

Non-Markovian Quantum Dynamics in Strongly Coupled Multimode Cavities Conditioned on Continuous Measurement

François Damanet¹ Valentin Link², Kaï Muller², Walter T. Strunz² Kimmo Luoma^{2,3} Rosaria G. Lena⁴, Andrew J. Daley⁴

PRX Quantum **3**, 020348 (2022)

¹Department of Physics and CESAM, University of Liège, Liège, Belgium. ²Institut für Theoretische Physik, Technische Universität Dresden, Dresden Germany. ³Department of Physics and Astronomy, University of Turku, Turun yliopisto, Finland. ⁴Department of Physics and SUPA, University of Strathclyde, Glasgow, UK.

Atoms in (multi)-mode cavities Motivation

- Ideal platforms to study many-body physics out-of-equilibrium
- Cavity modes mediate interactions between atoms, allowing for the realisation of various spin models.

[Vaidya, PRX 8, 011002 (2018)]

MULTI-mode cavity (ex.):

Non-Markovian dynamics conditioned on measurement

Single-mode case: homodyne measurement of the output light « atoms + cavity » Markovian stochastic Schrödinger eq.

Example: Single-mode driven-dissipative (Z₂) Dicke model

« Atoms+cavity » dynamics governed by

 $\partial_t \rho = -i[H_{\text{Dicke}}, \rho] + \kappa \mathcal{L}[\hat{a}]$ $H_{\text{Dicke}} = \omega_0 \hat{S}^z + \omega \hat{a}^{\dagger} \hat{a} + 2g \left(\hat{a} + \hat{a}^{\dagger} \right) \hat{S}^x$

What is the atom-only description that captures the superradiant phase transition [FD et al., PRA 99, 033845 (2019)]?

• 2nd perturbation theory : $\dot{\rho} = -\int_{0}^{\infty} dt' \operatorname{Tr}_{\mathrm{B}}\left(\left[H_{1}(t), \left[H_{1}(t'), \rho_{\mathrm{tot}}(t')\right]\right]\right)$ Markov approx. with int. Hamilt. $H_1(t) = gX(t)[S^+(t) + S^-(t)]$ $X(t) = a(t) + a^{\dagger}(t)$ $S^{\pm}(t) = S^{\pm} e^{\pm i\omega_0 t}$ • Bath (i.e. cavity) corr. function: $\operatorname{Tr}_B(X(\tau)X(0)\rho_B) = e^{-i\omega\tau - \kappa|\tau|}$

 \rightarrow 2nd order Redfield master eq. (atoms only): $\dot{\rho} = -i\left[\omega_0 S^z, \rho\right] \{Q_+(S^+S^+\rho - S^+\rho S^+) + Q_-(S^+S^-\rho - S^-\rho S^+)\}$ $Q_{+} \left(S^{-} S^{+} \rho - S^{+} \rho S^{-} \right) + Q_{-} \left(S^{-} S^{-} \rho - S^{-} \rho S^{-} \right)$

$$+ g^{2} \left(nL\rho_{A}^{(n-1,m)} + m\rho_{A}^{(n,m-1)}L^{\dagger} \right) + \left[\rho_{A}^{(n+1,m)}, L^{\dagger} \right] + \left[L, \rho_{A}^{(n,m+1)} \right] \right) dt$$

$$+ \left(-\sqrt{2\kappa} \langle X \rangle \rho_{A}^{(n,m)} + \frac{i}{g} \sqrt{2\kappa} \left(\rho_{A}^{(n,m+1)} - \rho_{A}^{(n+1,m)} \right) \right) dW,$$

$$= \left(-\sqrt{2\kappa} \langle X \rangle \rho_{A}^{(n,m)} + \frac{i}{g} \sqrt{2\kappa} \left(\rho_{A}^{(n,m+1)} - \rho_{A}^{(n+1,m)} \right) \right) dW,$$

$$= \left(-\sqrt{2\kappa} \langle X \rangle \rho_{A}^{(n,m)} + \frac{i}{g} \sqrt{2\kappa} \left(\rho_{A}^{(n,m+1)} - \rho_{A}^{(n+1,m)} \right) \right) dW,$$

$$= \left(-\sqrt{2\kappa} \langle X \rangle \rho_{A}^{(n,m)} + \frac{i}{g} \sqrt{2\kappa} \left(\rho_{A}^{(n,m+1)} - \rho_{A}^{(n+1,m)} \right) \right) dW,$$

$$= \left(-\sqrt{2\kappa} \langle X \rangle \rho_{A}^{(n,m)} + \frac{i}{g} \sqrt{2\kappa} \left(\rho_{A}^{(n,m+1)} - \rho_{A}^{(n+1,m)} \right) \right) dW,$$

$$= \left(-\sqrt{2\kappa} \langle X \rangle \rho_{A}^{(n,m)} + \frac{i}{g} \sqrt{2\kappa} \left(\rho_{A}^{(n,m+1)} - \rho_{A}^{(n+1,m)} \right) \right) dW,$$

$$= \left(-\sqrt{2\kappa} \langle X \rangle \rho_{A}^{(n,m)} + \frac{i}{g} \sqrt{2\kappa} \left(\rho_{A}^{(n,m+1)} - \rho_{A}^{(n+1,m)} \right) \right) dW,$$

$$= \left(-\sqrt{2\kappa} \langle X \rangle \rho_{A}^{(n,m)} + \frac{i}{g} \sqrt{2\kappa} \left(\rho_{A}^{(n,m+1)} - \rho_{A}^{(n+1,m)} \right) \right) dW,$$

$$= \left(-\sqrt{2\kappa} \langle X \rangle \rho_{A}^{(n,m)} + \frac{i}{g} \sqrt{2\kappa} \left(\rho_{A}^{(n,m+1)} - \rho_{A}^{(n+1,m)} \right) \right) dW,$$

$$= \left(-\sqrt{2\kappa} \langle X \rangle \rho_{A}^{(n,m)} + \frac{i}{g} \sqrt{2\kappa} \left(\rho_{A}^{(n,m+1)} - \rho_{A}^{(n+1,m)} \right) \right) dW,$$

Multi-mode case: Information gain from output measurement

$$Q_{-}^{*} \left(\rho S^{+} S^{+} - S^{+} \rho S^{+}\right) + Q_{-}^{*} \left(\rho S^{+} S^{-} - S^{-} \rho S^{+}\right)$$
$$Q_{+}^{*} \left(\rho S^{-} S^{+} - S^{+} \rho S^{-}\right) + Q_{+}^{*} \left(\rho S^{-} S^{-} - S^{-} \rho S^{-}\right) \}$$

 $Q_{\pm} = \frac{1}{\kappa + i(\omega \pm \omega_0)}$

Can we perform two additional (standard) approximations ?

• secular approximation (kill terms with two S^+ or two S^-)? $\rightarrow No$! • large-detuning limit (set $Q_+ = Q$) \rightarrow No !

 \rightarrow correct description via a 2nd order Redfield master eq. (i.e., a Born-Markov master eq. without the secular approx.) • Von Neumann entropy : $S[\rho_A] = -\text{tr}\rho_A \ln \rho_A$

- Average information gain in a single experimental run : $S[E[\rho_A]] E[S[\rho_A]]$
- $E[S_{13}]$: average entropy of the reduced state of the atomic clusters 1 and 3

→ Information gain and entanglement controlled by monitoring

Conclusion & Outlook

• Need for atom-only descriptions beyond standard approx. in cavity (or circuit) QED Damanet et al., PRA 99, 033845 (2019); Palacino & Keeling, PRR 3, 032016 (2021)]

• Derivation of an exact stochastic atom-only description with a measurement interpretation (cHEOM), with applications to e.g. quantum feedback control beyond Markov [Link et al., PRX Quantum 3, 020348 (2022)]

• Outlook: e.g. combining cHEOM with MPO to capture conditioned non-Markovian many-body dynamics (unconditioned case: see [Flannigan et al., PRL 128, 063601 (2022)])

FD acknowledges the FRS-FNRS for financial support during this work.