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Abstract: Species of Mycobacteriaceae cause disease in animals and humans, including tuberculosis
and leprosy. Individuals infected with organisms in the Mycobacterium tuberculosis complex (MTBC)
or non-tuberculous mycobacteria (NTM) may present identical symptoms, however the treatment for
each can be different. Although the NTM infection is considered less vital due to the chronicity of
the disease and the infrequency of occurrence in healthy populations, diagnosis and differentiation
among Mycobacterium species currently require culture isolation, which can take several weeks. The
use of volatile organic compounds (VOCs) is a promising approach for species identification and in
recent years has shown promise for use in the rapid analysis of both in vitro cultures as well as ex
vivo diagnosis using breath or sputum. The aim of this contribution is to analyze VOCs in the culture
headspace of seven different species of mycobacteria and to define the volatilome profiles that are dis-
criminant for each species. For the pre-concentration of VOCs, solid-phase micro-extraction (SPME)
was employed and samples were subsequently analyzed using gas chromatography–quadrupole
mass spectrometry (GC-qMS). A machine learning approach was applied for the selection of the
13 discriminatory features, which might represent clinically translatable bacterial biomarkers.

Keywords: GC-MS; mycobacteria species; machine learning; random forest; SPME; VOCs; features
reduction

1. Introduction

The Mycobacterium genus consists of over 150 species which can be broadly grouped
into fast-growing and slow-growing species or species complexes, based upon physiologi-
cal, phenotypic and phylogenetic differences [1]. Within Mycobacteriaceae, it is possible to
distinguish two big families: Mycobacterium tuberculosis complex (MTBC), that can cause
tuberculosis in several mammals including humans, and the family of non-tuberculous
mycobacteria (NTM), which can also infect several mammals, including humans. Both
complexes manifest as active disease and dormant disease and while they both mostly
present in the lung, infections can also occur elsewhere, such as the skin, spine or eye. Indi-
viduals infected with either MTBC or NTMs may generate identical symptoms, however,
the antibiotic regimen used to treat is different for TB compared to NTM [2]. Due to the
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similarity in symptoms and expectations of M. tuberculosis being dominant in endemic
areas, patients are often mistakenly assumed to have multidrug-resistant tuberculosis
when 5% and 30% of suspected cases are caused by NTM. The current, rapid nucleic acid
amplification tests, such as GeneXpert™ decrease the diagnostic burden, but this test and
others like it do not parse Mycobacterium species, which are likely more broadly distributed
than currently reported.

Isolation of Mycobacterium species from sputum, feces or tissue still represents the gold
standard for the diagnosis of the family of Mycobacteriaceae [3], but due to the long gener-
ation time of some species, a complete diagnosis can take several weeks [4,5]. Moreover,
extra-time can be required to identify the specific Mycobacterium species for a proper treat-
ment. It is worthy to mention that matrix-assisted laser desorption/ionization (MALDI)-MS
technology represents a rapid screening tool, faster than traditional microbiological tech-
niques, capable of distinguishing at species level, even if a previous purification stage is
normally required and the instrument represents an important economical investment.

The analysis of volatile organic compounds (VOCs) produced from in vitro cultures
and/or ex vivo specimens, represents a viable and cheaper alternative to non-invasive
diagnose mycobacteria at the species level [6,7], although large-scale investigations are
still needed to validate the identity of the biomarkers [8]. In vitro studies represent an
important and easier step to investigate VOCs produced by the specific bacterium under
study, thus highlighting possible biomarkers. Nevertheless, these findings need to be
then validated in ex vivo and in vivo scenarios. Different analytical techniques are com-
monly used in VOC analysis, including: sensor-based electronic noses [9,10], microfluidic
colorimetric assays [11], selected ion flow tube–mass spectrometry (SIFT-MS) [12], pro-
ton transfer reaction mass spectrometry (PTR-MS) [13], ion mobility spectrometry (IMS)
with gas chromatographic pre-separation by a multi-capillary column (MCC) [14] and
gas chromatography (GC) based techniques coupled to mass spectrometry (MS) [15–17].
The ultimate goal would be to transfer the high level of information acquired using the
aforementioned instrumentations into an easy and straightforward point-of-care (POC)
device to target the biomarkers identified.

In this context, the aim of this work is to investigate the biomarker candidates pro-
duced by different mycobacteria species for their classification to contribute to the knowl-
edge needed to develop a reliable POC device, and to provide a reference point for future
validation of ex vivo and in vivo studies. Here, a simple, ready-to-use headspace solid-
phase microextraction (HS-SPME) GC-MS analytical platform was applied to the putative
identification of in vitro biomarkers among seven different mycobacteria species belonging
to three different complexes. SPME has been used widely for the analysis of VOCs since
its invention in the early 1990s [18,19]. SPME is a simple and effective sample preparation
technique which combines sampling, isolation and concentration in a single step. After
preconcentration, VOCs from mycobacteria were analyzed by GC-quadrupole (q)MS. The
detected analytes were treated with different data processing techniques and the discrimina-
tory capability of the selected volatiles was evaluated. Chemometrics is a well-established
aid in the discovery of differences between samples with many variables [20]. In this
context, a random forest (RF) machine learning algorithm was applied to select a panel of
discriminatory features able to distinguish among different mycobacteria species.

2. Materials and Methods
2.1. Chemical and Reagents

Hexane was HPLC grade (MilliporeSigma®, St. Louis, MO, USA). A mixture of
normal alkanes (C6–C20) was purchased from Supelco (Bellefonte, PA, USA). The mixture
of alkanes was injected to calculate the linear retention index (LRI).
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2.2. Sample Preparation
2.2.1. Bacterial Strains, Culture Conditions

Seven mycobacteria species [M. abscessus (Abs), M. bollettii (Bol), M. massiliense (Mas),
M. avium (Avi), M. intracellulare (Int), M. chimaera (Chim) and M. bovis (BCG))] were used
for all experiments and culture conditions [21]. The considered species belong to three
different Mycobacterium complexes: (1) M. tuberculosis complex (MTB), which includes
BCG; (2) M. avium complex (MAC), which includes Avi, Int, and Chim; (3) M. abscessus
complex (MAB), which includes Abs, Mas, and Bol. All species were cultured aerobically
(30 mL, 37 ◦C, 200 rpm shaking) in Difco Middlebrook 7H9 Broth (Becton Dickinson,
Franklin Lakes, NJ, USA) containing Tween 80, glycerol and 10% Difco Middlebrook ADC
enrichment (BD, Franklin Lakes, NJ, USA) placed into storage at −80 ◦C until use in this
study. Bacterial growth conditions were the same as reported in [21]. Briefly, the bacterial
growth was evaluated by measuring the optical density of the culture at 600 nm (OD600)
(Helios Omega UV/Vis (Thermo Fisher, Waltham, MA, USA). After an OD600 of 2.0–2.5
was reached, cultures were transferred to 50 mL conical flasks, placed on ice to stop the
metabolism, and centrifuged (8000 rpm, 4 ◦C, 10 min). In total, 5 mL of culture supernatant
was transferred to a 20 mL air-tight glass headspace vial after centrifugation. Six biological
replicates were prepared for each sample.

2.2.2. Sample Preparation

The volatile in the headspace of the culture supernatant was extracted using a
poly- dimethylsiloxane/carboxen/divinylbenzene (PDMS/Car/DVB) SPME fiber (Su-
pelco, Bellefonte, PA, USA) for 20 min at 37 ◦C. All samples were agitated at 250 rpm and
incubated for 15 min before fiber exposure at the corresponding extraction temperature.

2.3. Analytical Instrumentation

All GC-qMS analyses were carried out on a Shimadzu GC2010 and a TQ8050 triple
quadrupole mass spectrometer (Shimadzu, Columbia, MD, USA) equipped with an AOC-
6000 autosampler. The single quadrupole acquisition mode was exploited on the TQ8050
MS. The SPME fiber was desorbed into the GC inlet at 250 ◦C for 2 min in splitless mode.
Data were acquired by using the GCMS solution software ver. 4.45 (Shimadzu).

The column employed was an SLB-5 ms [(silphenylene polymer, practically equivalent
in polarity to poly (5% diphenyl/95% methylsiloxane)], with the following dimensions:
30 m × 0.25 mm ID× 0.25 µm df (Supelco, Bellefonte, DE, USA). GC temperature program:
40 ◦C (hold 1 min) −240 ◦C at 3 ◦C/min, then to 350 at 20 ◦C/min. Helium head pressure
(constant linear velocity mode 35 cm/s) was 48 kPa. The MS system was run in full-scan
conditions: scan speed 2000 amu/s; mass range 45–400 m/z. Interface and ion source
temperatures: 200 and 250 ◦C.

2.4. Statistical Analysis

Raw GC-MS data sets were post-processed and aligned all together using R package
XCMS [22]. A signal-to-noise ratio threshold of 10 was applied for peak detection, extracting
the most abundant m/z for each peak. All statistical analyses were performed using R
v3.3.2 (R Foundation for Statistical Computing, Vienna, Austria).

3. Results and Discussion

Seven different species of mycobacteria were investigated by HS-SPME-GC-MS, plus
the medium for control purpose. Six biological replicates were analyzed for each class.
Two replicates (one Avi and one medium) were lost due to a technical problem during
sample preparation. Therefore, a total of 46 samples were used in the following analysis.
Figure 1 shows a representative VOC total ion chromatogram profile for each species.
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Figure 1. GC-MS total ion current (TIC) chromatogram obtained for the seven different mycobacteria and the medium.
Abs—M. abscessus; Avi—M. avium; BCG—M. bovis; Bol—M. bollettii; Chim—M. chimaera; Int:—M. intracellulare; Mas—M.
massiliense; Media—growth media.

The data matrix obtained after alignment, consisting of 879 total features, was first pol-
ished by removing common contaminants (e.g., siloxane and phthalates) and then reduced
based on a frequency of observation (FOO) cutoff of 50% (i.e., features present in at least
three out of six samples within one class were retained for further statistical evaluation),
in order to retain the most consistent peaks, resulting in a final data matrix of 667 fea-
tures. Prior to further statistical analyses, the relative abundance of compounds across
chromatograms was normalized using Probabilistic Quotient Normalization (PQN) [23]
and log-transformed [15]. On this data matrix, the Pearson’s correlation coefficient was
calculated to evaluate the correlation of the overall profile within the biological replicates
(Figure 2). Average correlation coefficients within the same class were all above 0.70 (Abs:
0.77; Avi: 0.84; BCG: 0.77; Bol: 0.84; Chim: 0.85; Int: 0.73; Mas: 0.67) except for the Mas
species which contained an outlier (Mas1, circled in red in Figure 2) was detected and
removed. The removal of the outlier increased the correlation amongst the remaining
Mas replicates, with a Pearson coefficient of 0.95. This Pearson test confirmed the high
consistency of the sampling and measurements.

To test for statistical significance, the Kruskal–Wallis (KW) test [24], with post-hoc
Dunn test and Benjamini–Hochberg (BH) correction [25] to minimize the false discovery
rate, was used. All features not significantly different (p > 0.05) between the different
mycobacteria species and the medium were removed, obtaining a panel of 607 features.
This panel was used for a first evaluation of the discriminatory capability of the VOC
profile. The principal component analysis (PCA) obtained, along with the flowchart to
reduce to the panel of 607 features, are reported in Figure 3. The PCA showed a rather
low total variance of 38%. The discrimination between the groups was not very clear.
Only the medium and the group of Bol were well separated from the others in the PCA
space, while the other species were spread on the PCA space giving two different clusters:
one containing Mas + Abs (bottom left of the PCA in Figure 3) and another big cluster
containing the other four mycobacteria species, Avi + BCG + Chim + Int (the top-right of
the PCA in Figure 3).

Due to the high dimensional nature of -omics data, it is essential that machine algo-
rithms are selected which can handle cases when the number of features far outweigh
the number of samples [26]. Moreover, these algorithms need to also be able to handle
highly correlated features (multicollinearity). In this context, to improve the discrimination
capability of the overall classification, the random forest (RF) algorithm was applied to
select and retain the most discriminatory features. RF is a machine learning algorithm that
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works by generating many classification trees, using randomly selected subsamples of both
features and data points. Features are ultimately selected based on which variables best
divides the data according to class at each split [27]. A six-classes analysis was carried out.
Features were ranked according to their mean decrease accuracy. In total, 13 features were
selected to maximize the accuracy of the model (Table 1).
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number following the abbreviation stands for the replicate number. An outlier—The sample circled in red (Mas1, top right)
resulted as an outlier and was excluded from further data elaboration.
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Table 1. Panel of 13 discriminatory features of seven mycobacteria species after random forest data reduction. Number of
features, chemical name, CAS number, MS similarity (%), LRI calculated, LRI in NIST library (LRI lib) and retention time
(Rt) are also reported.

FT n. VOC CAS MS% LRI LRI lib Rt

FT0347 2-Butanol, 2,3-dimethyl- 594-60-5 83 649 645 2.31
FT1087 Hexanal 66-25-1 94 800 801 5.31
FT0867 Furan, 2-butyl- 4466-24-4 83 888 890 7.98
FT1559 Furan, 2-methyl-3-(methylthio)- 63012-97-5 84 942 946 10.23
FT0792 Phenylacetaldehyde 122-78-1 85 1037 1045 14.50
FT1522 unknown 1074 16.27
FT1525 (Z)-2-Hexenal diethyl acetal 87383-46-8 81 1078 1077 16.49
FT1527 Decanal 112-31-2 81 1171 1187 20.86
FT1698 2-Nonenoic acid, methyl ester 111-79-5 81 1189 1191 21.79
FT1521 unknown 1270 25.51
FT1866 unknown 1326 28.03
FT2028 unknown 1462 33.85
FT2272 Ethyl 4-t-butylbenzoate 5406-57-5 80 1498 1487 35.42

The samples were visualized again using a PCA and heatmap (HM) but limiting the
data matrix to the selected 13 features (Figure 4). The variance explained by the 2D-PCA,
considering both the first and the second principal components, was improved from 38%
to 62%. All the different mycobacteria species were well discriminated, resolving most
of the misclassifications present in the PCA built with the panel of 607 features (example
the misclassification of sample Int5, Figure 3). Moreover, proximity-based on the complex
they belong to, namely MTB, MAB and MAC were also depicted both on the PCA and
heatmap. On the right side of the heatmap and on the bottom of the PCA, we can observe
the proximity of Int, Avi and Chim, belonging to the MAC complex. On the left side,
Abs and Mas are clustering together, as both belong to the MAB complex. While Bol, still
part of the MAB complex, is clustered in a separate branch in proximity to BCG, which
is the only member of the MTB complex. The taxonomic of the MAB complex has been
the subject of intense investigation since a clear classification is still not reach, in fact,
Leao et al. suggested to combine the species MAS and ABS [28]. However, it has been
clearly demonstrated that the two groups are not completely homogeneous, especially in
terms of susceptibility to macrolides [29]. Our results confirmed this difficulty, although
discrimination can be observed between Mas and Abs. Moreover, these two species can be
clearly differentiating from BOL (Figure 4). However, it is not clear why Bol was in such
proximity with BCG, although perfectly separated, at a higher distance compared to the
other species belonging to the same complex.

The panel of the most discriminatory features (n = 13) is reported in Table 1. The table
contains the original number of features (FT), the name of the VOC, experimental LRI and
the LRI reported in the literature along with the MS similarity match with the library. The
compounds were putatively identified based on the combination of a dual filter: the MS
similarity with the NIST17 library (≥80%) and the experimental linear retention index
(LRI) within a ±5 range compared to the literature on the same or equivalent column
phase. Compounds that did not match with the previous filters were assigned as unknown.
Considering the combination of the filters used for the identification of the discriminatory
features (MS similarity + LRI), it was possible to name 8 out of 13 volatile molecules
(Table 1). Figure 5 shows the box-plot of each discriminatory features (FT) and how
they were discriminatory among and within the three mycobacteria complex. FT1559
(Furan, 2-methyl-3-(methylthio)-) and FT0867 (Furan, 2-butyl-) were discriminant among
each Mycobacterium complex (MAB, MAC, and MTB), while FT0792 (Phenylacetaldehyde),
FT1866 (unknown) and FT1521 (unknown) were discriminant within either the MAB
complex (resolving the overlapping between MAS and ABS), or the MAC complex, well
separating the classes of the mycobacteria belonging to these complexes individually.
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Figure 4. On the top, data feature reduction using RF algorithm, leading to generation of a panel of 13 most discriminatory
features. On the bottom left, PCA of seven mycobacteria species plotting the panel of 13 features. On the bottom right,
the dendrogram (top of the heatmap) depicts the relatedness amongst samples. Color scheme for samples is based on the
mycobacteria species. Legenda: FT0347, 2-Butanol, 2,3-dimethyl-; FT1087, Hexanal; FT0867, Furan, 2-butyl-; FT1559, Furan,
2-methyl-3-(methylthio)-; FT0792, Phenylacetaldehyde; FT1522, unknown; FT1525, (Z)-2-Hexenal diethyl acetal; FT1527,
Decanal; FT1698, 2-Nonenoic acid, methyl ester; FT1521, unknown; FT1866, unknown; FT2028, unknown; FT2272, Ethyl
4-t-butylbenzoate. Mycobacteria species and complex are reported in Section 2.2.1.
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(Z)-2-Hexenal diethyl acetal; FT1527, Decanal; FT1698, 2-Nonenoic acid, methyl ester; FT1521, unknown; FT1866, unknown;
FT2028, unknown; FT2272, Ethyl 4-t-butylbenzoate. Mycobacteria species and complex are reported in Section 2.2.1.
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4. Conclusions

In the present study, clinical isolates of seven mycobacteria species were analyzed
using HS-SPME/GC-qMS and a panel of molecules was selected for species-level discrimi-
nation. Although more sophisticated analytical tools in combination with SPME are often
used in VOCs analysis, e.g., multidimensional comprehensive GC and/or high-resolution
MS, GC-qMS proved to still be an effective simple(r) tool to discriminate among different
bacteria strains based on their volatile profiles. The fusion of GC-qMS with advanced
machine learning algorithms (i.e., random forest) for model building and feature selection
results a powerful marriage to unveil the hidden structure of complex metabolite profiles.
A panel of 13 features was obtained after the RF model and this panel could be used to
distinguish among mycobacteria classes belonging to different complexes. In total, 8 out of
13 discriminatory volatile molecules were also tentatively identified based on MS similarity
and LRI. These results provide a proof-of-concept that mycobacteria’s VOCs profiles hold
a diagnostic utility for clinical applications in differentiating mycobacteria at the species
level, even though more research testing in vivo cases should be performed to confirm
their translatability.
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