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Broad in energy optical pulses induce ultrafast molecular dynamics where nuclear degrees 

of freedom are entangled with electronic ones. We discuss a matrix representation of wave 

functions of such entangled systems. Singular Value Decomposition, (SVD) of this matrix 

provides a representation as a sum of separable terms. Their weights can be arranged in 

decreasing order. The representation provided by the SVD is equivalent to a Schmidt 

decomposition. If there is only one term or if one term is already a good approximation, the 

system is not entangled. The SVD also provides either an exact or a few term approximation 

for the partial traces. A simple example, the dynamics of LiH upon ultrafast excitation to 

several non-adiabatically coupled electronic states is provided. The major contribution to 

the entanglement is created during the exit from the Franck Condon region. An additional 

contribution is the entanglement due to the nuclear motion induced non-adiabatic 

transitions. 
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1. Introduction 

Progress in laser atto science has now reached the point where few cycle, few femtosecond 

pulses are available in the deep UV1, 2 and could promote neutral polyatomic molecules to 

bound excited states, thereby providing new insights on photodynamics in small and bio 

molecules3-9 and large band gap materials.10 The broad energy width of 2-3 fs pulses in the 

deep UV means that several electronic states are coherently excited.11, 12 The short excitation 

time also implies that the nuclear configuration of the molecules is localized in the Franck 

Condon (FC) region. Due to the localization the vibrational wave functions are coherent 

superpositions of stationary vibrational states. Even starting with a cold molecular ground 

state, shortly after excitation by the short pulse, the wave function of the excited state 

typically cannot be written as a product of electronic and vibrational wave functions. Rather, 

the wave function describes an entangled motion of electronic and nuclear modes meaning 

that they cannot be described independently of one another. There is no electronic state of 

the molecule nor is there a vibrational state. 

Entanglement is an extensively discussed strictly quantum phenomena. 13-15 It is often, as in 

quantum computing,14 used for (two or more) identical systems that are coupled. The early 

example was two entangled photons emitted from the same source.16, 17 But the two systems 

need not be identical, one can entangle vibrational modes in a polyatomic molecule,18 or 

scattering channels in chemical reactions.19, 20 Entanglement between the electronic and 

nuclear degrees of freedom was previously studied for stationary eigenstates of vibronic 

Hamiltonians21, 22 and also for time-dependent vibronic wave functions23-26 Here we 

highlight the coupling of two motions that are characterized by qualitatively different time 

scales, the electrons and the nuclei and how it affects the time evolution of their 

entanglement. The entanglement of the two is the physical opposite of the Born-

Oppenheimer separation. It is made possible by the ultrafast optical excitation.27-29 Ultrafast 

attosecond photoionization and the resulting entanglement between the photoelectron and a 

cation can also be used to probe the vibrational coherences of the cation.30  

To solve the dynamics it is practical to represent the Hamiltonian and other operators as 

matrices in a finite basis. For the electrons we use Ne adiabatic electronic states covering the 

energy span of the optical pulse. Since the initially excited state is in the FC region we use 

orthonormal functions  localized on points of a discrete grid, one grid per vibrational gi
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coordinate.11 For the LiH diatomic molecule that will be our numerical example we use a 

grid of Ng points. A wave function in a Ng x Ne dimensional space is a tensor product or 

explicitly a double sum of electronic and grid terms. The adiabatic electronic states, , 

are obtained by diagonalizing the electronic Hamiltonian at each grid point. Near points of 

avoided crossings such electronic states can be quite different for nearby grid points. The 

non crossing rule insures however that the index j is unique and therefore the wave function 

   (1) 

is a sum of terms separable in the electronic and vibrational (= grid) indices. 

Our aim is to reduce the number of terms in Eq. (1) that are necessary for an exact or a 
realistic approximation. We shall show that a finite single sum of Ne or even fewer terms 
suffices. This resulting single sum of terms is equivalent to the Schmidt decomposition.13, 

14, 31 The number of terms in that single sum is called the Schmidt number or the rank of the 
state. It provides a quantification of the entanglement of the state: a separable state will have 
a Schmidt decomposition involving only one term and will therefore have a Schmidt number 
of 1 whereas an entangled state will have a larger Schmidt number. The compaction of the 
wave function to a single sum also offers a useful route to the partial traces. These arise 
when one intends to compute expectation values involving observables that act only on one 
system and not on the other.14  
 

2. Theory 

2.1 The matrix representation of the wave function 

We rewrite the vector a of the coefficients of the wave function at each time point as a 

rectangular Ng x Ne matrix:  

  (2) 
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This operation is the inverse to the vectorization of a matrix32 and is called matricization. It 

takes a clear advantage of the physics of the problem where each column is the coefficients 

along the grid of a particular electronic state while each row is the coefficients of the 

different electronic states at a particular grid point. The rectangular matrix A can be resolved 

using the singular value decomposition theorem,33 SVD, in the form: 

  (3) 

For the typical case where Ng > Ne, one can show that A has at most Ne finite singular values 

that are all positive and  is a diagonal matrix of dimension Ne x Ne with the singular values 

along its diagonal.  and  are respectively the left and right singular vectors of A. The 

vectors can be chosen as orthonormal so that  and . A compact 

form of the matrix A is and it is also useful to note the pair of compact identities 

 and . 

 

2.2 The chemical physics of the singular vectors 

The singular vectors are the eigenvectors of the square and non-negative matrices  and 

, explicitly  and . It follows that the singular vector  

has the (shorter) length, Ne , and its components are the components of the different 

electronic states of the system in this n’th singular vector. We call the vectors  the 

electronic singular vectors below.  On the other hand, the singular vector  has the 

(longer) length, , and its components are the components of the different states of the 

grid in this singular vector. We call them the nuclear singular vectors. In the single sum of 

separable terms  is the electronic part and  is the nuclear or grid part. 

The essential practical point is that the SVD theorem states that when we keep Ne terms, the 

maximal possible number, the SVD representation of A is exact. However, if we rank the 

A =
n
∑σ nunvn

†

Σ

un vn

Avn =σ nun A†un =σ nvn

A = UΣV†

A†A = VΣ2V† AA† = UΣ2U†

A†A
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(positive) singular values  by their decreasing size and keep only a smaller number, say, 

 , of terms in the sum 

  (4) 

the approximation is the best possible one, in the sense of matrix norm, keeping only a 

smaller number, Nmin , of terms in the sum. Keeping more terms by increasing the value of 

Nmin provides a better (or unchanged) approximation. Note that the previous terms are 

unchanged and only one or more additional terms are added. The lowest number, Nmin = 1, 

corresponds to the separable state, a state of Schmidt rank unity.  

2.3 The partial traces 

When one wants to consider observables defined only for a particular subsystem it is useful 

to define the concept of a partial trace. The expectation value of an observable  that is 

diagonal in the electronic subspace, , and independent of the nuclear system in the 

entangled state , Eq. (1), is  

  (5) 

This motivates the definition of a partial trace over the nuclear states as the density matrix 

    (6) 

It is seen that the diagonal elements of the sum, , are the populations of the 

different electronic states while the off-diagonal elements are the electronic coherences. 

This justifies regarding  as a density matrix for the electronic degrees of freedom. In 

terms of the matrix A on which we perform the SVD, we write the density  as 

σ n

Nmin

A = σ nunvn
†
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Nmin
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   (7) 

Correspondingly one can define a partial trace over the electronic degrees of freedom: 

   (8) 

with the matrix form . Note that both partial trace matrices have a unit trace as 

expected. Either one can be expressed in terms of the singular vectors, for example: 

   (9) 

 

 2.4 An optimal approximation 

The Schmidt decomposition of the wave function keeping all the singular values is an exact 

representation. There is however an important secondary conclusion: The analysis based on 

the SVD theorem shows that the Schmidt decomposition of the wave function provides the 

minimal number of separable terms that are needed to achieve a given accuracy. The more 

terms are kept the more accurate is the result. Even keeping just one term, which is a 

separable approximation, is in general a better approximation than keeping just one term in 

the starting form, Eq. (1), of the wave function. 

The Schmidt decomposition of the wave function is based on using Eq. (3) for the 

coefficients  in Eq. (1) 

   (10) 

Here N is the number of singular values or the Schmidt rank. If N is the number of singular 

values of the matrix A, equations (2) and (3), then equation (10) is exact. When we rank the 

(non negative) singular values by size and keep the leading  values then equation 

(10) is the best separable approximation. As is clear from the derivation, the separable states 

are linear combinations of the basis states with weights determined by the singular vectors:  
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∗

j∑( ) gi '
ρn = AA

†

ρel = A
†A = σ n

2
n∑ vnvn

†
, ρn = AA

† = σ n
2

n∑ unun
†

aij

Ψ =
i=1

Ng

∑
j=1

Ne
∑ σ nuinv jn

†

n=1

N
∑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
gi e j

= σ n uin gi
i=1

Ng

∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟n=1

N
∑ v jn

†

j=1

Ne
∑ e j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= σ n un vn
†

n=1

N
∑

N = Nmin



 
7 

   ,    (11) 

As a practical matter note that when we increase the number N of terms in Eq. (10) we do 

not need to change the already included separable terms. The new terms add up without 

modification of the earlier ones. 

From the expression of the wave function in terms of the singular components (Eq. (10)), 

one can readily write the expression of the full density matrix: 

 (12) 

Eq. (12) does not lead to a separable expression in terms of the partial traces  and  

defined above. Its terms  off diagonal in the singular index are essential for 

describing the vibronic coherences in observables such as the dipole moment or the total 

momentum, see the Results and Discussion section below. 

 

 2.5 An illustration of this approach: the photoexcitation of LiH 

We chose the LiH molecule to provide an illustration for the description of the time 

evolution of the entanglement for two reasons: being a diatomic molecule, a grid-based 

description of the wavefunction is greatly simplified, thereby significantly decreasing the 

computational cost of the dynamics; and the computational data was already available 

within our group. The simple one-dimensional grid also allows developing a better intuition 

of the singular vectors of the nuclei as previously described. 

The electronic structure of the LiH molecule was computed at the state averaged CAS-SCF 

(4, 20) level using the 6-311++G(3df, 3dp) Gaussian basis set as a function of the 

internuclear distance, as described in ref. 34. Only the first seven Σ electronic states were 

retained in the description of the dynamics. This provided the potential energy curves (PEC) 

for each electronic state as well as the non-adiabatic couplings (NAC) between them. The 

potential energy curves, the NAC curves are plotted in Figure 1a. The curves of the 

un = uin gi
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∑ e j
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transition dipole curves are given in Figures S1 and S2 of the Electronic Supplementary 

Information (ESI). 

The wavefunction of the molecular system is described onto a grid of 512 points along the 

internuclear distance R. In this basis, the wavefunction has the expansion given in Eq. (1).  

In this basis, the matrix of the molecular Hamiltonian for the LiH molecule takes the 

following form (we use atomic units, a.u., throughout) 

  (13) 

In Eq. (13), i and k are indices on the grid and j and l indices of the electronic states. 

is diagonal on both nuclear (i,k) and electronic (j,l) indices and correspond to the 

potential energy for a given electronic state and at a given nuclear geometry.  is 

diagonal on electronic indices, but non-diagonal on the grid and describes the nuclear kinetic 

energy. This nonlocal operator is approximated by fourth order finite differences.11 The 

third term describes the non-adiabatic interactions, which couple the derivative couplings 

between electronic states  and the momentum on the grid . The last term 

describes the interaction of the molecule with the electric field of the optical pulse, , in 

the dipole approximation. The transition dipole moments between two electronic states, 

, are diagonal on the grid.  

The quantum dynamics is computed by solving numerically the time-dependent 

Schrödinger equation using a fourth order Runge-Kutta method. The propagation in time of 

the coefficients, , is by the Hamiltonian using matrix-vector multiplication as was early 

on formulated by Dirac, . The exciting pulse is given by Eq. 

(14) below. It is centered at 12.1 fs, its carrier frequency, , is 5.5 eV, the amplitude of 

the electric field is 0.02 a.u. and its full width at half maximum (FWHM) is 1.98 fs. These 

parameters correspond to a deep UV optical pulse similar to those which could become 

readily available to experimentalists in the near future.2  

Hij ,kl (t) = Vij ,klδ ikδ jl + TN( )ij ,kl δ jl − τ jl δ ik( ) ⋅pij ,kl −E(t) ⋅ µ jl( )δ ik

Vij ,klδ ikδ jl

TN( )ij ,kl δ jl

τ jl δ ik( ) pij ,kl

E(t)

µ jl( )δ ik

aij

i daij t( ) dt = kl∑ Hij ,klakl t( )
!ν
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 (14) 

 

3. Results and discussion 
To investigate the time evolution of the entanglement in the LiH molecule, we first 

computed the time evolution for the probabilities of each electronic state, j, 

. This evolution is plotted in Figure 1b. 

 

Figure 1. (a) Potential energy curves of the 8 lowest Σ states of LiH.34 The FC region is 

shown the energy bandwidth of the UV pulse are shown in shaded grey areas. (b) Time 

evolution of the populations of the electronic states, , computed for the 

dynamics that includes the NAC in the Hamiltonian (Eq. (13)) and (c) the dynamics without 

NAC (c). The excited electronic states are identified in the inset. The time profile of the 

electric field of the exciting pulse is represented by the black dotted line. 

 

Before the pulse, the wave packet is localized only on the ground state (GS). The optical 

pulse then causes amplitude transfer from the GS towards excited electronic states which 

possesses the largest electric dipole moment from the GS in the FC region. These states are 

the Σ!  and Σ"  electronic states while Σ#	is almost dark, see Figure S2 for the transition 

dipole moments. After the pulse, the population on the ground state remains essentially 

constant, whereas the populations of the higher excited electronic states significantly change 

in the first 50 fs due to the effect of non-adiabatic couplings (NAC). The strongest NACs 

E t( ) = − dA(t)
dt

= E0  êexp −
t − t0( )2
2σ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
cos ω t +φ( )− sin(ω t +φ)(t − t0 )

ωσ 2

⎛
⎝⎜

⎞
⎠⎟

Pj (t) = | aij (t) |
2

i
∑

Pj (t) = | aij (t) |
2

i
∑
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(Figure S1) are taking place between the pairs of states, Σ" -	Σ#, and Σ# - Σ!, in the range of 

2 to 5 Å, which results into an amplitude transfer from the two most populated excited states, 

Σ" and Σ!, to Σ# at the exit of the FC region up to ≈ 25 fs and then to a transfer back to these 

two states from Σ# at ≈ 30 fs. At longer times, the populations in Σ" and Σ! are the largest 

and do not vary significantly. There are exchange of population between Σ" and Σ# due a 

smaller NAC coupling between 5 and 10 Å. 

To gain insight into the impact of NAC in the entanglement during the time evolution, 

another dynamics was computed without including the NAC (which amounts to removing 

the  terms in the Hamiltonian of Eq. (13)). For comparison, the time evolution 

for the populations of each electronic state of this dynamics without NAC is shown in Figure 

1c. They are stationary after the pulse. This does not mean, however, that the wave packets 

are not moving on their respective electronic state but rather that there is no amplitude 

transfer. Note also that when the NAC is not included in the dynamics, there is essentially 

no population in Σ#. 

We compute the SVD of the wave function at each time of the dynamical evolution to assess 

the rank of the best possible approximation of the wave function at each moment of the 

dynamics. At each value of time, we obtain a set of singular values, and a left and right 

eigenvector, the nuclear and electronic singular vectors respectively. The time evolution of 

the singular values,  in Eq. (4), is plotted in Figure 2 for the case of the dynamics that 

includes the NAC in the Hamiltonian (Eq. (13)) shown in Figure 1b. 

 

τ jl δ ik( ) ⋅pij ,kl

σ n
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Figure 2. Time evolution of the singular values, , Eq. (4), computed for the dynamics 

that includes the NAC term in the Hamiltonian (Eq. (13)) shown in Figure 1b. The time 

profile of the electric field of the exciting pulse is shown in dotted lines. 

Before the pulse, the wave packet is localized in the GS, a situation which is a trivial 

example of a separable state. This is confirmed by the presence of only one singular value 

(black line in Figure 2) in the decomposition. During the pulse, amplitude transfers begin to 

take place between the GS and the excited electronic states, leading to the appearance of 

second singular value (violet) in the second half of the pulse. The overall state of the 

molecule is now entangled, as its Schmidt decomposition (Eq. (10)) requires more than one 

term. Shortly after the end of the pulse, after ≈ 15 fs, a third singular value (blue) arises. A 

fourth and a fifth smaller singular values arise at later times, at 20 and 30 fs respectively 

and a 6th one at ≈ 60 fs. The 4th and 5th singular eigenvalues get very close at ≈ 25 fs  and 

then at ≈ 70 fs, see figures S3 for a focus on this range of time. At each time step, the singular 

values are obtained as the eigenvalues of a semi-positive Hermitian matrix, Eqs. (9). When 

considered as a function of time, the different eigenvalues do not cross. The 4th and 5th 

singular eigenvalues get very close at ≈ 25 fs  and then at ≈ 70 fs but do not cross since we 

have one dimension for the nuclear motion, see figures S3 for a focus on this range of time. 

The first avoided crossing is due to the strong non adiabatic interaction between	Σ#	 and 	Σ"	 

in the range 3-5 Å (see Figure S1) and the second to the NAC between these two states at ≈ 

10 Å. At the avoided crossings, the relative weights of the singular electronic eigenstates on 

	Σ# and 	Σ"	interchange (Figure 5c below and Figure S3) but there is no discontinuity in the 

singular nuclear states.  

The significance of a singular value can be assessed from how much it contributes to the 

trace of the full density matrix, . We show in Figure 3 the 

convergence of  computed for an increasing number of singular values. The trace 

of the density matrix is reaching values very close to unity with 2 singular values at the end 

of the pulse and a third and a fourth one are needed after ≈ 30 and ≈50 fs respectively. The 

5th and the 6th have negligible contributions. 

σ n

Tr ρ t( )⎡⎣ ⎤⎦ = n∑ σ n
2 t( ) = 1

Tr ρ t( )⎡⎣ ⎤⎦
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Figure 3. Convergence of  as a function of the number of singular values included 

in the sum. Red: only the largest singular value is included, violet: the first two are included, 

azure: the first three, green : the first four. At 100fs, about 2/3 of  is recovered by 

1 singular value, 87% by 2, 95 % by 3 and 98 % by 4.  

The time evolution of the entanglement of the wave function is governed by the time 

evolution of singular values shown in figure 2. In order to understand which features of the 

dynamics govern their timings, we next turn to the physical meaning of the left and right 

singular vectors in the decomposition (4). 

As discussed in section 2 above, the right singular vectors, vn, represent the electronic 

component of a given term in the singular decomposition, Eq. (4). Their time evolution 

reflects the time evolution of the localization of the wave packet on the electronic states. 

The left eigenvectors, un, correspond to the weights of the singular states on the grid and 

provide the complementary picture of their localization in the nuclear subspace as time 

evolves. In the following, we call the left singular eigenvectors, un, and the right singular 

eigenvector, vn, the nuclear and electronic singular eigenvectors respectively. 

The physical meaning of the first singular state in the singular decomposition (Eq. (4)) is 

seen in Figure 4a and b, where the weights of the electronic singular eigenvector, v1, on the 

electronic states are shown in panel a and the localization of the nuclear singular eigenvector 

u1 on the grid in panel b. 

  

Tr ρ t( )⎡⎣ ⎤⎦

Tr ρ t( )⎡⎣ ⎤⎦
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Figure 4. Physical meaning of the first and the second singular states. (a) Time evolution of 

the weights, , Eq. (11), of the electronic singular eigenvector, v1, of the 

decomposition Eq. (4) on the electronic states for the first 100 fs of the dynamics (the color 

code is the same as in Figure 1, see inset). (b) Heatmap of the weights, , Eq. (11), of 

the nuclear singular eigenvector, u1, on the grid points, i (R, ordinate) as a function of time 

(abscissa). (c) Time evolution of , (d) Heatmap of localization of  as a 

function of time on the grid. The weights are multiplied by square of the singular values, 

, n=1 or 2. The color code for the heatmaps is shown as an inset in b) and d).  

 

As can be seen from Figures 4a and b, the first component of the singular decomposition, 

Eq. (4), is localized on the GS in the FC region. During and shortly after the pulse, v1 

v j1 t( )
2

ui1 t( )
2

v j2 t( )
2

ui2 t( )
2

σ n
2
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acquires significant weights on the Σ" and Σ! states (Fig. 4a). These are the states that fall 

in the energy bandwidth of the pulse (Figure 1a) and carry significant transition dipoles 

(Figure S2). Since the transfer of amplitude to excited states occurs in the FC region, the 

localization on the grid of these three electronic states is fully accounted for by the u1 nuclear  

singular vector during the pulse (figure 4b). After the pulse, the first component remains 

fully localized on the GS and in the FC region. Its magnitude decreases because only ≈ 70% 

of the wave packet remains in the GS. Since the fraction of the wave packet localized on the 

GS is no longer an eigenstate, the oscillations seen in Figure 4b reflect the vibrational 

motion in the GS well. 

The rise of the singular value of the second component, , in the second half of the pulse 

(see Figure 2) corresponds to the decrease in  when the wave packets on Σ" and Σ! begin 

exiting the FC region. At short time (up to 20 fs), the electronic singular vector, , (Figure 

4c), is localized on Σ! and Σ", the two excited states most populated by the pulse (see Figure 

1) and on the GS, with a rising smaller component on Σ#. These four electronic states are 

still mainly localized in the FC region, as shown in Figure 4d. After 30 fs,  is localized 

on the Σ!  state, which is the excited state with the highest population (Figure 1b). The 

changes in the electronic composition are reflected by the localization of nuclear singular 

vector, u2, on the grid shown in Figure 4d. The weight in the FC region progressively fades 

and the localization of the u2 vector shifts to larger R values, that reflects the motion of the 

wave packet to larger R values on the PEC shown in Figure 1a.  

  

σ 2

σ 1

v2

v2
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Figure 5. Physical meaning of the third and the fourth singular states. (a) The weights, 

, Eq. (11), of the electronic singular eigenvector, v3, of the decomposition Eq. (4) 

on the electronic states (same color code as in figure 4). (b) Heatmap of the weights, 

, Eq. (11), of the nuclear singular eigenvector, u3, on the grid points. (c) time evolution of 

the weights, , of the fourth electronic singular eigenvector. (d) Heatmap of the 

localization of the weights, , of the fourth nuclear singular eigenvector on the grid. 

The weights are multiplied by , n = 3 or 4. 

 

The localization of the third component in electronic and grid subspaces is shown in Figures 

5a and b respectively. This component becomes significant after 20 fs. Up to 25 fs, the 

v j3 t( )
2

ui3 t( )
2

v j4 t( )
2

ui4 t( )
2

σ n
2
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electronic singular vector, v3, is mostly localized on the Σ# state, whose population rises at 

the end of the pulse (see Figure 1b) due to the NAC at the exit of the FC region (see Figure 

S2). At 25 fs, the largest weight shifts from Σ# to Σ" to mainly localize on Σ" at long times. 

This shift coincides with the rise of the Σ# component in the fourth electronic singular vector 

v4 (figure 5c). The localization of the nuclear singular vector u3 on the grid (Figure 5b) 

reflects the shift in the dominant electronic state in v3. After 40 fs, one sees two branches 

for u3 on the grid, that reflect the double well of the PES of the Σ" state (Figure 1a). The 

main branch reflects the localization of the third component in the shallow well of Σ" at 

large R values while the less intense one corresponds to the fraction of the third component 

localized in the small well of Σ" close to the FC region. The fourth component (figure 5 c 

and d) has a more minor contribution to the dynamics due to the smaller value of 𝜎!"(𝑡). 

After 25 fs, it localizes on the Σ# state with small weights on Σ$ and Σ%. At short time, the 

nodal patterns seen in Figure 5 b and d are mainly induced by the orthogonality of the un 

vectors. At longer time, in regions of the grid where the non adibatic coupling is strong and 

two adiabatic states contribute to the electronic singular vector, these patterns are modulated 

by the beatings of the vibronic coherence in space and in time. 

The increase of the number of singular values in the decomposition thus reflects the motion 

of the wave packets on the populated electronic states and more specifically its exit from 

the FC region. The motion of several wave packets on the grid leads to a change in the 

entanglement of the system. The switch of the electronic weights of Σ" and Σ# that occurs 

at ≈ 25 fs in the third SVD component results from the interplay between the changes in the 

gradients of the PES (Figure 1a) that drive the motion of the wave packets at different rates 

along the R coordinate and the localization of the Σ"-Σ# NAC on the grid (figure S1).  

We therefore compared the time evolution of the squares of the singular values, 𝜎&, for the 

dynamics with NAC with the time evolution for the dynamic without NAC shown in Figure 

1c. They are shown in figure 6. This provides understanding on the origin of the rise of the 

third  and fourth singular values.  
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Figure 6. Time evolution of the singular values, , n = 2 to 7. Full line: computed for the 

dynamics with NAC (also shown in figure 2), dashed line: computed for the dynamics 

without NAC. The first singular value,  is not shown as there is essentially no difference 

in its value for the two computations. 

 

Interestingly, as can be seen in Figure 6, the rise of  is also observed in the case of 

dynamics without NAC, but the onset of this increase occurs leads to a plateau at a small 

value, followed by a significant rise to a second plateau in the range 30-40 fs. The first 

plateau is not present in the dynamics with NAC for which  rises faster. This suggests 

that the NAC contributes significantly to the entanglement of the state of the molecule 

between 15 and 25 fs, after which the effect of the difference in the gradient of the PEC 

plays a significant role, as can be inferred from figures 1a and S1. In the dynamics without 

NAC, the onset of  is due to the gradient difference between the potential curves of the 

Σ! and the Σ" PEC in the range of R values between 2 and 5 Å, see Figure 1a. Σ" has a 

double well and the second rise occurs at ≈ 40 fs when a fraction of the wave packet on 

Σ"	reaches the second well region. Note that because their change is solely driven by the 

differences between the gradient on the PEC, the singular values computed for the dynamics 

without NAC vary more monotonically. 

The discussion above suggests that up to 100 fs, the first three terms (Nmin = 3 in Eq. (4)) in 

the singular decomposition, with a smaller role of the fourth one, should provide a good 

σ n

σ 1

σ 3

σ 3

σ 3
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approximation of the populations in electronic states and of the electronic coherences, which 

are elements of the partial electronic density,  (Eq. (6)). As shown in Eq. (9), the 

elements of  only depends on the electronic singular vectors vn. As can be seen from 

figure 7a, the electronic population in Σ! is essentially recovered with only the first two 

singular terms, since v2 is localized on Σ! (see figure 4c) when the wave packet is outside 

of the FC region, while for the population in Σ" (figure 7b), the third component is needed 

because v3 localizes on Σ" (figure 5a). Accordingly, electronic coherence Σ"-Σ! (figure 8c) 

are is recovered with three terms as well. We show in the SI, figure S4, the plots for the 

populations in Σ# (Figure S4a) as well as the corresponding electronic coherences, Σ#-Σ! 

and Σ# -Σ" , Figure S4b and c respectively. To recover the exact results for electronic 

populations and coherences that involve Σ#, one needs to include the fourth component, as 

expected from figure 5c. Only the coherence Σ#-Σ! is well approximated with Nmin=3. 

 
Figure 7. Approximation of the time evolution of the population of Σ! (a) and Σ" (b) and the 

electronic coherence Σ"-Σ! (c) using an increasing number of singular values (Nmin=1: red, 

Nmin=2 : violet and Nmin=3 : azure). The exact value is shown in full black lines. 

 

We next discuss the approximation of three observables that depend on the full density 

matrix, , and cannot be cast into a trace on a partial density matrix,  or : the 

dipole moment, , the autocorrelation function,  and the nuclear momentum, 

 given respectively by 

   (15) 

ρel t( )
ρel t( )

ρ t( ) ρel ρn

µ t( ) C t( ) 2

p t( )

µ(t) = Tr[µρ t( )]= i∑ j,k∑ µ jk (gi )ρij,ki(t)
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   (16) 

   (17) 

The electric dipole moment, Eq. (15), is a crucial observable for all light-matter interactions. 

The autocorrelation function (Eq. ((16)) can be used to approximate the yield in high 

harmonics.35 The nuclear momentum, Eq. (17), has both a nuclear dependence that can be 

written as a trace of the nuclear density matrix, , but it also possesses a contribution from 

the electronic motion and NAC. It is not an observable on a partial trace, but the contribution 

from the NAC term is small. The nuclear momentum might therefore be well approximated 

as an observable dependent on the nuclear density matrix only, neglecting the second term 

in the sum of Eq. (17). 

Figure 8 shows that the three observables are well approximated by three singular values, 

(Nmin = 3 in Eq. (4)) with an even better description using four at longer times (not shown). 

The dipole moment (Figure 8a) depends on all the four populated electronic states, Σ', Σ", 

Σ# and Σ! and the electronic coherences between them. Since the autocorrelation function 

(Figure 8b) measures the overlap between the initial wave packet and the wave packet at a 

given time, the only significant contribution to this overlap is the contribution of the ground 

state in the FC region. As the part of the wave packet localized in the FC region requires 

only two singular values to be described, the autocorrelation function is fully described by 

the two largest singular values, and even by one singular value except shortly after the 

exciting pulse. The nuclear momentum (Figure 8c) essentially depends on the nuclear 

component of the singular terms, the un vectors. Two singular components are needed at 

short time, before 25fs, when the wave packets on the different electronic states are still in 

or in the vicinity of the FC regions. Three components are needed at longer times, to 

described the specific nuclear dynamics on each electronic state.  

C(t)
2
= Tr[ρ(0)ρ(t)]=

i,k∑ jl∑ ρij ,kl (0)ρij ,kl (t)

p(t) = Tr[ p̂ρ t( )]= ik∑ jl∑ ρij ,kl (t) pikδ jl +τ jl (gi )δ ik( )

ρn
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Figure 8. Approximation of the time evolution of the dipole moment (a), autocorrelation 

function (b) and nuclear momentum (c) with an increasing number, Nmin, of singular values. 

The exact time evolution is given in full black lines. The legend is shown in the inset of 

panel b and is the same in as Figure 7. 
 

4.  Conclusions 

We described a matrix representation which is suitable for the description of the wave 

function of entangled systems. The decomposition of the matrix by its singular values and 

vectors is equivalent to the Schmidt decomposition of the system and provides us with a 

measure of the entanglement. The physical meaning of the singular vectors was discussed, 

as well as their direct connection with partial density matrices. We also described how an 

approximation of the partial density matrices and of the observables depending on the full 

density matrix can be computed from the SVD. The theoretical framework was then applied 

to the study of the photoexcitation of the LiH molecule, in which we illustrated the physical 

meaning of singular vectors in the molecular system and showed that only a few singular 

values were required in order to approximate well the dynamics. Furthermore, the origin of 

changes in time in the entanglement of the molecule is shown to be due to the motion of 

wave packets of different electronic states on the grid. Two effects were observed as the 

causes of this motion: the leading effect was the interaction with the exciting optical pulse, 

but an additional nuclear motion was caused by the NACs. Finally, we showed numerically 

that partial density matrices elements and related observables could be well approximated 

using few terms of the singular decomposition. 
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† Supplemental figures S1, S2, S3, S4 and S5 are available in the Electronic 

supplementary information (ESI). 
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