar et al., 2015). The findings indicated that most of the 

surveyed respondents perceived that local precipitation has tended to decrease 

and temperature has tended to increase, while the number of rainy days during 

the dry season and the number of days with heavy rain were less than before 

(Figure 3.5a).  

Regarding extreme event occurrences in the previous ten years, over 

96.04% of interviewees (70.0% in Eale) reported one or more droughts in their 

locality and over 34.75% attested to being affected by tornadoes. Less reported 

were floods (7.06%) and storms and landslides (combined, 1.69%) (Figure B.5).
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Table 3.6. Barnard test performed between respondents’ characteristics and their perceptions of climate change and extreme events, including 

drought 

  Climate change concepts   Climate change related to extreme events   Drought concepts 

 
Number of respondents 

Barnard test  Number of 

respondents 

Barnard test  
Number of respondents 

Barnard test 

  p-value   p-value   p-value 

Gender disagree agree   disagree agree   disagree agree  

     Female 103 70 
0.042 

 103 70 
0.042 

 40 133 
0.606 

     Male 88 93  86 95  37 144 

Education            

    Primary school or Less 78 20 
1.80E-09 

 78 20 
7.38E-10 

 35 63 
2.51E-04 

    Secondary school or higher 113 143  111 145  42 214 

Ethnic group            

    Kinh 96 120 
6.80E-06 

 94 122 
3.00E-06 

 42 174 
0.197 

    Ethnic minorities 95 43  95 43  35 103 

Ages            

     >50 years old 68 51 
0.515 

 68 51 
0.359 

 25 94 
0.836 

     <=50 years old 123 112  121 114  52 183 

Access to information on climate change          

     No 144 11 
3.80E-42 

 144 11 
3.1E-43  

46 109 
0.003 

     Yes 47 152  45 154 31 168 

Income source            

     Agriculture 182 150 
0.228 

 181 151 
0.102 

 68 264 
0.025 

     Non-agriculture 9 13  8 14  9 13 

Time resident in current area            
      >30 years 61 48 

0.641 
 60 49 

0.721 
 29 80 

0.145 
      <=30 years 130 115  129 116  48 197 

Farming experiences            

      >30 years 17 22 
0.184 

 17 22 
0.228 

 10 29 
0.606 

      <=30 years 173 141  171 143  67 247 

p-value<0.05 statistically significant at the 95% confidence level, p-value <0.001 statistically significant at the 99.9% confidence level 



51 
 

Local people simply perceived drought as a long duration with scarce, late 

or no rainfall. Overall, 96.04% of households had experienced droughts. They 

had also noticed dry seasons beginning earlier and ending later, with ranges 

between 65.0–93.3% and 63.3–96.2% of respondents, respectively (Figure 3.5c). 

Furthermore, the majority noticed that in their locality over the last ten years 

drought had become more frequent, intensity more serious and duration lasted 

longer (Figure B.6). Most local people (54.24%) claimed that land-use change 

was a cause of drought (Figure B.7); 39.6%, 27.1% and 28.2% of them assumed 

it was due to lack of rain, high temperature or climate change, respectively. 

 

(a). Local people’s perceptions of changes in precipitation 

 

 

(b). Local people’s perceptions of changes in temperature  
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 (c). Local people’s perceptions of changes in season  

Figure 3.5. Percentage of households in the eight communes of the study area perceiving 
changes related to local (a) precipitation, (b) temperature, (c) season 

3.4.4. Perceptions of local people regarding the impacts of drought in their 

locality in recent years. 

The results indicated that local people have suffered various impacts of 

drought in their locality (Figure B.8). Over 96% of respondents (Eale 70%) had 

noticed drought problems in the last ten years. The majority of interviewees in all 

communes (over 60%) pointed to serious reductions in the water levels of surface 

water resources (rivers, streams, lakes, etc.) and of groundwater wells. Such 

declines in surface water and groundwater resources affected farming practices 

and households’ water use. In addition, over 55% of the respondents interviewed 

recognised that drought had a serious economic impact on them because of its 

effects on agriculture, the main livelihood in the study area. Over 55% (36% in 

Eale) of interviewees said that drought caused crop plants to wilt and 60% (40% 

in Eale) said that drought reduced plant growth.  

Approximately 68% (43% in Eale) of households faced crop yield losses 

and over 56% faced serious income reductions. Furthermore, 30% of 

interviewees also reported damage to their property (e.g. house and farm-related 

machinery) and health problems due to drought. Most of the respondents said that 

their local and livelihood activities faced difficulties due to drought. However, 

over 46–80% of the households in all communes did not adjust their farming 

practices and had no or few solutions to mitigate the effects of drought (see figure 

B.9). Climate change adaptation measures suggested were changing crops, 

adopting advanced irrigation, timely drought forecasts, regulating reservoirs, 
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recycling water, and agricultural insurance. Of the households in Eakiet and Eale 

communes, 40% and 44%, respectively, accorded high and medium priorities to 

adopting the adaptation strategies of crop changes and advanced irrigation. In 

Eale, 20% of households gave a medium priority and 40% gave a high priority to 

regulating the reservoir for storing water. 

3.4.5. Comparison between perception’s local people and meteorological 

data 

Local people’s perceptions of climate change regarding changes in 

precipitation, temperature or other markers of a changing climate (survey choices 

were ‘increase’, ‘decrease’, ‘no change’ and ‘I don’t know’ for changes in annual 

precipitation, precipitation during the dry season, precipitation during the rainy 

season, and seasonal change in precipitation); temperature (survey choices were 

‘increase’, ‘decrease’, ‘no change’ or ‘I don’t know’ for changes in annual 

temperature, temperature during the dry season and temperature during the rainy 

season); and the occurrences of extreme events (drought, flood, etc.) were 

compared with meteorological data from local stations.  

3.4.5.1.  Precipitation and temperature  

Observations of the interviewees in the study area agreed with the recorded 

temperature data. The annual temperature and minimum temperature trends in the 

rainy season in Dak Lak province increased with high Z-values: 3.17 and 5.82, at 

99.9% confidence level of significance (Table 3.5). And local people in the 

communes of all three districts in Dak Lak province felt that in the last ten years 

there had been increases in annual temperatures (90–98% of respondents), dry 

season temperatures (86.7–100% of respondents) and rainy season temperatures 

(56.7–75.5% of respondents), as seen in Figure 5b. Thus, the results indicated 

that the majority of local people correctly perceived temperature changes. 

However, 19.2–43.3% of local people perceived no temperature changes in the 

rainy season.  

Figure 3.5a shows local people’s perceptions relating to precipitation 

trends. Most noticed changing rainfall patterns and more frequent extreme events. 

The majority had notice a decrease in annual (75.9 – 96.1%), rainy season (70.0 

– 94.1%) and dry season (69.0 – 92.5%) rainfall. In contrast, nearly 0.0—10.3% 

of respondents reported an increase in annual precipitation over the last ten years, 
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0.0—10.3% reported an increase in dry-season precipitation over the same period 

and 2.0–16.3% reported an increase in rainy season precipitation over the same 

period. Table 3.3 shows the annual and rainy-season precipitation for the entire 

study area as a decreasing trend with negative Z value and Sen’s slope. But the 

decrease is not significant at all because of the high variation in inter-annual 

precipitation, while dry-season precipitation has significantly increased over the 

38 years from 1981–2018. Local people’s perceptions relating to dry-season 

precipitation were not consistent with the meteorological data: only 0.0–10.3% 

thought that the amount of precipitation in the dry season had increased. 

Figure 3.5a also shows that 32.7–84.6% of local people perceived an 

increase in the annual number of days without rain, 6.7–53.1% noticed a decrease 

in the annual number of days without rain, 43.3–78.8% considered that the annual 

number of days with heavy rain is lower than it was ten years ago and 7.7–31% 

had noticed ‘no change’ in the annual number of days with heavy rain in recent 

years. Table 3.4 indicates that CDD for the entire study area has increased with 

no statistical significance. This means that, in terms of the annual number of days 

without rain, the perception of most local people is not in agreement with the 

meteorological data analysis; only 6.7–21.7% of them agree with the 

meteorological data that there has been no change. In addition, Table 3.4 

illustrates that R20 and R25 trends have increased, but not significantly; and only 

7.7–31% of local people’s observations are therefore in line with the recorded 

data. 

3.4.5.2.  Onset and cessation of rainy season. 

In Dak Lak province, most local people’s livelihoods are in agriculture. 

Thus, they pay particular attention to the features of the rainy season. Over 70–

96.7% of local people interviewed noticed a long-term change in the onset and 

cessation of the dry season (Figure 3.5c). The majority said they thought the onset 

of the dry season had got earlier over the last ten years (65–93.3%), while 0–8.3% 

reported later onset dates and 3–11% thought that onset dates had not changed. 

Looking at the meteorological data, trends in rainy-season cessation dates for the 

period 1981–2018 reveal a slight but not significant decrease, suggesting an 

earlier end to rainy seasons, having shifted over the last 38 years from November 

to October (Table 3.3, Figure 3.2). However, according to the statistical data 
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analysis there is no clear trend showing a change in the onset date for the dry 

season. There is therefore no agreement between the meteorological data and 

local’s people perception about increasingly early onsets dates for the dry season. 

Moreover, there is a mismatch between the meteorological data and local 

people’s perceptions concerning dry season end dates (Figure 3.5c, Table 3.3). 

According to 63.3–96.2% of respondents, dry season cessation dates in their 

locality have been delayed in recent years (Figure 3.5c), While the meteorological 

data shows that the trend for rainy season onset dates seems to be earlier (negative 

sen slope, but not significant), meaning the end of the dry season is earlier. From 

Figure 3.2 it can be seen that average rainfall onset fluctuates between April and 

May. However, the latest rainy season onset dates were for 2015–2016, when the 

end of the dry season was very late. People tend to reminisce about impressive 

recent experiences (Manandhar et al., 2015). Therefore, the cessation dates of 

the dry season in recent years are in line with local people’s perceptions of 

extreme drought as they experienced it in 2015–2016. Moreover, Table 3.3 

indicates that the trend of rainy season duration has a declining tendency with a 

negative Z-value. In other words, the length of the rainy season seems to be 

shorter, but due to high inter-annual variability of the meteorological data this 

trend is not statistically significant for the onset or cessation of the rainy season. 

3.4.5.3.  Drought events 

Interviewees also noticed that there were (more) extreme events in their 

locality in the last ten years (Figure B.5) and over 95% of them had observed 

droughts. The findings described in Figure B.6 show that most of the respondents 

believed that drought events had increased, became more serious and lasted 

longer compared to previous years. This trend is confirmed by Table 3.4 and 

Figure B.2, which show the trend of CDD increasing over the last 38 years in the 

study area, while the trend of CWD is decreasing. However, these trends are not 

significant due to high inter-annual variability of precipitation. In addition, SPI3 

values (moderate drought with threshold <-1) reveal a higher frequency of 

drought events for eight of the last ten years (2008–2018). Figure 3.4b shows that 

extreme events (flood and drought) were significantly increasing. Those results 

are in agreement with local people’s perceptions, as demonstrated in Figure B6 

which indicates that over 80–98% of respondents claimed there had been an 

increase in drought frequency. Furthermore, most interviewees said that the 
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intensity of droughts was more serious in the last ten years (84–96%) and their 

duration lasted longer (80–98%) (Figure B.6). In the past five years (2014–2018), 

the study area has experienced severe droughts in 2014, 2015 and 2016—with 

SPI3, SPI6, and SPI12 indices less than -1.5 (severe and extreme droughts). 

Especially in 2015, there were extremely severe drought conditions in the first 

and last three months of the year. Thus, local people’s perceptions of the 

frequency, intensity and duration of droughts in the period 2014–2018 are in 

agreement with the scientific observations based on SPI indices in the study 

locations over the same period (Figure 3.4). 

3.5.  Discussion 

In recent years it has become more important to integrate local people’s 

perceptions of climate change and drought with the kind of measured 

meteorological data that informs adaptation measures (Manandhar et al., 2015). 

This study analysed local people’s perceptions regarding changes in precipitation 

and temperature, and compared these perceptions with scientific observations. 

Nearly 46% of the surveyed interviewees are aware of concepts relating to 

climate change and 56% of them have accessed knowledge on climate change 

and drought from various sources. In addition, a majority (over 91%) have 

observed climatic changes (in rainfall amount and temperature) in their locality 

over the last ten years. The results of this study reveal a significant difference (at 

the 95% and 99.9% confidence level) in perceptions of climate change and 

extreme events related to climate change, between different demographic and 

socio-economic features of households (along the lines of gender, education level, 

ethnicity and access to information about climate change) (Table 3.6). Other 

studies have suggested that famers’ perceptions relating to climate change 

and the adaptive measures they adopt depend on their level of education 

(Ayanlade et al., 2017; Roco et al., 2015), their social environment and 

income (Ayanlade et al., 2017; Zheng and Dallimer, 2016). The findings in 

this study confirm that education level, media (i.e. access to information) and 

income are important factors that influence the perceptions of local people in 

conceiving adaptation strategies to cope with climate change and drought. These 

results are useful for supporting risk management for local governments that wish 
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to develop programmes focusing on local people’s understanding of drought 

adaptation measures. 

The results of this study reveal that the majority of local people (over 86%) 

correctly observed increases of annual minimum and maximum temperatures in 

the rainy season, in agreement with the meteorological data. In contrast, while 

80% of the respondents thought that precipitation patterns had changed during 

the last ten years and that there had been a decrease in annual, rainy and dry 

season rainfall, this was not confirmed by analysing the meteorological rainfall 

data. Local people’s observations related to long-term decline in precipitation 

could be explained by the reliance of their perceptions on recent experiences of 

precipitation variability (increasing consecutive dry days, changes in late onset 

and early cessation of rainy season, and precipitation distribution) rather than on 

observed average amounts of annual precipitation (Amadou et al., 2015). Hence, 

this might be the reason why local people perceive a decrease in annual and dry 

season precipitation even though the actual measured data shows no significant 

change in trend (Amadou et al., 2015). In addition, most interviewees’ 

perceptions did not agree with the historical meteorological data concerning the 

rising trend for dry season precipitation; only 2–16% of them correctly observed 

this. 

Rainy season characteristics (onset, cessation and length) are key 

information for agricultural activities in the study area. The majority of local 

people therefore pay a lot of attention to these features. However, it appears that 

they incorrectly perceived the evolution of rainy season characteristics. They 

believed that the dry season now starts earlier and ends later compared to the past 

ten years. This is not correct, since the analysis of rainy season data showed that 

both onset and cessation dates occur earlier, and the length of the rainy season is 

only a little shorter, but with no significant trend due to high fluctuation in the 

onset, cessation and length of the rainy season over the last 38 years.  

It seems impossible for inhabitants of this region to have a correct 

perception of the evolution of rainy season characteristics because the inter-

annual variability of precipitation is too great and masks the slow evolution of 

rainy season characteristics linked to climate change. 
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Climate change is a slow process, which people find very difficult to 

pinpoint because they find it difficult to precisely recall past events. They are 

very strongly influenced by events of the recent past, which heavily skew 

perceptions of a slow phenomenon like climate change. In this case, the survey 

was carried out in the dry season after people had experienced significant 

droughts in the recent past; events that left traces on people’s memory. If the 

survey had been carried out in the rainy season after relatively rainy years, 

perceptions of local people would probably have been very different. Human’s 

observations of climate are therefore very imperfect and we must be wary of them 

when analysing events taking place over a long term (i.e. several decades). 

Regarding drought occurrences and amplitudes in their locality, the 

perceptions of an overwhelming majority (95%) of respondents aligned correctly 

with the scientific observations based on the trend of SPI variance indices (Figure 

3.4, Figure B.5). Both local people’s perceptions and the meteorological data 

showed that timing and pattern, especially precipitation variability, had changed, 

despite the fact that there is no significant change in trend of rainfall amount nor 

SPI values. Despite the absence of rainfall amount trends, dry seasons were 

getting dryer because of temperature increases in the study area. Similarly, 

(Hasan and Kumar, 2019), Mkonda et al. (2018) and Ayanlade et al. (2017) also 

demonstrated that farmers’ perceptions of temperature trends were consistent 

with meteorological data. In the study area, most local people perceived a change 

in the climate, but over 46–80% of households in all communes did not adjust 

their farming practices and had applied no or few solutions to mitigate the effects 

of drought (see Figure B.9). These results provided useful information for local 

government and decision-makers in developing local people’s capacity to cope 

with drought and in planning for water resource management in Dak Lak 

province. 

3.6.  Conclusion 

The study’s findings reflect that local people’s values and observations 

influence their actions, and that their perception of weather and climate may be 

taken into consideration as a consistent indicator of their awareness. Besides, 

people tend to reminisce about impressive recent experiences. Thus, local 

people’s perceptions of climate change are correct only for a short recent period, 
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which is not enough for monitoring a slow process such as climate change. The 

study results also reveal that the majority of local people had observed impacts 

of climate change and drought on their localities such as decreasing water levels 

in surface and groundwater, fading crops, plant stress, reduction in crop yields, 

reduction in income, and damage to property and health. However, most of them 

did not have adaptation strategies to mitigate the impact of drought such as 

changing crops, moving to advanced irrigation, drought early warning and 

forecasting, regulating reservoirs, recycling water, or agricultural insurance. 

Moreover, poor farming communities have been declared to be the most 

vulnerable group in developing countries to climate change and natural disasters, 

as they have insufficient adaptive capacities (IPCC, 2007b). Improving the 

livelihoods and adaptation capacities of people in these localities is therefore 

increasingly urgent. Furthermore, this study also reveals that access to 

information on climate change is an important factor with considerable effect on 

the likelihood of local people taking measures to mitigate the negative impacts of 

drought. Thus, the findings of this study provide valuable information to local 

governments and policymakers in improving local people’s livelihoods. First, 

improved drought early warning and forecasting systems in each commune 

should give timely notice to local people, thereby advancing their preparedness 

in adaptation measures to cope with the negative impacts of climate change and 

drought. Second, local governments and policymakers should organise 

information dissemination or training sessions to raise local people’s awareness 

of adaptation strategies such as diversification of crop types and varieties, 

changing to drought-resistant varieties, advanced irrigation and agricultural 

insurance. 

Acknowledgements 

This research was supported under the project MP10 2.21 funded by 

Wallonie-Bruxelles International organisation.  

  



60 
 

Supplementary material 

Appendix - A 

Table A. 1. Summary of households interviewed 

 District Buon Don Cu M'gar Ea Sup 

n = 354 

Tan 

Hoa 

Ea 

Noul 

Cuor 

Knia 
Eatar 

EaKi

et 

Ea 

Mdro

h 

EaLe 
CuKba

ng 

Number of households 

interviewed 53 60 49 51 52 29 30 30 

Crop farmers (%) 86.79 90.00 81.63 98.04 96.15 

100.0

0 96.67 96.77 

Livestock famers (%) 20.75 15.00 24.49 13.73 13.46 13.79 16.67 54.84 

Both crop and livestock 

farmers (%) 16.98 11.67 16.33 11.76 13.46 13.79 16.67 54.84 

Others (%) 

(service+others) 18.87 35.00 18.37 3.92 19.23 3.45 23.33 0.00 

Table A. 2. The surveyed information analyzed in this research. 

Variable Question Type 

Household 

information 

- Gender 

- Age 

- Ethnic group 

- Education level 

- Monthly income 

- Resident time 

- Income source 

- Years of farming experience or livelihood activity  

Ordinal 

Nominal 

Ordinal 

Ordinal 

Ordinal 

Ordinal 

Ordinal 

Ordinal 

Perception of 

climate change 

- What is your understanding of climate change?  

Climate change is: 

Long-term changes in temperature, 

rainfall, humidity…  

Extreme weather events (drought, flood, 

and tsunami) frequently occur and have a 

severe impact 

- Through which channels/sources of information did 

you hear about ‘climate change’? 

- Over the last 10 years, what has the weather been 

like in your locality:  

Rainfall (dry season rainfall, rainy season 

rainfall, dry season onset and cessation) 

 

Ordinal 

 

 

 

 

Ordinal 

 

Ordinal 
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Dry season temperature and rainy season 

temperature 

Extreme weather and local disasters (what 

kinds of natural disasters occur 

frequently? extent of damage, frequency, 

time of disasters) 

Perception of 

drought  

- What is your understanding of drought? 

- Causes of drought 

- Have you ever experienced any droughts? 

- If any, in how many of the past 10 years did drought 

occur. 

- Over the past 10 years, what has been the drought 

frequency, influence, and drought period? 

Ordinal 

Ordinal 

Ordinal 

Ordinal 

Ordinal 

The impacts of 

drought  

- Decreasing water levels in rivers, streams and ponds 

- Decreasing groundwater levels 

- Crop plants (coffee, pepper…) withering 

- Reduced crop growth time 

- Reduced crop yields (coffee, pepper, etc…) 

- Reduced income 

- Poverty damage (pumps, water containers, houses, 

etc…) and damage to health (flu, dengue fever, 

etc…) 

- Other opinion (if any) 

Ordinal 

Ordinal 

Ordinal 

Ordinal 

Ordinal 

Ordinal 

Ordinal 

 

Ordinal 

Measure to reduce 

the impacts 

- Change crops (adjust planting plan) or use plants 

that consume less water 

- Change to advanced irrigation solutions: drip 

irrigation, saving irrigation 

- Communication, timely forecast information 

- Regulation of local reservoirs and irrigation works 

- Recovering water through farm ponds or reservoirs 

- Agricultural insurance 

Ordinal 

 

Ordinal 

 

Ordinal 

Ordinal 

Ordinal 

Ordinal 

Table A. 3. Descriptive statistics for annual precipitation data series over the period 
1981–2018 at three rainfall stations 

Stations 
Min. 

 (mm) 

Max. 

(mm) 

Median 

(mm) 

Mean 

(mm) 

SD 

(mm) 

CV 

(-) 

Skewness 

(-) 

Kurtosis 

(-) 

Buon Ma Thuot 1347 2598 1800 1854 303.90 0.16 0.48 -0.45 

Ban Don 930.4 2788 1544 1599 319.64 0.20 1.18 3.52 

Buon Ho 1158 1970 1605 1563 221.95 0.14 -0.21 -1.00 

Study area 1023 2546 1576 1619 272.86 0.17 0.82 2.34 

SD: standard deviation; CV: coefficient of variation 
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Table A. 4. Descriptive statistics for annual temperature data series over the period 1981–
2018 at Buon Ma Thuot station 

  

Min. 

(°C) 

Max. 

(°C) 

Median 

(°C) 

Mean 

(°C) 

SD 

(-) 

CV 

(-) 

Skewness 

(-) 

Kurtosis 

(-) 

Tmin 10.3 25.7 21.1 20.68 1.81 0.09 -1.02 1.40 

Tmax 16.7 38.7 29.7 29.55 2.87 0.10 -0.22 0.11 

Table A. 5. Summary of demographic and farming characteristics 

Variables Mean or percentage (%) 

 Education of interviewees  

No education 9.9 

Primary 19.5 
Secondary 45.8 
High school 23.4 
College 7.5 

Ethnic group  

Kinh 61 

Nung 11.3 
Tay 6.2 
Thai 0.3 
Dao 4.2 
E de 16.1 
Tho 0.3 
M'nong 0.6 

Gender of interviewees  
Male 51.1 
Female 48.9 

Length of farming experience (years)  
1-10 years 19.5 
10–19 years 41.9 
20–29 years 26 
>= 30 years 18 
No experience 0.6 

Livelihood strategies  
Crop farming 84.5 
Livestock 19.2 
Crop and livestock 16.7 

Others 16.7 

N 354 
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Appendix – B 

 

Figure B. 1. Annual precipitation trend analysis for the whole study area and the three 
stations (BMT, Ban Don, Buon Ho station) 

 

Figure B. 2.  Inter-annual variations of spatially averaged extreme precipitation indices for 
the period 1981–2018. The grey solid line indicates arithmetic average values of the three 
stations. The black dotted line indicates the annual average level. The red line shows the 
trends. 
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Figure B. 3. Monthly min and max temperature for each year at Dak Lak (BMT Station) 

 

 
Figure B. 4. Percentage of people aware of climate change in the study area, and their 
information sources  
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Figure B. 5. Percentage of respondents who observed occurrences of extreme events in 
Dak Lak province in the last 10 years 

 

 

 
Figure B. 6. Households’ perceptions of drought characteristics in their locality 

 

 
Figure B. 7. Percentage of households perceiving the cause of drought in their locality 
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Figure B. 8. Local people’s perceptions of the impacts of drought in their locality in 
recent years 

 

 
Figure B. 9. Local people’s solutions to mitigate the effects of drought in their locality 

  

0
10
20
30
40
50
60
70
80
90

100

N
o
 e

ff
ec

t

L
es

s

M
ed

iu
m

H
ig

h

N
o
 e

ff
ec

t

L
es

s

M
ed

iu
m

H
ig

h

N
o
 e

ff
ec

t

L
es

s

M
ed

iu
m

H
ig

h

N
o
 e

ff
ec

t

L
es

s

M
ed

iu
m

H
ig

h

N
o
 e

ff
ec

t

L
es

s

M
ed

iu
m

H
ig

h

N
o
 e

ff
ec

t

L
es

s

M
ed

iu
m

H
ig

h

N
o
 e

ff
ec

t

L
es

s

M
ed

iu
m

H
ig

h

Decreasing

water level

in surface

water (river,

Stream,

lake..)

Decreasing

water level

in

groundwater

well

Crop plants

are faded

Reduce

plant

growth

Reduce crop

yields

Reduce

income

Damage to

property

and health

P
er

ce
n

ta
g
e 

(%
)

Tan

Hoa
Eanoul

Courk

nia
Eatar

EaKiet

EaM'd

roh

0

10

20

30

40

50

60

70

80

90

100

N
o
 a

p
p
ly

L
es

s

M
ed

iu
m

H
ig

h

N
o
 a

p
p
ly

L
es

s

M
ed

iu
m

H
ig

h

N
o
 a

p
p
ly

L
es

s

M
ed

iu
m

H
ig

h

N
o
 a

p
p
ly

L
es

s

M
ed

iu
m

H
ig

h

N
o
 a

p
p
ly

L
es

s

M
ed

iu
m

H
ig

h

N
o
 a

p
p
ly

L
es

s

M
ed

iu
m

H
ig

h

Changing

crops

Changing

advanced

irrigation

Timely

Drought

forecast

Regulating

reservoir

Recycling

water

Agricultural

insurance

P
er

ce
n

ta
g
e 

(%
)

Tan

Hoa
Eanoul

Courkn

ia
Eatar

EaKiet

EaM'dr

oh
Eale



67 
 

Chapter 4. Early prediction of coffee yield in the Central 

Highlands of Vietnam using a statistical approach and 

satellite remote sensing vegetation biophysical variables 

 

This chapter was adapted from the following publication: 

Nguyen Thi Thanh Thao, Dao Nguyen Khoi, Antoine Dennis, Luong Van Viet, Joost 

Wellens, Bernard Tychon: Early Prediction of Coffee Yield in the Central Highlands of 

Vietnam Using a Statistical Approach and Satellite Remote Sensing Vegetation 

Biophysical Variables. Remote Sens. 2022, 14(13), 

2975; https://doi.org/10.3390/rs14132975. Published: 22 June 2022 

Abstract 

Given the present climate change context, accurate and timely coffee yield 

prediction is critical to all farmers who work in the coffee industry worldwide. 

This study aims to develop and assess a coffee yield forecasting method at the 

regional scale of Dak Lak province, in the Central Highlands of Viet Nam, by 

using the Crop Growth Monitoring System Statistical Tool (CGMSstatTool–

CST) software and vegetation biophysical variables (NDVI, LAI, and FAPAR) 

derived from satellite remote sensing (SPOT-VEGETATION and PROBA-V). 

There has been no research yet on applying this approach to this specific crop, 

which is the main contribution of this study. The findings of this research reveal 

that the elaboration of multiple linear regressions models based on the 

combination of information coming from satellite-derived vegetation biophysical 

variables (LAI, NDVI, and FAPAR) corresponding to the first six months of the 

years 2000–2019 resulted in coffee yield forecast models presenting satisfactory 

accuracy (Adj.R2 = 64 to 69%, RMSEp = 0.155 to 0.158 ton/ha, and MAPE = 

3.9 to 4.7%). These results demonstrated that the CST may efficiently predict 

coffee yields on a regional scale by using only satellite-derived vegetation 

biophysical variables. This study's findings are likely to aid local governments 

and decision makers in precisely forecasting coffee production early and 

promptly, as well as in recommending relevant local agricultural policies. 

Key words: coffee yield forecast, remote sensing vegetation biophysical 

variables, early prediction, CGMSstatTool, Viet Nam, LAI, NDVI, FAPAR 

https://doi.org/10.3390/rs14132975
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4.1. Introduction 

Coffee is one of the most crucial agricultural products in the world market, 

playing a significant part in the economy of several developing countries in 

equatorial and subequatorial regions (Africa, America, and Asia) (Kouadio et al., 

2021; Pohlan and Janssens, 2015; Ubilava, 2012). Currently, two coffee bean 

species, Coffee arabica L. (Arabica coffee) and C.canephora Pierre ex A. 

Froehner (Robusta coffee) account for 99% of coffee production in the world 

coffee trade (DaMatta et al., 2019; Kouadio et al., 2021). Coffee is grown in 

approximately 80 tropical countries and contributes to the economic basis of 

many of these countries. In addition, about 25 million farmer families produce 

coffee worldwide, with most being smallholders and families whose source of 

revenue largely depends on this crop (DaMatta et al., 2019). Coffee is a climate-

sensitive perennial plant, likely to be highly influenced by changes in climate. 

The rising climate variability may lead to coffee yield decrease, to coffee areas 

damage, and threaten coffee production in producing areas worldwide (Pham et 

al., 2019; Piato et al., 2020). Extreme weather events such as severe droughts or 

excess precipitation in these parts of the world associated with the El Nino 

Southern Oscillation (ENSO) significantly influence the coffee production in the 

world market (Kouadio et al., 2021; Ubilava, 2012).  

Viet Nam has been the world’s second largest exporter of coffee beans with 

a total coffee production of 25.73 million 60 kilogram bags (1544 million metric 

tons) on average in the period 2011–2021, accounting for roughly 20 percent of 

the world’s coffee production (ICO, 2021; USDA Foreign Agricultural Service, 

2021), and the largest world producer of robusta coffee (Kouadio et al., 2021). 

The Central Highlands area is one of the most critical places for Vietnam’s 

economy because it is the largest producer of coffee beans in Vietnam (Kouadio 

et al., 2021; Thao et al., 2019) with mainly robusta coffee (Kouadio et al., 2021). 

Robusta coffee yield is influenced by the interaction of precipitation, temperature, 

and phenological stages. Robusta coffee reacts better to rising temperatures than 

arabica coffee (Jayakumar et al., 2017; Kath et al., 2020; Piato et al., 2020) and 

is considered more resistant to climate change than other coffee species (Kath et 

al., 2020). In recent years, the increasing temperatures and variability of 

precipitation in Vietnam’s sub-regions were associated with the El Nino Southern 

Oscillation. (Nguyen et al., 2014; Van Viet, 2021). Weather data indicated lower 
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precipitation and higher average temperatures than mean conditions in Vietnam’s 

major coffee-growing areas for the first five months of the calendar year 2020, 

causing lower yields and reduced production (Vo, 2021). Therefore, it is 

necessary to provide decision makers with support tools enabling forecasting of 

coffee yield and production in order to facilitate the development of management 

strategies and of the economic evaluation of coffee production for the different 

stakeholders of the coffee industry, from smallholder farmers to governmental 

authorities. 

Several studies have already developed models to simulate and predict 

coffee production. Gutierrez et al. (1998) developed a model to simulate the 

vegetative growth process of arabica coffee as age–mass structured populations 

of stem, root, and leaves and enabled branch level computation of leaf area index 

at any stage of coffee development. Furthermore, Rodríguez et al. (2011) built a 

model to simulate the phenology, growth, and development of the coffee plants, 

based on the physiologically based models of  Gutierrez et al. (1998). The model 

inputs consisted of soil parameters (e.g., nitrogen and water) and daily 

meteorological data. This model easily incorporated other coffee varieties in 

different ecological zones where coffee is cultivated (Rodríguez et al., 2011). The 

model has been successfully calibrated for the Colombian and Brazilian regions, 

two areas with different climates and flower phenology (subtropical and 

equatorial) (Vezy et al., 2020). Van Oijen et al.(2010) also developed a simple 

dynamic model of coffee agroforestry systems that models the physiology of 

vegetative and reproductive growth of coffee plants and their response to different 

cultivating conditions. The strengths of this model are its ease of use, its speed, 

and that it can be run under changing climates. Growing conditions such as 

weather conditions (temperature, rain, light, humidity, and wind), soil conditions 

(initial organic matter and nitrogen content, water balance, etc.), tree management 

(choice of species, density, etc.), and coffee management (rotation length, 

fertilization, and pruning regime) are addressed as inputs by the model. Rahn et 

al. (2018) applied it in two sites of East Africa with different climates. It was also 

calibrated and modified successfully in two different coffee-growing sites in 

Costa Rica and Nicaragua by Ovalle-Rivera et al. (2020). In addition, Vezy et al. 

(2020) designed a DynAC of model to incorporate a plant-scale reproductive 

phenology formalism of the Rodríguez et al. (2011) model. It was based on 
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canopy temperature, with distinct sub-modules in order to obtain suitable 

adjustment of coffee and shade tree management, density, and tree species, as in 

the model of Van Oijen et al. (2010) (i.e., canopy temperature-dependent 

phenology and the submodules for agroforestry system management). Kouadio 

et al. (2021) also successfully tested a process-based model using satellite remote 

sensing data (LAI) and model-based gridded climate data for predicting robusta 

coffee yield in the Central Highlands of Vietnam. Kouadio et al. (2021) indicated 

that one of the limitations they encountered was the unavailability of distinct 

production statistics for arabica and robusta coffee. Aside from the process-based 

model (Kouadio et al., 2021), Kouadio et al. (2018) developed a model based on 

an artificial intelligence approach using soil fertility properties for predicting 

robusta coffee yield in the Lam Dong province of Vietnam. Furthermore, Molina 

et al. (2018) successfully calibrated the Aquacrop model for predicting arabica 

coffee in Colombia. The input databases for this application contained the 

parameters associated with the climatic variables, soil, crops, and management 

practices. 

Most of the aforementioned models simulate coffee yields accounting for 

the growing conditions. These models mainly depend on the data collected on the 

field and observed weather data. The accuracy of such models depends also on 

the accurate descriptions of  crop management practices (e.g., crop variety, 

sowing date, fertilization, irrigation), while collecting such data in a sufficiently 

accurate manner is difficult at the regional scale (Fall et al., 2021). Furthermore, 

several years of experimental data to train and calibrate models to the local 

environmental conditions are necessary for these crop models, and when they are 

applied in other regions, they have to be recalibrated (Fall et al., 2021).  

Due to the limitations of these models, statistical models such as multiple 

linear regression have been widely utilized to link crop yields to climate variables  

(Laudien et al., 2020; Tebaldi and Lobell, 2008) or even intermediate output 

variables from process-based crop models (Nain et al., 2004). Despite not being 

directly based on the mechanisms of plant growth, statistical models can 

effectively predict crop production (Fall et al., 2021). The main benefits of 

statistical models are their limited dependence on field calibration data and their 

clear assessment of model uncertainties (Lobell and Burke, 2010). Statistical 
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models typically perform better as the availability and quality of observable data 

improve (Fall et al., 2021).  

Among the various tools and methods that enable the development of 

statistically based models, the “Crop Growth Monitoring System Statistical Tool” 

(CgmsStatTool – CGMS statistical tool - CST) (Goedhart et al., 2019) is 

independent software for forecasting crop yield based on initial indicator 

databases derived from crop models, climate data, or remote sensing data 

(Kerdiles et al., 2017). The CST was developed by the MARS (Monitoring 

Agriculture with Remote Sensing) unit of the European Union (EU) Joint 

Research Centre (JRC) to support the development and selection of crop yield 

forecast models in order to assist national or sub national crop yield forecasting 

activities (Goedhart et al., 2019). The CST plays a crucial role in scientific 

decision-making in the EU agricultural economy (Goedhart et al., 2019). The 

CST has been effectively applied to some main crops' growth monitoring and 

yield forecasting in Northeast China (Qing et al., 2012). Fall et al. (2021) also 

used the CST to predict millet yield at a regional scale in Senegal with input data 

containing weather data combined with variables derived from remote sensing 

indicators (NDVI). The CST enables simple examination of data quality, analysis 

of crop yield time trend, and construction of crop yield forecasting models 

through three methods: (1) multivariate regression analysis; (2) scenario analysis, 

which is a method of forecasting that looks for the previous years that are most 

similar to the current year based on a set of indicators and combines their yields 

(Fall et al., 2021); (3) the moving average analysis model that is simply based on 

the average yields of the most recent years, preceding the target year. The CST 

calculates a number of statistics that allow choosing the best crop yield forecast 

model for a given region and time of prediction. Another advantage of the CST 

is its ability to test multiple models rapidly (Fall et al., 2021; Goedhart et al., 

2019).  

With the development of satellite imagery, agricultural monitoring systems 

have been using agro-meteorological indices coming from the spectral 

reflectance of the vegetation to provide timely and concise information about 

seasonal vegetative growing (Rembold et al., 2015). Remote sensing derived 

vegetation indices (e.g., the Normalized difference vegetation index, NDVI) and 

biophysical variables (e.g., the Fraction of Absorbed Photosynthetically Active 



72 
 

Radiation, FAPAR; the Leaf Area Index, LAI) can be used to predict crop yield, 

either directly or indirectly (Balaghi et al., 2010; De Wit et al., 2012). In addition, 

remote sensing vegetation variables enable estimating  crop growth variability to 

quantify the crops’ relative development and health conditions (Araya et al., 

2017).  Such vegetation indices and biophysical variables are the most common 

satellite products utilized for these purposes (Rembold et al., 2015).  At the 

national and regional levels, satellite systems can contribute effectively to early 

warning of crop stress during the growing period and in forecasting harvest yields 

(López-Lozano et al., 2015; Rembold et al., 2015). Bernardes et al., (2012) 

observed, in the Brazilian largest coffee-exporting province and from a dataset 

covering the 2002-2009 period, correlations between variations of the yield of 

coffee plots and variations of MODIS derived EVI and NDVI vegetation indices 

computed from pure coffee crop 250 m pixels overlapping the same coffee plots. 

The vegetation index metrics best correlated to yield were the amplitude and the 

minimum values over the growing season. The best correlations were obtained 

between the variation of yield and variation of vegetation indices of the previous 

year (R² = 0.55). In another study, Nogueira et al., (2018) evaluated the 

relationships between coffee productivity of some coffee plantations in Brazil and 

values of NDVI, SAVI and NDWI vegetation indices derived from LANDSAT-

8-OLI sensor for different coffee phenological phases. They concluded that the 

best phenological phases of coffee to determine coffee productivity from spectral 

indices were the stages of dormancy and flowering. The results also indicated that 

the NDVI was the best index to estimate the productivity of coffee trees, with the 

coefficient of determination (R²) ranging from 0.58 to 0.90. 

The objective of this research is to develop and assess a coffee yield 

forecasting method at the regional scale of Dak Lak province, in the Central 

Highlands of Vietnam, by using the Crop Growth Monitoring System Statistical 

Tool (CGMSstatTool – CST) software and vegetation biophysical variables 

(NDVI, LAI, and FAPAR) derived from satellite remote sensing (SPOT-

VEGETATION and PROBA-V). 

The findings of this study are expected to assist local governments and 

decision-makers in accurately forecasting coffee yields early and in a timely 

manner, as well as in recommending appropriate strategies for local agriculture. 
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4.2. Study area 

The study was carried out in Dak Lak province, located in the Central 

Highlands of Vietnam in the Lower Mekong River Basin. The total area is 13125 

km2, and in 2019 the population of Dak Lak province was 2.127 million people. 

Currently, Dak Lak province includes Buon Ma Thuot city, Buon Ho town, and 

13 districts. 

In Dak Lak province, agriculture is the main source of local livelihoods. 

The area’s geographic coordinates are from 107° to 109° east longitude and from 

12° to 13° north latitude (Figure.4.1), with an elevation range of 400–800 m. Dak 

Lak province is dominated by a humid tropical climate. Generally, the area’s 

climate varies depending on the altitude: below 300m it is hot all year round, and 

in the range of 400–800 m,  it is hot and humid (DakLak provincial people’s 

committee, 2022). There are two distinct seasons in Dak Lak province: a rainy 

season from May to October with approximately 80–85% of annual rainfall and 

a dry season from November to April, which is generally dry and sunny (15–20% 

of annual rainfall). Dak Lak province is an agricultural area with perennial crops 

such as coffee, pepper, cashew, and fruits which play an important part in its 

economy. The region also produces annual crops such as rice, maize, sweet potato, 

vegetables, sugarcane, groundnut, and soybean (CCAFS-SEA, 2016). Dak Lak 

has 209955 ha of coffee area, accounting for nearly 31% of the country's coffee 

area (DakLak Statistical Office, 2021). For Dak Lak province, coffee exports 

represented 86% of the total agricultural exports and over 60% of total yearly 

province income. In addition, coffee production employs more than 300000 direct 

workers and more than 100000 indirect workers (Huong and Anh, 2019). The 

vast majority of coffee trees are part of coffee tree plantations where coffee trees 

are the main vegetation story. Irrigation was applied one to four times per year 

from 2008 across robusta coffee in Dak Lak province (on average 1345 

litre/tree/year, i.e. 148 mm/year). The stated irrigation quantities varied based on 

rainfall patterns during the coffee growing season (Byrareddy et al., 2020). 



74 
 

 

Figure 4.1. Dak Lak province with the agricultural perennial planted area in green. 

4.3. Methodology 

The  proposed methodology is based on multiple linear regression 

modeling using, on the one hand, the official coffee yields of Dak Lak province 

and, on the other hand, phenological variables derived from the seasonal 

dynamics of the satellite-derived biophysical variables NDVI (normalized 

difference vegetation index), LAI (leaf area index), and FAPAR (fraction of 

absorbed photosynthetically active radiation).  

The general methodology workflow followed in the research is presented 

in Figure 4.2 and further detailed below.  
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Figure 4.2. General workflow of the coffee yield forecasting method. Green rectangles: 
raw input data; yellow rectangles: data processing; blue rectangles: intermediate data; 
gray rectangles: variable databases; and pink rectangle: final results. 
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4.3.1. Phenological variables from remote sensing time series  

4.3.1.1. Vegetation biophysical variables. 

Coffee yield forecasting is based on satellite imagery from Copernicus Hub 

2022 (source: https://land.copernicus.vgt.vito.be), namely NDVI, LAI, and 

FAPAR available at a decadal (10-day) time step for the entire study area in Dak 

Lak province and the same years as the official coffee yield statistics (Table 1). 

The 2000–2020 time series of decadal LAI, NDVI, and FAPAR products (21 

years x 36 dekads/year) derived from the SPOT-VEGETATION and PROBA-V 

instruments were used in this study. The products are freely available at a 1km 

Global spatial resolution.  

“The normalized difference vegetation index (NDVI) is an indicator of the 

greenness of the vegetation biomes.” (source: 

https://land.copernicus.eu/global/products/ndvi). NDVI has theoretical values 

ranging from -1 to +1, where negative values mostly correspond to clouds, water, 

and snow, while values near zero primarily correspond to rocks and bare soil (Fall 

et al., 2021). NDVI rises progressively with vegetation development.  

“The Leaf Area Index is defined as half the total area of green elements of 

the canopy per unit horizontal ground area. The satellite-derived value 

corresponds to the total green LAI of all the canopy layers, including the 

understory which may represent a very significant contribution, particularly for 

forests. Practically, the LAI quantifies the thickness of the vegetation cover.” 

(source: https://land.copernicus.eu/global/products/lai). 

 “The FAPAR quantifies the fraction of the solar radiation absorbed by 

live leaves for the photosynthesis activity. Then, it refers only to the green and 

alive elements of the canopy.” (source: 

https://land.copernicus.eu/global/products/FAPAR). 

In Vietnam, the coffee phenology can be presented in five periods: (i) the 

flower-bud initiation and blooming season is from January to March; (ii) the fruit 

setting period is from April to May; (iii) the cherry development period is from 

May to August; (iv) the maturity stage is from September to October; (v) the 

ripening/harvest  period is organized from October to December (Kouadio et al., 

2021). Two periods were considered in this study to compute the explanatory 

variables used in the search for coffee yield prediction models. The first period 

https://land.copernicus.vgt.vito.be/
https://land.copernicus.eu/global/products/lai
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corresponds to 11 dekads, from mid-February to the end of May (dekads 5 to 15). 

This period was considered because it corresponds to the crucial period of growth 

and development of the coffee bush (Titus and Pereira, 2017). February to May 

are normally dry months in Viet Nam, and coffee requires irrigation to guarantee 

blossom and cherry settings (Vo, 2021). The second period corresponds to 18 

dekads, from January to June (dekads 1 to 18). This period was considered 

because a longer period may be more representative of the global coffee 

development conditions and consequently result in variables that have a higher 

explanatory power. Additionally, the objective of the methodology developed in 

this research being to produce models that enable to forecast coffee yield well in 

advanced compared to the harvest period of October to December, it was decided 

to make the coffee yield forecast at the end of June at the latest. Indeed, using the 

first six months of the year to predict coffee yield will give planners sufficient 

time to consider or find solutions before the end of the coffee season 

4.3.1.2. Processing of satellite images in SPIRITS software 

The NDVI, LAI, and FAPAR satellite image time series were processed in 

the free Software for Processing and Interpreting of Remote Sensing Image Time 

Series (SPIRITS) (Eerens and Dominique, 2013) (Figure 4.2). 

- First, images were imported and temporally smoothed with the SWETS 

algorithm (Swets et al., 1999) that was set with a maximum of 75% of 

missing values in each pixel profile, and the lowest physical value Ymin 

for cloud-free land pixels was kept at the default.  

- Second, the 11 phenological variables presented in Table 2 were computed 

from each of the 3 biophysical products (NDVI, LAI, and FAPAR), 

considering 2 periods (dekads 5 to 15 and dekads 1 to 18) by using the 

“time statistics” function of SPIRITS, which resulted in phenological 

images (Figure 4.2).  

- Third, zonal statistics were extracted for these phenological variable 

images for the perennial agricultural vegetation zone of the Dak Lak 

province thanks to an extraction mask coming from the official 2015 land 

use map of Dak Lak province collected from the Department of Agriculture 

and Rural Development of Dak Lak province (Figure 4.1). This land use 

map did not contain a class specific to coffee plants but only a broad class 
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relative to agricultural perennial plants containing approximately 62.5 to 

68.2% of coffee only, from 2015 to 2018 (DakLak Statistical Office, 2021, 

2019, 2015, 2010). No pure coffee crop mask was available and it was not 

possible for the authors to produce such mask in the framework if this 

study. The extracted statistics corresponded to the final 33 coffee yield 

predictors.  

Table 4.1. Remote sensing vegetation biophysical products used in this study and 
downloaded from Copernicus Global Land Service (CGLS)  
(https://land.copernicus.vgt.vito.be/) 

Remote sensing 

vegetation biophysical 

products 

Definition Period 

FAPAR Fraction of Absorbed 

Photosynthetically Active 

Radiation 

20002020 

LAI Leaf Area Index 20002020 

NDVI Normalized Difference 

Vegetation Index  
20002020 

Table 4.2. The 11 phenological variables derived from FAPAR, LAI, and NDVI time 
series (extracted using the time statistics function of SPIRITS (Eerens and Haesen 2013) 
for 2 periods: dekads 5 to 15 and dekads 1 to 18, from 2000 to 2020). 

No. variables Definition Dekads 

1 vav Average value (or Mean) 515; 118 

2 vmn Minimum value 515; 118 

3 vmx Maximum value 515; 118 

4 aup Largest increase between subsequent periods 515; 118 

5 adn Largest decrease between subsequent periods 515; 118 

6 rsd Relative standard deviation (with N as 

denominator, not N-1) 
515; 118 

7 rrg Relative range (Maximum–Minimum) 515; 118 

8 dmn Relative date of (first) minimum value 515; 118 

9 dmx Relative date of (last) maximum value 515; 118 

10 dup Relative date of (first) largest increase 515; 118 

11 ddn Relative date of (last) largest decrease 515; 118 

4.3.2. Official coffee yield datasets. 

The coffee yields considered in this study are  provincial coffee yields and 

were computed by dividing the official provincial coffee production by the 

official provincial coffee area coming from the Dak Lak Statistical Yearbook 
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2009, 2014, 2018, and 2020 (DakLak Statistical Office, 2021, 2019, 2015, 2010). 

The period from 2000 to 2020 was considered. These coffee yields correspond to 

coffee dry grain yield. 

4.3.3. Crop yield forecasting model in the CST software 

In this study the free software “Crop Growth Monitoring System Statistical 

Tool” (CgmsStatTool – CGMS statistical tool - CST) (Goedhart et al., 2019) was 

used to generate the coffee yield forecasting models.  

The CST approach that we used in this study was multivariate regression 

analysis to assess the linear relationship between coffee yield (Y) and one or more 

independent variable(s) (the predictor(s) X1, X2…) through the following 

equation 1: 

Y= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + … + 𝛽𝑛𝑋𝑛 + 𝜀    (1) 

In eq.1, 𝜀 is the random error assumed to follow a normal distribution of 

mean 0 and constant variance 2. Errors for different years are assumed to be 

independent. In the annotation for the X-variables, the subscript n represents 

which X-variable it is.  𝛽0….𝛽𝑛 are the regression coefficients to be calculated 

through the ordinary least square method minimizing the difference between the 

observed and fitted yield values. The CST tests various models, using potentially 

the crop yield time trend and from 1 to 4 independent variables and, then, exports 

standard statistics and plots that enable to assessment of the quality of these 

models.  

Analysis in the CST was carried out as follows: (1) check for possible 

errors in the database of official yields and indicators; (2) assess both linear and 

quadratic crop yield time trend at a significance level of 0.025; (3) assess the 

correlation between the indicators, with and without time trend (if any); and (4) 

search for the best multivariate regression models.  

“CST takes the potential time trend into account by adding a term in the 

model that corresponds to that time trend, if applicable. To increase numerical 

precision, the regression coefficient for the linear time trend is for “year – offset” 

rather than “year” itself. The offset is fixed at 1965 by default in CST. Likewise, 

the regression coefficient for the quadratic time trend is for (year - offset)2 

(Goedhart et al., 2019).” 
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The period 20002019 was used to search and build the best models 

through the multivariate regression method of the CST.  

As the CST can only work with a database containing a maximum of 30 

variables, 3 databases of 30 variables were built from the 33 input variables and 

were used sequentially. With 20 years of calibration data (2000-2019), the CST 

allows 16 variables to be tested at a time in the regression analysis. Therefore, we 

iterated a random selection of 16 input variables to find the best models (Figure 

4.2). 

The automatic selection and ordering of the best models by CST at each 

CST iteration for a given set of candidate variables was based on the root mean 

square error of prediction (RMSEp) (equation 2). RMSEp indicates the model's 

quality under prediction conditions (Fall et al., 2021).RMSEp calculated by the 

CST is based on the leave one out residual or PRESS residual (Goedhart et al., 

2019). Predictions become increasingly precise as RMSEp approaches 0 and R2 

approaches 1. Among each CST iteration the 3 to 4 best sub-models were 

manually selected based on the RMSEp and on the Adjusted coefficient of 

determination (Adj.R2) (equation 3). Adj.R2 is a statistical measure of the model's 

goodness of fit in a regression model which shows the proportion of variation 

explained by the estimated regression line.  

   
2

1

1 n

i i

i

RMSEp P O
n 

         (2)* 

where: 

 Pi and Oi are the predicted and observed values for each year i, 

respectively; 

 �̅� and �̅�  express the means of observed and predicted values, 

respectively;  

 n is the number of samples (years); 

 k is the number of independent variables in the regression equation 

* Note: in Eq.2, Pi-Oi is the difference between the ith observation and the 

predicted value for the ith observation based on a model fit to the remaining 
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observations, i.e., without the ith observations (adapted from(Goedhart et al., 

2019)).  
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             (3) 

Four other statistical parameters (equations 4 to 7) were also used to 

appreciate the models’ performance, but not to select them.  

The R-squared (R²) corresponds to the percentage of variance explained by 

the model (equation 4) (Fall et al., 2021). 
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The Relative Root Mean Square Error (RRMSE) is calculated by dividing 

RMSEp with the mean value of observed data (equation 5).  

 (%) 100
RMSEp

RRMSE
O

           (5) 

The  Mean Absolute Percentage Error (MAPE) (equation 6). 

 
1

1
100

n
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O P
MAPE
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       (6) 

The Residual Standard Deviation (RSD) is the square root of the residual 

mean square (Goedhart et al., 2019).  
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n

i i

i

P O

RSD
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       (7) 

where df is the degrees of freedom. Here, df is equal to the sample size minus the 

number of parameters in the model. For example: Y= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀. 
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Therefore: df = n-3, where n is the sample size, and the number of parameters is 

3. 

The year 2020 was used to assess the performance of selected models with 

an independent year not used in model calibration, by comparing the observed 

and predicted yield for 2020 and computing the related residuals.  

The final selection of the best models was based on a combination of model 

performance in calibration (20002019) and in prediction for 2020. 

4.4. Results 

4.4.1. Model performance 

Using the CST time trend analysis mode, Dak Lak province showed a 

significant upward linear time trend (p-value of 0.0012) for coffee yields over the 

period 2000 – 2019 (Figure 4.3).  

 

Figure 4.3. Time trend for official coffee yield of Dak Lak province for the period 

20002019. 

Details of the eight best coffee yield models for the Dak Lak province 

provided by the multivariate regression method of the CST for the two periods 

considered (mid-February to end of May and early January to end of June), are 

presented in Table 4.3 and Figure 4.4.  

Overall, the forecast coffee yield models performed satisfactorily in both 

time periods with the RMSEp varying between 0.155 and 0.178 ton/ha, the 

RRMSE varying between 7.5% and 8.6 %, and the Adjusted-R2 varying between 

62.8% and 68.8% (Table 4.3 and Figure 4.4). The models built on the 18-dekad 
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period provided systematically better results than those built on the 11-dekad 

period when considering RMSEp and RRMSE only. For models computed on 18 

dekads, the RMSEp ranged from 0.155 to 0.158 ton/ha, the Adj. R² was between 

64.2 and 68.8 %, and the RRMSE ranged from 7.5 to 7.6%. For models calculated 

on 11 dekads, the RMSEp ranged from 0.174 to 0.178 ton/ha, the Adj. R² was 

between 62.8 and 67.6 %, and the RRMSE ranged from 8.4 to 8.6%. 

It seems difficult to clearly identify one best model among those of the 18-

dekad period given they all presented very similar global statistical performance 

when considering all statistical parameters. For example, for the18-dekad period, 

the best model according to the Adj-R² (model 4, Adj-R² of 68.8%) is the worst 

according to the RMSEp (0.158 ton/ha).  

The results show that model 0, which corresponded to the linear time trend 

only, performed less efficiently (RMSEp = 0.202 ton/ha, RRMSE = 9.7%, Adj.R2 

= 41.8%) than models combining a linear time trend with phenological variables 

derived from the remote sensing data (Table 4.3, Figure 4.4). 

For the period considering dekads 1–18 (from January to June), all selected 

models used three variables in addition to the time trend. Model 1 and model 2 

used only the LAI variables; model 3 combined the LAI and NDVI variables; and 

model 4 combined the LAI and FAPAR variables. For the period considering 

dekads 5-15, all models used four explanatory variables in addition to the time 

trend. Model 5 combined the LAI and NDVI variables; models 6, 7, and 8 

combined the LAI, NDVI, and FAPAR variables. When considering the 8 best 

models, LAI derived variables occur 18 times, while NDVI derived variables 6 

times and FAPAR derived variables 4 times only. This observation suggests that 

LAI derived variables are more efficient than NDVI and FAPAR ones for coffee 

yield forecasting. A relatively high negative or positive correlations was observed 

between some variables selected in some of the best models (R varies in the range 

from -0.863 (for Adn_LAI and Dmn_LAI in model 5) to 0.795 (for Vmn_LAI 

and Dmx_LAI in model 1)) figure 4.5). When considering the period of dekad 1 

(start of January) to dekad 18 (end of June) of the years 2000 to 2019, the analysis 

of the Pearson correlation coefficient of the 11 phenological variables between 

the three biophysical satellite products LAI, NDVI and FAPAR (figure 4.6) 

shows a highly variable level of correlation between these phenological variables, 

from, in absolute value, 0.00 to 0.97, i.e. from no correlation to a very high level 
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of correlation. For this period, the phenological variables derived from FAPAR 

and NDVI are the most correlated (average absolute correlation of 0.59, 3rd 

column of figure 4. 6) while those derived from LAI are less correlated to NDVI 

and FAPAR variables, especially for FAPAR (average absolute correlation of 

0.30, 1st column of figure 4.6). The low correlation values observed for at least 

some phenological variables in each pair of biophysical products (LAI and 

FAPAR, LAI and NDVI, FAPAR and NDVI) suggests that these three products 

may bring some non-redundant (uncorrelated) information, and thus be 

complementary at some point, and consequently that it is relevant to consider the 

three of them in the search for the best coffee yield prediction models. In addition, 

the results also showed that models utilizing satellite data from January to June 

(models 1 to 4) were more suitable for estimating coffee yields in Dak Lak 

province than models using satellite data from Mid-February to May (lower 

RMSEp and higher Adj-R² for models 1 to 4). 

Table 4.3. Details of the eight best coffee yield models for the Dak Lak province based 

on phenological variables derived from NDVI, FAPAR and LAI for the 20002019 time 
period, with their related statistical perfomrances. Models 1 to 4 are based on the dekads 
1 to 18 (January to June) and models 5 to 8 are based on dekads 5 to 15 (mid-Feb to end 
of May). Model 0 corresponds to the model achieved with the coffee yield linear time 
trend only. 

 
 

Parameter 

 

Estimate 

 

s.e. 

 

tvalue 

RMSEp RRMSE R2 MAPE RSD 

(ton/ha) (%) (%) (%) (ton/ha) 

Model 0 

No dekad 

Constant 0.774 0.342 2.26  

0.202 

 

9.7 

 

44.8 

 

4.3 

 

0.197 Time trend linear 0.029 7.63E-03 3.83 

 

 

Model 1 

Dekads 1-18 

Constant 0.496 0.361 1.37  

 

0.155 

 

 

7.5 

 

 

71.7 

 

 

 

4.3 

 

 

0.154 

Time trend linear 0.018 7.30E-03 2.46 

dmx-LAI -0.013 3.84E-03 -3.48 

rrg-LAI 0.048 0.016 2.91 

vmn-LAI 0.727 0.231 3.14 

 

 

Model 2 

Dekads 1-18 

Constant 0.494 0.362 1.37  

 

0.155 

 

 

7.5 

 

 

71.7 

 

 

 

4.3 

 

 

0.154 

Time trend linear 0.018 7.30E-03 2.47 

dmx-LAI -0.013 3.85E-03 -3.47 

vmn-LAI 0.155 0.186 0.83 

vmx-LAI 0.572 0.197 2.91 

 

 

Model 3 

Dekads 1-18 

Constant 0.415 0.346 1.2  

 

0.155 

 

 

7.5 

 

 

72.3 

 

 

 

3.9 

 

 

0.153 
Time trend linear 0.019 7.39E-03 2.56 

dmx-LAI -8.74E-03 4.27E-03 -2.05 

dmx-NDVI -3.58E-03 3.53E-03 -1.01 

vmx-LAI 0.567 0.194 2.93 

 

 

Model 4 

Dekads 1-18 

Constant 1.708 0.592 2.88  

 

0.158 

 

 

7.6 

 

 

75.4 

 

 

 

4.7 

 

 

0.144 

Time trend linear 0.013 6.79E-03 1.92 

ddn-LAI 0.011 3.00E-03 3.65 

rsd-FAPAR -0.119 0.046 -2.56 

vmn-LAI 0.35 0.139 2.52 

 

 

Model 5 

Dekads 5-15 

Constant -0.344 0.412 -0.84  

 

0.174 

 

 

8.4 

 

 

72.6 

 

 

 

4.7 

 

 

0.157 

Time trend linear 0.015 7.86E-03 1.85 

adn-LAI 0.152 0.062 2.43 

ddn-NDVI 9.96E-03 4.54E-03 2.19 

dmn-LAI 0.019 6.24E-03 2.97 

vmx-LAI 0.382 0.144 2.66 
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Model 6 

Dekads 5-15 

Constant 3.218 0.972 3.31  

 

0.177 

 

 

8.5 

 

 

76.1 

 

 

 

5.6 

 

 

0.147 

Time trend linear 0.025 6.10E-03 4.13 

adn-NDVI -9.122 2.602 -3.51 

ddn-LAI -0.01 4.03E-03 -2.55 

ddn-NDVI 0.014 4.44E-03 3.05 

dmx-FAPAR -0.028 9.69E-03 -2.9 

 

 

Model 7 

Dekads 5-15 

Constant 1.917 0.738 2.6  

 

0.178 

 

 

8.6 

 

 

73.2 

 

 

 

5.0 

 

 

0.156 

Time trend linear 0.015 9.21E-03 1.67 

adn-LAI 0.081 0.039 2.06 

aup-FAPAR -1.74 0.673 -2.58 

rrg-NDVI -0.067 0.043 -1.55 

rsd-LAI 0.152 0.055 2.79 

 

 

Model 8 

Dekads 5-15 

Constant 1.878 0.754 2.49  

 

0.178 

 

 

8.6 

 

 

72.7 

 

 

5.3 

 

 

0.157 

Time trend linear 0.016 9.36E-03 1.69 

adn-LAI 0.081 0.04 2.04 

aup-FAPAR -1.806 0.67 -2.7 

rsd-LAI 0.165 0.063 2.6 

rsd-NDVI -0.221 0.151 -1.46 

s.e = standard error, Adj.R2 = Adjusted R-squared, R2 = R-squared, RSD = Residual 
Standard deviation, RMSEp = Root mean square error for prediction, RRMSE = 
Relative root mean square error (%).  

 

Figure 4.4. Adjusted R-squared and RMSEp of the eight best coffee yield models based 

on phenological variables derived from NDVI, FAPAR and LAI for the 20002019 time 
period. Models 1 to 4 are based on the dekads 1 to 18 (January to June) and models 5 to 
8 are based on dekads 5 to 15 (mid-Feb to end of May). Model 0 corresponds to the model 
achieved with the coffee yield linear time trend only.  
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Figure 4.5: Correlation between the phenological variables derived from NDVI, FAPAR, 
and LAI for the 2000–2019 time period and selected in the eight best coffee yield models. 
Models 1 to 4 are based on the dekads 1 to 18 (January to June) and models 5 to 8 are 
based on dekads 5 to 15 (mid-Feb to end of May). The values in the upper right parts of 
the plots (above the diagonal) are the pearson correlation coefficients between the two 
variables intersecting the corresponding row and column. On the diagonal is the 
histogram of each variable, which shows the lowess locally fit regression line. The plots 
below the diagonal are the bivariate scatter plots of each pair of variables. These scatter 
plots show an ellipse around the mean (the red point), with the axis length reflecting one 
standard deviation of the column and row variables. The red line is the smoothed 
regression lines of the bivariate scatter plots of each pair of variables. 
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Figure 4.6: Pearson correlation coefficient of the 11 phenological variables, computed 
over the period of dekad 1 (start of January) to dekad 18 (end of June) of the years 2000 
to 2019, between the three biophysical satellite products LAI, NDVI and FAPAR. 

4.4.2. Coffee yield predictions for 2020 

Table 4.4 shows the residuals and percentage residuals of predicted coffee 

yields for the target year 2020 for the eight selected models. For models based on 

dekads 1 to 18 (models 1 to 4), the absolute residuals were in the range of 0.054 

to 0.134 ton/ha, and the absolute percentage residuals were in the range of 2.2 to 

5.5%. For models based on dekads 5 to 15, three models presented absolute 

residuals in the range of 0.248 to 0.571 ton/ha and absolute percentage residuals 

in the range of 10.2 to 23.6% , and one model (model 5) with a better performance 

presented a residual of 0.082 ton/ha and a percentage residual of 3.4%. The best 

model in terms of prediction for 2020 was model 3 with a residual of 0.054 ton/ha 

and a percentage residual of 2.2%. The 2020 residuals for the models 1–4 (Table 

4.4) were all smaller than the corresponding RMSEp of the period 2000–2019 

(Table 4.3), while the 2020 residuals for the models 5–8 (Table 4.4) were 

generally much higher than the corresponding RMSEp of the period 2000–2019 

(Table 4.3). 
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Table 4.4. Coffee yield predictions for 2020 based on each model 

  
Predicte

d yield 

(ton/ha) 

Yields offical 

(ton/ha) 

Residual (ton/ha) Percentage Residual 

(%) 

Model 1 
2.558 2.424 0.134 5.5 

Model 2 
2.558 2.424 0.134 5.5 

Model 3 
2.478 2.424 0.054 2.2 

Model 4 
2.298 2.424 -0.126 -5.2 

Model 5 
2.506 2.424 0.082 3.4 

Model 6 
2.995 2.424 0.571 23.6 

Model 7 
2.176 2.424 -0.248 -10.2 

Model 8 
2.171 2.424 -0.253 -10.4 

Observed versus model-predicted coffee yields for the period 2000–2020, 

are presented in a series of scatterplots in Figure 4.7. The predicted values used 

in these plots were those predicted with the models calibrated on the 2000–2019 

period.  

These plots revealed the highest R2 (0.76) for model 4, combining Ddn-

LAI, rsd-FAPAR, vmn-LAI, and yield linear time-trend as predictor variables 

(Figure 4.7). For models based on data from January to June, the four selected 

models (model 1 to model 4) indicated an R2 in the range of 0.73 to 0.76 and a p-

value of <0.0001 (Figure 4.7).  

The models based on data from mid-February to May presented an R2 

ranging from 0.66 to 0.75 and a p-value of <0.0001 (Figure 4.7).  

In 2006, most models underestimated the official yields by approximately 

0.249 to 0.470 ton/ha.  
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Figure 4.7. Scatter plot of observed versus model-predicted coffee yields for the years 
2000 to 2020, using the eight best selected models based on satellite data for the period 
from dekads 1 to 18 (models 1 to 4) and for the period from dekads 5 to 15 (models 5 to 
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8). For model 6, the predicted value for the year 2020 is 3.0 ton/ha that is outside the plot 
frame. R-squared and p-values reported on this figure are those of the relation between 
observed versus predicted yield for the full period 2000-2020. 

4.5. Discussion 

The observed positive coffee yields time trend in Dak Lak province over 

the past 20 years can be explained by a combination of factors including 

investments in irrigation infrastructure, a heavy reliance on irrigation in coffee 

farms, the affordability of fertilizer, and the increasing adoption of new 

management techniques in the province (Byrareddy et al., 2020; Kouadio et al., 

2021).  

Existing coffee models usually simulate and forecast coffee yields at a 

local or regional level by including as parameters the main growth and 

development processes as impacted by climate variations. However, in this study, 

the results showed that it is possible to predict coffee yield at a regional scale, 

here in the Dak Lak province of Viet Nam, six months before the harvest based 

on remote sensing data only. Thus, such models can be an essential tool for 

indirectly assessing the impacts of weather variability or farmer practices’ 

improvement on coffee yields at the provincial or district level in Viet Nam or 

any other coffee-growing regions or countries under climate change conditions. 

We noticed from Figures 4.3 and 4.5 that 2006 showed the highest 

observed coffee yield, which corresponded also to the year with the lowest model 

accuracy. We have no information that could explain such a high yield in 2006. 

In particular, the precipitation in 2006 was not particularly high. 

Compared to the coffee yield forecast models developed by Kouadio et al. 

2018  and Kouadio et al. 2021, most of the models developed in this study showed 

a higher accuracy (RMSEp = 0.155 to 0.178 ton/ha, RMSE = 0.123 to 0.134 

ton/ha, RRMSE = 7.5 to 8.6%, and MAPE = 3.9 to 5.3%) (Table 4.3). Indeed, the 

model of Kouadio et al. 2018 that consisted of an Extreme Learning Machine 

(ELM) model using as explanatory variables the soil organic matter (SOM), 

available potassium, and available sulphur, provided coffee yield estimates for 

Lam Dong provinces (belonging to Central Highlands of Viet Nam) with an 

RMSE of 0.496 ton/ha, an RRMSE of 13.6%, and MAPE = 7.9%. In addition, 

the simple process-based model developed by Kouadio et al. 2021 for simulating 
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and forecasting robusta coffee yield at the regional scale in Viet Nam showed a 

RMSE of 0.24 to 0.33 ton/ha and a MAPE = 9 to 14%, and that model was 

successfully tested using satellite remote sensing data (LAI) and model-based 

gridded climate data (maximum and minimum temperatures, solar radiation, and 

rainfall): MAPE ≤ 12% and RMSE ≤ 0.29 ton/ha.  

This study reveals that the method enabled building models that can 

forecast the coffee yield satisfactorily with a low RMSEp and a high Adj.R2 for 

Dak Lak province. It was also shown that the period considered for the production 

of the model explanatory variables (dekads 1 to 18 versus dekads 5 to 15) has an 

important impact on the accuracy of the resulting models, with better accuracy 

for those considering a more extended period. The models based on a longer 

period were also composed of fewer explanatory variables (three variables + the 

time trend) than those based on a shorter period (four variables + the time trend). 

When selected in models, the variables aup-FAPAR, dmx-LAI, dmx-

FAPAR, and dmx-NDVI presented systematically negative values, which may 

mean that the smaller the “largest increase between subsequent periods” of the 

FAPAR will be, and the sooner the “date of maximum” LAI, FAPAR, and NDVI 

occur, the higher the coffee yield will be. Furthermore, the variables derived from 

the LAI product were shown as more efficient for coffee yield forecast model 

than those derived from NDVI and FAPAR, though some complementarity was 

observed between these products for some models (Table 4.3). 

No other research was carried out before on combining NDVI, FAPAR, 

and LAI remote sensing derived phenological variables in the CST to create the 

coffee yield prediction model, which is the main contribution of this study. The 

data used in this study were derived from the SPOT-VEGETATION and 

PROBA-V instruments at a 1km global spatial resolution. Therefore, future 

studies should consider using the more recent and similar products derived at 

300m spatial resolution.  

The main technical limitations we encountered in this research are related 

to the fact that the CST cannot handle a database containing more than 30 

variables, and that, with 20 years of data used for model calibration, the CST 

cannot consider more than 16 variables at a time during the multiple linear 
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regression model search. These two technical limitations of the CST make its use 

more difficult than it should be.  

In this research, we used a multiple linear regression technique in order to 

produce coffee yield prediction models. Such technique is particularly suited to 

identify and use the linear relationships between the predictors and the dependent 

variable. However the linearity of the relationship between coffee yield and the 

phenological variables was not assessed in this study and it may be possible that 

some variables present a nonlinear relationship with yield. Consequently, further 

research might be interested in testing other nonlinear modelling approaches for 

predicting coffee yield from biophysical variables such those used in this study. 

The findings of this study show that satellite data such as the NDVI, LAI, 

and FAPAR products provided by the Copernicus Global Land service are a good 

source of information for estimating and forecasting coffee yield in a challenging 

situation, where there is a deficit of information about management practices, soil 

characteristics, irrigation schedule, phenology of coffee trees, etc.  

We think that a main source of improvement of the coffee yield forecast 

model developed in this research would probably be the use of a more detailed 

land use map containing a class specific to coffee. Indeed, the official 2015 land 

use map of Dak Lak province used to extract satellite derived vegetation 

biophysical variables did not contain a class specific to coffee plants but only a 

broad class relative to agricultural perennial plants containing approximately 62.5 

to 68.2% of coffee only, from 2015 to 2018 (DakLak Statistical Office, 2021, 

2019, 2015, 2010). 

4.6. Conclusions 

This research is the first to develop and assess a coffee yield forecasting 

method at the regional scale for Dak Lak province, in the Central Highlands of 

Vietnam, by using the Crop Growth Monitoring System Statistical Tool 

(CGMSstatTool – CST) software and vegetation biophysical variables (NDVI, 

LAI, and FAPAR) derived from satellite remote sensing (SPOT-VEGETATION 

and PROBA-V). 

The findings of this research reveal that the elaboration of multiple linear 

regressions models  based on satellite-derived vegetation biophysical variables 
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(LAI, NDVI, and FAPAR) corresponding to the first six months of the years 

2000–2019 resulted in coffee yield forecast models presenting satisfactory 

accuracy (Adj.R2 = 64 to 69%, RMSEp = 0.155 to 0.158 ton/ha, and MAPE = 3.9 

to 4.7%). These results demonstrated that the CST may efficiently predict coffee 

yields on a regional scale by using only satellite-derived vegetation biophysical 

variables. This study's findings are likely to aid local governments and decision-

makers in precisely forecasting coffee production early and promptly, as well as 

in recommending relevant local agricultural policies. 

Further research may consider applying the developed method to search 

for coffee yield forecast models at other scales (at district and national levels), 

with enhanced input data (finer spatial resolution for satellite images, and more 

accurate coffee maps) and with other explanatory variables. 
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Chapter 5. General conclusions and outlook 

5.1.  General conclusion 

Drought phenomena are common in Vietnam, and the government has 

been strongly concerned in recent years. It can happen at any point throughout 

the rainy season due to a long-term rainfall deficit, although it usually occurs 

during the dry season, especially in the Central Highlands. Like other natural 

disasters such as flooding and typhoons, droughts can harm people's livelihoods 

and economic development, but they are difficult to spot because of their 

insidious effect.  

In this study, we sought to better understand how the drought evolved, how 

the populations realized its evolution, how their perceptions of this change 

sometimes deviated greatly from the meteorological reality observed on the 

ground. In the last chapter, we have developed, as a solution to future droughts 

which should affect the overwhelmingly agricultural populations, a forecast 

model for the yields of the main crop in the Region in order to allow the 

authorities to anticipate supports and other helps in difficult years. These research 

works are likely to play a significant role in the social development and the 

livelihood of people. 

 The study's main goal is to better understand population vulnerability to 

drought and other extreme weather events in the Central Highlands of Vietnam 

in the context of climate change. To reach this goal, after an in depth state of the 

art on the study questions, many and different kinds of data were analysed :  

- A 38-year dataset of meteorological observations (rainfall, temperature, 

humidity),  

- A 21-year dataset of several satellite-based vegetation products (NDVI, 

LAI, FAPAR),  

- Official product yield statistics,  

- Several household questionnaire surveys.   

Then, the study's goal was divided into three particular goals, resulting in open 

questions being explored in three steps (i.e., chapters 2, 3 and 4 of dissertation).  
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5.1.1. Livelihood vulnerability to drought 

Objective 1: Assessing livelihood vulnerability to drought for selected areas. 

Drought effects on farmers' livelihoods are unknown, making difficult 

determining appropriate livelihood solutions to improve farmers' welfare in the 

face of drought. This study aims to determine how vulnerable farmers on the 

regional scale are to droughts. A brief summary of how this study met these 

objectives is given here: (1) According to the LVI and VI-IPCC results, the Krong 

No District has a medium degree of livelihood risk due to drought (0.444 and 

0.096, respectively); (2) The general LVI and VI-IPCC values from the principal 

components revealed that households in the Quang Phu community are the most 

vulnerable to drought, with indices of 0.510 and 0.057, followed by Nam N'dir, 

Dak Nang, Duc Xuyen, and Dak D'ro communities; (3) Water (sensitivity) and 

livelihood strategies (adaptive capacity) were also identified as two primary 

sources of high susceptibility to drought consequences for the districts and all 

examined communities in this study. 

Droughts are more likely to negatively affect the major income of the five 

surveyed villages in the district because farming is their primary source of 

revenue. The significant susceptibility of existing livelihood strategies is due to 

the low values of these communities' livelihood diversification indexes (LS1 and 

LS3). This result is in line with the findings of of Aryal et al. (2014), Oo et al. 

(2018), and Antwi-Agyei et al. (2013), who found that having more than two 

income sources in a family improves livelihood diversity and makes a household 

less vulnerable. Therefore, in the face of drought, the households in the five 

communities should prioritize livelihood stability, and livelihood diversification 

in the form of a mix of agricultural and nonfarming activities is recommended to 

reduce household vulnerability to drought consequences. 

5.1.2. Local people’s perceptions of climate change and drought 

Objective 2. Understanding local people’s perception of drought and 

examine the discrepancies between local people's perceptions and 

meteorological data in the selected areas.  

Besides assessing livelihood vulnerability to drought, this study analysed 

local people's perceptions of climate change and climate change-related drought. 
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Moreover, comparing the differences between local's people perceptions and 

meteorological data were examined. The study discovered that different socio-

economic and demographic household characteristics significantly affect local 

people's perceptions of drought and observations of climate change-related 

extreme events. In particular, education, preferred media sources, and income 

sources significantly affect local people's perceptions. In addition, the limitations 

of human perception of slow processes like climate change or processed noise 

caused by sizeable interannual fluctuation are also demonstrated. The study’s 

findings reveal that local people’s values and observations influence their actions, 

and that their awareness of weather and climate may be taken into consideration 

as a consistent indicator of their perception. 

Furthermore, people are prone to reminiscing about memorable recent 

events. As a result, local people's impressions of climate change are only accurate 

for a brief period, which is insufficient for monitoring a slow process like climate 

change. According to the study, most local people had observed the repercussions 

of climate change and drought on their communities, such as decreased water 

levels in surface and groundwater, fading crops, plant stress, crop yield reductions, 

income reductions, and property and health damage's findings. However, most of 

them lacked drought adaptation measures such as crop rotation, sophisticated 

irrigation, drought early warning and forecasting, reservoir regulation, water 

recycling, and agricultural insurance. 

Although there are significant agreements between farmers' perceptions 

and meteorological data for clear trends such as global warming, perceptions are 

frequently at odds with meteorological observations when describing trends in 

precipitation (volume and duration) due to a much less marked tendency and high 

interannual variability. However, most respondents' perceptions (95%) match 

scientific observations based on the SPI index when it comes to drought 

occurrence. These findings will aid local governments, and policymakers develop 

ways to decrease the likelihood of adverse climate change and drought effects. 

5.1.3. Coffee yield estimation using remote sensing data (NDVI, FAPAR, 

LAI) 

Objective 3. Performing regional coffee yield forecasting using remote 

sensing data and Crop yield forcasting model approaches. 
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The study's findings support the assertion that the CGMSstatTool (CST) 

can be used to generate specific forecast coffee yields models by using databases 

of satellite-derived vegetation biophysical variables (LAI, NDVI, and FAPAR) 

without the use of meteorological data, phenology of coffee, or management 

practices to estimate the production of coffee crops with low RMSEp and high 

Adj.R2 (over 62%). The model provided in this study is one of the first to estimate 

the yield of coffee crops using only satellite remote sensing data (SPOT-

VEGETATION and PROBA-V) and the CST.  

The findings of this research reveal that the elaboration of multiple linear 

regressions models based on satellite-derived vegetation biophysical variables 

(LAI, NDVI, and FAPAR) corresponding to the first six months of the years 

2000–2019 resulted in coffee yield forecast models presenting satisfactory 

accuracy (Adj.R2 = 64 to 69%, RMSEp = 0.155 to 0.158 ton/ha, and MAPE = 

3.9 to 4.7%). These results demonstrated that CST may efficiently predict coffee 

yields on a regional scale by using only satellite-derived vegetation biophysical 

variables. This study's findings are likely to aid local governments and decision 

makers in forecasting coffee production early and promptly, as well as in 

recommending relevant local agricultural policies. According to the results, CST 

enables the creation of the best model for predicting production values of coffee 

crops on a regional scale. The evaluation of the performed coffee model showed 

that the projected and official reported coffee yields for Dak Lak province were 

in good agreement. This study significantly adds to forecasting models for 

perennial plants in as case of coffee plants. Therefore, the forecasting yield model 

is critical in managing and contributing to the province's agricultural development 

strategy by using the first six months of all past years to estimate the year's coffee 

yields. 

The results showed that combining phenological vegetation indices (LAI, 

NDVI, and FAPAR) produced a forecast of coffee yield with reasonable accuracy, 

with four models using data from the first six months of each year (models 1 to 

4) presenting good Adj.R2 and RMSEp. Besides, the findings also revealed that 

LAI is an essential index in contributing to the coffee yield prediction models. 

The results demonstrated that CST could effectively estimate coffee crop 

models on a regional or national scale using only satellite data without 
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meteorological data, management techniques, soil characteristics, fertilizer 

management, and so on. The outcomes of this study are anticipated to help local 

governments and decision-makers forecast coffee production accurately and 

quickly and recommend suitable local agricultural policies. 

5.2. Outlook 

Following the objectives of the study, several statistical tools that assess 

livelihood vulnerability to drought, drought trends, analyze people perception 

related to drought/climate change, estimate and forecast main crops (coffee 

crops) availability at the end of the growing season in the Vietnamese Central 

Highland areas, were developed and discussed in this PhD dissertation. Overall, 

this study contributed to the challenging task of monitoring and mitigating 

livelihood vulnerability to drought under climate change context in the Central 

Highlands of Vietnam.  

The LVI and VI-IPCC indices help identify household vulnerability for the 

five study sites. In addition, the vulnerability level of numerous places within a 

research region can be compared using these indicators. However, the two indices 

may not be readily compared with other investigations in more distant areas due 

to differences in subcomponents and contexts. Indeed, according to Hahn et al. 

(2009) the subcomponents chosen have a considerable impact on assessing 

household livelihood vulnerability to climate change and natural hazards. Panthi 

et al. (2016) further claim that the local environment influences the frame and 

design of the subcomponents. Therefore, the usage of vulnerability indices 

presents a problem in selecting acceptable subcomponents. For creating 

subcomponents of vulnerability indices, substantial literature analysis, expert 

consultation, and stakeholder consultation are recommended, as this study 

indicates (LVI and VI-IPCC). Depending on the characteristics of the regions, 

subcomponents of vulnerability indices will be developed to assess LVI and VI-

IPCC. The assessment result will reveal the most vulnerable of the aspects and 

areas. The government might develop strategies to mitigate each local livelihood 

vulnerability based on the assessment results.  

Besides, the study's findings show that local people's values and 

observations impact their actions and that their perception of weather and climate 

may be used as a constant indicator of their awareness. Furthermore, people are 
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prone to reminiscing about memorable recent events. As a result, local people's 

impressions of climate change are only accurate for a brief period, which is 

insufficient for monitoring a slow process like climate change.  

Climate change is a slow process that individuals find difficult to define 

since they have trouble recalling specific occurrences from the past. Furthermore, 

current events significantly impact them, which bias impressions of a slow-

moving process like climate change. In this scenario, the survey was conducted 

during the dry season, after people had recently suffered substantial droughts, 

leaving a lasting impression on their minds. If the study had been conducted 

during the rainy season after a particularly wet year, the results would almost 

certainly have been considerably different. As a result, human observations of 

climate are inherently flawed, and we must be cautious when analyzing long-term 

events (i.e. several dekads). 

Furthermore, this research shows that having access to climate change 

information is a critical factor influencing residents' willingness to mitigate the 

adverse effects of drought. As a result, the study's findings can assist local 

governments and politicians enhance inhabitants' livelihoods. First, enhanced 

drought early warning and forecasting systems should offer communities timely 

notice, allowing them to better prepare for climate change and drought adaptation 

techniques. Second, local governments and politicians should hold informational 

or training sessions to improve the understanding of adaptation techniques such 

as crop diversification and variety, switching to drought-resistant cultivars, 

sophisticated irrigation, and agricultural insurance among the general public.  

On the other hand, developing the model that predicts the local's main 

crops yield and production is essential to ensure the local livelihood. This study 

concentrated on solving the technical requirement of implementing tools to 

predict coffee yield at the end of the harvest season, the main crop in the study 

areas. All variables of phenological metrics of LAI, FAPAR, and NDVI (33 

indices) were computed as input indicators. The number of variables over the 

limited number of available input indicators of the CST is a limitation in this 

study. The "Best subset selection" method in the CST is limited in selecting the 

best models with multiple indicators. These two technical limitations of the CST 

make its use more difficult than it should be. Therefore, electing input variables 
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process might be considered in a subsequent research, or, increase the numbers 

of input datasets in CST. 

The proposed project suggests using the CST to construct a model for 

estimating coffee crop yields. No such research has been done on employing this 

technology for this specific crop, which is a significant study contribution. In this 

regard, this study aims to evaluate the CST models for forecasting coffee yield at 

a regional scale in Vietnam using just remote sensing data (Dak Lak province). 

It is found that satellite data from services like the Copernicus Global Land 

provide a good source of information about the NDVI, LAI, and FAPAR for 

estimating coffee with very few information available – no need for information 

about management practices, soil characteristics, irrigation, and phenology of the 

coffee tree, among other things. In this context, the yield forecast models for 

perennial crops could be based on the combination of satellite-derived vegetation 

biophysical variables (LAI, NDVI, and FAPAR). Further research is needed to 

improve our understanding of the relationship between vegetation biophysical 

variables (LAI, NDVI, and FAPAR) and coffee yield. Another aspect is that the 

recently launched SENTINEL-3 satellite will provide near-real-time biophysical 

variables with a finer spatial resolution of 300m. As a result, the crop prediction 

models will be modified to maintain the continuity of the developed grading 

systems. Different data sources, such as MODIS-TERRA/AQUA, should be 

tested to uncover additional enhancing potential and assure interoperability with 

Copernicus Global Land products.  

Further research may consider applying the developed method to search 

for coffee yield forecast models at other scales (at district and national levels), 

with enhanced input data (finer spatial resolution for satellite images and more 

accurate coffee maps) and with other explanatory variables. 

The study was about reducing disaster impact and population's vulnerability 

in the Central Highlands. Much can still be done to reduce population 

vulnerability and strengthen its resilience as for example : 

- Increase population means through education, information access, higher 

income, better skills, increased solidarity between farmers, agricultural 

insurance, disaster forecasting systems, yields forecasting models, etc...  
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- Strenghten the resilience capacity of agricultural systems to climate 

change in the study area by planting crops (including perenial crops) that 

are more adapted to future climate conditions and by reducing drought 

damage through access to irrigation. This will definitely help building a 

more sustainable future. 

- The findings reveal that water and livelihood strategies are the major 

components that influence the local’s livelihood. Therefore, this study 

recommends increasing investment in water management practices, 

improving integrated water resources management such as building 

irrigation dam systems and livelihood diversification. In future research, 

vulnerability under some policy interventions will be investigated to see 

the effectiveness of planned activities in reducing livelihood 

vulnerability of communities of the area. 

- A natural disaster can not be prevented in the short term. However, in the 

long term, it can be mitigated by minimizing the factors that contribute 

to generating natural disasters, such as stopping deforestation and 

minimizing actions that generate greenhouse gases.  
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