Modelling meaning differences in syntactic alternations with token-based vectors

Stefano De Pascale & Dirk Pijpops

RU Quantitative Lexicology and Variational Linguistics, KU Leuven
RU Lilith, ULiège
Structure

1. Challenge in alternation studies in usage-based cognitive linguistics

2. Token-level word embeddings

3. Pilot study: transitive-prepositional alternation in Dutch *grijpen* (naar) ‘grab (at)’

4. Conclusions
1. Alternation studies

- English dative alternation: *She gave me a hockey stick* vs. *She gave a hocky stick to me*

- English genitive alternation: *The president’s hockey stick* vs. *the hockey stick of the president*

- English at-alternation: *she bit her lower lip* vs. *she bit at her lower lip*

- Dutch transitive-reflexive alternation: *Elizabeth ergert John* vs. *John ergert zich aan Elizabeth* ‘Elizabeth annoys John

- …
1. Alternation studies

- Workhorse technique: logistic regression
- Requirement: interchangeable instances vs. categorical instances

→ Undesirable:

The ‘categorical’ instances are hugely interesting, e.g. *verlangen (naar)* ‘desire’

Hij miste de eigenschappen die deze functie verlangde.

‘He lacked the qualities that this function demanded.’
1. Alternation studies

- Workhorse technique: logistic regression

- Requirement: interchangeable instances vs. categorical instances

→ Undesirable:

Only makes theoretical sense if there are strict distinctions between grammatical (and semantic) categories and if grammar is uniform throughout the population

- Categorical rules: (generative) syntacticians

- Variable rules: sociolinguists
1. Alternation studies

- Workhorse technique: logistic regression
- Requirement: interchangeable instances vs. categorical instances

→ Undesirable:

Only makes theoretical sense if there are strict distinctions between grammatical (and semantic) categories and if grammar is uniform throughout the population

↔ Usage-based cognitive linguistics: prototype structure of grammatical categories
 - Words that have properties of several categories, e.g. participles
 - Language users don’t always care about ‘deep’ structural differences if the form and meaning are close enough, e.g. constructional contamination
 - Diachronic fluctuation and synchronic variation, e.g. noun incorporation, grammaticalization
 - ...
1. Alternation studies

e.g. zoeken (naar) ‘search (for)’

We zochten contact met Marijn Gelten, voorzitter van de MD-vereniging.

‘We tried to contact Marijn Gelten, president of the MD-association.’

We zochten [contact met Marijn Gelten, voorzitter van de MD-vereniging]_{DO}

→ Interchangeable instance

We [zochten contact] [met Marijn Gelten, voorzitter van de MD-vereniging]_{PO}

→ Categorical instance
1. Alternation studies

- Workhorse technique: logistic regression
- Requirement: interchangeable instances vs. categorical instances

→ This requirement is forcing us to throw out the highly interesting ‘categorical’ instances
→ This requirement is forcing us to make choices that are theoretically badly motivated

⇒ Methodological problem requires a methodological solution
1. Meaning differences in grammatical alternations

- previous studies have turned to distributional semantic modelling, in particular **type-based vector representations**
 - typically, one separate semantic vector for each relevant word type in the argument slots in the construction, to reveal semantic classes (a.o. Perek & Hilpert, Pijpops)
 - disadvantage: the semantics of these words are treated as isolated from the original instance of the construction

- **here we propose** **token-based vector representations**
 - single semantic vector for a concrete instance (i.e. a token) of the syntactic variant in the alternation (~ BERT embeddings; Fonteyn & Karsdorp 2020; Madabushi, Romain, Divjak & Milin 2020)
 - by averaging the semantic vectors of the specific context words present in that concrete instance
2. Token-level vs. type-level word embeddings

Dative alternation

<table>
<thead>
<tr>
<th>Prepositional variant</th>
<th>The mother</th>
<th>gave</th>
<th>some candy</th>
<th>to the kid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ditransitive variant</td>
<td>The mother</td>
<td>gave</td>
<td>the kid</td>
<td>some candy</td>
</tr>
</tbody>
</table>

- Subject slot
- Recipient slot
- Theme slot
2. Token-level vs. type-level word embeddings

Dative alternation

- **Subject slot**
 - mother
 - corporation
 - friend
 - men
 - voters

- **Recipient slot**
 - kid
 - student
 - people
 - school
 - city

- **Theme slot**
 - advice
 - contribution
 - access
 - power
 - money

- In the aggregate, over all occurrences of the variants in the corpus...

- Type-based vectors for each word in each slot
- Cluster analysis → semantic classes in each slot
- No interaction between classes of different slots, no feedback of concrete interplay of specific lexemes in the corpus occurrence
2. Token-level vs. type level word embeddings

<table>
<thead>
<tr>
<th>Word</th>
<th>1.2</th>
<th>1.4</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>foot</td>
<td>0.4</td>
<td>0.2</td>
<td>3.6</td>
</tr>
<tr>
<td>cry</td>
<td>0.2</td>
<td>2.8</td>
<td>0.5</td>
</tr>
<tr>
<td>sugar</td>
<td>2.1</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>work</td>
<td>3.2</td>
<td>2.9</td>
<td>2.5</td>
</tr>
<tr>
<td>family</td>
<td>0.8</td>
<td>3.3</td>
<td>3.1</td>
</tr>
</tbody>
</table>

The mother gave some candy to the kid.

step1: type-based representations for each context word
2. Token-level vs. type level word embeddings

<table>
<thead>
<tr>
<th></th>
<th>Foot</th>
<th>Cry</th>
<th>Sugar</th>
<th>Work</th>
<th>Family</th>
<th>Sweet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Token</td>
<td>1.2</td>
<td>0.4</td>
<td>0.2</td>
<td>2.1</td>
<td>3.2</td>
<td>0.8</td>
</tr>
<tr>
<td>Type</td>
<td>1.4</td>
<td>0.2</td>
<td>2.8</td>
<td>0.7</td>
<td>2.9</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>3.6</td>
<td>0.5</td>
<td>0.4</td>
<td>2.5</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>1.4</td>
<td>1.2</td>
<td>1.1</td>
<td>2.9</td>
<td>2.4</td>
</tr>
</tbody>
</table>

The mother gave some candy to the kid.

Step 2: average type-vectors of the context words, so to have a single vector representation of a single realization of the alternation variant.
3. transitive-prepositional alternation in Dutch

what’s next:

1. a comprehensive analysis of the full range of variable and non-variable lexical context in which the alternating variants occur

2. zoom in on variable lexical context: is it possible to arrive at generalizations?
3. transitive-prepositional alternation in Dutch

• alternation that occurs
 – with various verbs and verb classes in Dutch: motoric verbs (*graaien, grabbelen*), tractional verbs (*krabben, likken*) etc.
 – with many different prepositions: *aan, bij, naar, tegen* etc.

• *grijpen* vs. *grijpen naar* ‘grab (at)’
 e.g. *de inbreker greep (naar) het mes en stak de bewoner in de buik*
 ‘the burglar grabbed (at) the knife and stabbed the resident in the stomach’

• dataset curated for Pijpops (2019)
 – 11632 sentences with *grijpen (naar)* (and surrounding sentences)
 – manually annotated for inclusion in or exclusion from ‘envelope of variation’
3. transitive-prepositional alternation in Dutch

wha’s next:

1. a comprehensive analysis of the full range of variable and non-variable lexical context in which the alternating variants occur

2. zoom in on variable lexical context: is it possible to arrive at generalizations?
random selection of 600 PO and 600 DO tokens and no formal reasons for exclusion

- **shape coding**
 - prepositional variant:
 - transitive variant:

- **color coding**
 - manually-defined semantic categories (prior to distributional modelling):
 - body parts
 - *macht* (‘power’)
 - prizes & valuables
 - *kans* (‘chance’)
 - abstract/concrete objects (‘opt for’)

Grammar and Corpora 9, Gent, 30.06.2022
3. transitive-prepositional alternation in Dutch

- shape of token space reveals different semantic representations for objects in the DO-variant and PO-variant
 - range of objects for the DO-variant is smaller (macht ‘power’, kans ‘chance’, keel ‘throat’), but each object type is relatively frequent
 → multiple identifiable pockets
 → “tendency of quasi noun incorporation” (Pijpops 2019: 253)
 - range of objects for PO-variant is larger, and it is harder to find internal semantic structure
 → one larger blob of tokens (blue)
 → infrequent and/or less similar nouns
3. transitive-prepositional alternation in Dutch

what’s next:

1. a comprehensive analysis of the full range of variable and non-variable lexical context in which the alternating variants occur

2. zoom in on variable lexical context: is it possible to arrive at generalizations?
1. semi-schematic level of alternation

‘secure [AN ACHIEVEMENT]’
(naar) de titel/prijs/zege grijpen

2. most concrete instantiation of alternation

‘seize power’
(naar) de macht grijpen

really variable contextual slots of (many) DO and (few) PO variants?

shape/color coding
prepositional variant: •
transitive variant: +
3. large, but semantically unstructured space of consistent overlap between DO and PO variants

→ presence variable microcontexts

• […] *greep* de man *naar* het (sic) *brandblusser* en sloeg de chauffeur […]
 ‘the man *grabbed at* the fire extinguisher and and hit the driver’

• […] *greep* het *stuurslot* en sloeg de man ermee […]
 ‘*grabbed* the steering lock and hit the man with it’
4. Conclusions

• Complementary to logistic regression:
 – token-based vectors do not force a distinction between categorical and interchangeable instances, allowing a more comprehensive analysis
 – derive semantic predictors from cloud structure

• Advantages over type-based representations:
 – concrete interplay between lexical slots in a specific corpus attestation of the alternation
 – shape of the semantic space defined by the variants of the construction
Tools & packages

Python 3.6

• nephosem: https://qlvl.github.io/nephosem/
• semasioFlow: https://montesmariana.github.io/semasioFlow/

R

• semcloud: https://montesmariana.github.io/semcloud/

Thank you!

for further information:
stefano.depascale@kuleuven.be, dirk.pijpops@uliege.be
References

