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ABSTRACT

Massive star binaries are critical laboratories for measuring masses and stellar wind mass-loss rates.

A major challenge is inferring viewing inclination and extracting information about the colliding wind

interaction (CWI) region. Polarimetric variability from electron scattering in the highly ionized winds
provides important diagnostic information about system geometry. We combine for the first time

the well-known generalized treatment of Brown et al. (1978) for variable polarization from binaries

with the semi-analytic solution for the geometry and surface density CWI shock interface between

the winds based on Cantó et al. (1996). Our calculations include some simplifications in the form

of inverse square-law wind densities and the assumption of axisymmetry, but in so doing arrive at
several robust conclusions. One is that when the winds are nearly equal (e.g., O+O binaries), the

polarization has a relatively mild decline with binary separation. Another is that despite Thomson

scattering being a gray opacity, the continuum polarization can show chromatic effects at ultraviolet

http://arxiv.org/abs/2205.07612v1


2

wavelengths but will be mostly constant at longer wavelengths. Finally, when one wind dominates the

other, as for example in WR+OB binaries, the polarization is expected to be larger at wavelengths

where the OB component is more luminous, and generally smaller at wavelengths where the WR

component is more luminous. This behavior arises because from the perspective of the WR star, the
distortion of the scattering envelope from spherical is a minor perturbation situated far from the WR

star. By contrast, the polarization contribution from the OB star is dominated by the geometry of

the CWI shock.

Keywords: Spectropolarimetry — Binary Stars — Stellar winds — Massive stars — Wolf-Rayet stars
— Shocks

1. INTRODUCTION

Despite comprising the rarest stellar mass group, mas-

sive stars (> 8 M⊙) are the most important originators

of elements in the Universe because they synthesize and

distribute heavy elements when they explode as super-
novae (Nomoto et al. 2013). Massive stars also enrich

the interstellar medium during their pre-supernova life-

time via their strong stellar winds. High levels of mass

loss also affects the evolution of massive stars, in par-

ticular the nature of their remnants (Puls et al. 2008;
Langer 2012; Smith 2014).

Most massive stars spend a large fraction of their lives

in binary systems with other massive stars; approxi-

mately 50% are thought to engage in mass exchange
with a close companion (Sana et al. 2012). Interac-

tions between companions drive the evolutionary paths

that can shape both stars’ subsequent fates (e.g., Langer

2012; Song et al. 2016).

Colliding-wind binaries can teach us a great deal
about the individual stars and their winds be-

cause the geometry of the interaction region is

dependent on the relative mass-loss rates and ve-

locities of the binary components. Early theories
describing these binaries used momentum flux (e.g.

Girard & Willson 1987) and ram-pressure balance

(e.g. Kallrath 1991), or hydrodynamic models (e.g.

Stevens et al. 1992), and even some semi-analytic work

(e.g. Pilyugin & Usov 2007; Gayley 2009; Usov 1992;
Cantó et al. 1996). Further work in the area has fo-

cused on hydrodynamic simulations (Parkin & Pittard

2008; Lamberts et al. 2011; MacLeod & Loeb 2020)

and predictions of line profiles in both optical (Luehrs
1997; Georgiev & Koenigsberger 2004; Ignace et al.

2009) and X-rays (Henley et al. 2003; Rauw et al. 2016;

Mossoux & Rauw 2021). The result of these models,

combined with a number of phase-resolved observations,

is that we have generally a good understanding of the
expected geometry of colliding winds (e.g. Rauw et al.

1999; Gosset et al. 2001; Sana et al. 2004; Gosset et al.

2009; Williams et al. 2009; Kennedy et al. 2010;

Fahed et al. 2011; Nazé et al. 2012; Cazorla et al. 2014;
Rauw et al. 2014; Lomax et al. 2015; Gosset & Nazé

2016; Nazé et al. 2018; Callingham et al. 2020;

Rodŕıguez et al. 2020).

Given that massive star winds are strongly ionized, it

is natural to consider Thomson scattering as the domi-

nant scattering opacity in the winds, which in turn can
polarize the observed light. The resulting polarization

is sensitive to the geometry of the scattering regions.

The classic Brown et al. (1978, hereafter BME) model

approximates the time-varying continuum polarization

caused by the illumination of circumstellar material in a
binary system viewed at an arbitrary inclination angle.

Those authors assume the electron scattering region is

optically thin. Their approach allows for a general geom-

etry, but for binary stars they consider two point sources
of illumination and a co-rotating scattering envelope.

Brown et al. (1982) extended the BME model to con-

sider elliptical orbits, and Fox (1994) further extended

the formalism to consider finite-size illuminators. Fox

(1994) showed that occultation is only important in very
close binary systems, where the separation of stars is

less than 10 times the radius of the primary. How-

ever, none of these enhancements to the theory specifi-

cally addressed the effects of colliding winds in the time-
dependent polarization results. Furthermore, the effects

of the wind collision regions on the wavelength depen-

dence of polarization have not been considered as part of

this theoretical framework. However, such polarized sig-

nals associated with colliding winds have been observed
in several systems (St.-Louis et al. 1993; Lomax et al.

2015). A modelling effort in this domain is therefore

critically important.

Polarization models of stellar wind bow shock struc-
tures produced by the interaction of stellar winds with

a local ambient medium shows that significant polariza-

tion can arise from scattering of light in these structures

(Shrestha et al. 2018, 2021). Modeling the polarization

signal caused by colliding wind geometries has been done
specifically for the system V444 Cyg (St.-Louis et al.

1993; Kurosawa et al. 2002), but a general formalism

has not yet been produced. In this paper we derive a

consistent model for the polarization signal produced by
wind collision regions in massive binary systems. In Sec-

tion 2 we describe our model of polarimetric variability

from optically thin electron scattering in a shock illumi-
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nated by two stars. In Section 3 we derive expressions

for the polarization signal based on the system parame-

ters, and show how these expressions lead to chromatic

and orbital effects in polarization. We summarize our
results in Section 4.

2. POLARIMETRIC VARIABILITY FROM THIN

ELECTRON SCATTERING

Our treatment is based on that of BME, who pre-

sented a thorough theoretical construction for thin elec-

tron scattering in a generalized envelope with an arbi-

trary number of illuminating point sources. In regards
to our application for a binary system, we assume the

colliding wind interaction (CWI) is axisymmetric about

the line of centers (LOC) joining the two stars (i.e., we

ignore the Coriolis effect in our example cases, though
this has been detected in at least one colliding-wind bi-

nary; Lomax et al. 2015). We further assume that the

separate winds of the two stars are each spherically sym-

metric up to the CWI. As a result, in the notation of

BME, we have γ1 = γ2 = γ3 = γ4 = 0, and the only fac-
tors that are nonzero are γ0 and τ0. In our development

we will modify this notation slightly.

BME then considered the more limited scenario of a

binary system with a circular orbit and corotating en-
velope. Our approach allows for elliptical orbits (which

Brown et al. 1982 later considered), and for the shape

and density of the bowshock, we employ the analytical

solution of Cantó et al. (1996).

The Cantó et al. (1996) solution is predicated on
strong radiative cooling. There are two initial con-

cerns about adopting this model. The first is that

radiative cooling leads to thin shell instabilities (e.g.,

Lamberts et al. 2011). The second is that radiative cool-
ing is limited to relatively close binaries, orbital periods

of order a week (e.g., Antokhin et al. 2004). These is-

sues have significant relevance for predicting X-ray spec-

tra, where the temperature distirbution along the shock

is important; or when simulating emission line profile
shapes, where the detailed vector velocity field is cru-

cial. However, our case deals with electron scattering

and continuum polarization. Unlike the case of X-ray

diagnostics where the distribution of hot gas is impor-
tant, we can safely assume the gas is everywhere highly

ionized for computing scattering polarization. Of chief

importance to our case is that the Cantó et al. (1996)

derivation is conveniently analytic and driven by consid-

erations of ram pressure balance which captures much
of the key physics. Most, but not all, of our examples

involve either equal winds or binaries with one domi-

nant wind, and our general conclusions based on the

Cantó et al. (1996) model are fairly robust.
As in the BME formalism, our approach assumes point

source illumination. This is reasonable when the binary

separation is not too small (of order the stellar radii).

One distinction, however, is that we do account for finite

stellar size when evaluating volume integrals. This is not

incompatible with BME; we are merely explicit about its
inclusion.

A final point about our use of the BME treatment is

that due to the axisymmetry, we employ the notation

and approach of BME for a single star and use superpo-

sition in our application to a binary system. In doing so,
our notation departs from BME, although we still em-

ploy similar variables. The following sections introduce

our geometry for the systems, our application of BME

to axisymmetric binaries, and semi-analytic solutions
for the variable polarization based on the Cantó et al.

(1996) solution for the CWI.

2.1. Geometry and Stellar Properties

In our model, the winds of the two stars and the in-

tervening colliding wind shock are prescribed using pri-

marily polar coordinates for each star. We define the
primary star to be the one with the stronger wind in

terms of momentum flux, Ṁv∞, where Ṁ is the mass-

loss rate and v∞ is the terminal wind speed. The sec-

ondary is then the weaker wind case in terms of this

product. We typically use subscripts “1” and “2” to
identify primary and secondary.

We introduce spherical coordinates with respect to the

axis that is the line of centers between the two stars. Co-

ordinates centered on the primary star (r1, θ1, φ1) are
such that θ1 = 0 in the direction of the secondary.

Likewise, the coordinates linked to the secondary star

(r2, θ2, φ2) also have θ2 = 0 in the direction of the pri-

mary. Frequently, our approach employs the standard

cosine notation, µ1 = cos θ1 and µ2 = cos θ2.
The individual winds are taken to be spherical with

densities varying with the inverse square of the dis-

tance from the star. Consequently, we are ignoring the

wind acceleration zone that is relevant whenever the bow
shock forms close to either or both stars. We do not in-

clude the potential for radiative braking of the stronger

wind if it enters the region of dominance of the compan-

ion stellar flux (Gayley et al. 1997; Lomax et al. 2015),

nor the possibility that the stronger wind might in some
cases ram directly into the photosphere of the secondary

star.

With spherical winds and constant speed radial out-

flow, the density relations for the primary and secondary
winds are:

ρ1=
Ṁ1

4π r21 v1
= ρ1,0

(

R1,∗

r1

)2

, (1)

ρ2=
Ṁ2

4π r22 v2
= ρ2,0

(

R2,∗

r2

)2

, and (2)
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Figure 1. Top-down illustration of the two stars, primary
and secondary in magenta and the bowshock, in blue, formed
by the colliding winds. Labeled variables are defined in text.

n1=n1,0

(

R1,∗

r1

)2

, (3)

n2=n2,0

(

R2,∗

r2

)2

, (4)

where nj for j = 1, 2 are electron number densities with

corresponding scale parameter nj,0 = ρ0/µemH , for mH

the mass of hydrogen and µe the mean molecular weight
per free electron. Since we consider terminal speed flow,

we have omitted the subscript ∞ for the primary and

secondary wind speeds in equations (1) and (2).

2.2. Bow Shock Model

To explore polarimetric variability from colliding wind

shocks, we choose the formulation of Cantó et al. (1996)

for their semi-analytic bow shock solution involving ra-

diative cooling and two stellar spherical winds at termi-

nal speed. This solution specifically assumes radiative
cooling, and the bow shock takes the form of an inter-

face of infinitesimal thickness between the two otherwise

spherical winds. This interface for the CWI is axisym-

metric and characterized with a surface density.
Here we reproduce in brief the key expressions for the

solution of Cantó et al. (1996), but with a few changes of

notation. Cantó et al. (1996) use a “1” subscript for the

primary, but no subscript for the secondary; we use a “2”

subscript for the secondary. Cantó et al. (1996) use σ
for the surface mass density, while we use Σ = σ/µemH

for the surface number density of electrons. In principle

µe is a function of coordinate in either wind and in the

bow shock itself; however, for simplicity, we assume µe

is constant throughout the shock.

The bow shock geometry and its surface density are

related to two fundamental ratios:

β=
Ṁ2v2

Ṁ1v1
, and (5)

α= v2/v1. (6)

The first of these, β ≤ 1, is the ratio of wind momentum

of the secondary compared to the primary; the second ,

α, is the ratio of wind terminal speeds. Figure 1 provides
a schematic of the binary system with intervening CWI

region between the two stars. The radial distances of

the bow shock from the stars are denoted as R1,S and

R2,S , with

R2,S = D
sin θ1

sin(θ1 + θ2)
, and (7)

R1,S =
√

D2 +R2
2,S − 2DR2,S cos θ1, (8)

where D is the separation between the two stars at any
moment. We denote the standoff radii of the bowshock

from each star along the line of centers as R1,0 and R2,0,

with

R2,0 =
β1/2

1− β1/2
D, and (9)

R1,0 =
1

1− β1/2
D. (10)

While the above relations are analytic formulations in

θ1 and θ2, the relation between the two coordinate angles

is implicit, making the solution overall semi-analytic.
The relationship of the angles is given by,

θ1
tan θ1

= 1 + β

(

θ2
tan θ2

− 1

)

. (11)

Note that the asymptotic angles (“opening angles”) for

the bow shock are given by

θ2,∞ − tan θ2,∞ =
π

1− β
, and (12)

θ1,∞ = π − θ2,∞. (13)

The case β = 1 corresponds to a planar shock between

identical stars and winds, with θ1,∞ = θ2,∞ = π/2.

The final key ingredient for modeling the polarimetric

variability is the surface number density distribution.
Again from Cantó et al. (1996), this is given by

Σ

Σ0

=
sin(θ1 + θ2)

sin θ1 sin θ2
× (14)

[β(1 − cos θ2) + α(1 − cos θ1)]
2
×

{

[β(θ2 − sin θ2 cos θ2 + (θ1 − sin θ1 sin θ2)]
2
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+
(

β sin2 θ2 − sin2 θ1
)2
}−1/2

where the scaling constant is

Σ0 =
Ṁ2/µemH

2πβ D v2
=

2R2,∗

β D
R2,∗n2,0 = α

2R1,∗

D
R1,∗n1,0.

(15)

The last step in the above expression represents the sur-

face number density as being twice the column depth of

the wind of the secondary from the bow shock to infinity.
In the special case of β = 1 for a planar shock forming

from two identical stars, R1,S = R2,S = D/2µ, where

µ = cos θ with θ = θ1 = θ2. Combined with α = 1, the

surface density then simplifies to

Σ

Σ0

= 4
cos θ (1− cos θ)2

sin θ(θ − sin θ cos θ)
. (16)

Having defined the geometry of the CWI interface and
its properties, we turn next to characterizing the elec-

tron scattering polarization.

2.3. Thin Scattering

As previously noted, we employ the approach of BME

in application to the results of Cantó et al. (1996), which

is explicitly axisymmetric. In the treatment of BME, ig-

noring absorption and assuming that the total amount
of scattered light is small compared to the specific lumi-

nosities of either star, the polarization is given by

ptot = τ (1− 3γ) sin2 i = p0 sin2 i, (17)

where ptot is the polarization, τ is an angle-averaged op-

tical depth of the envelope, γ is called the shape factor,
and i is the viewing inclination relative to the symmetry

axis of the envelope. We introduce p0 for conveniently

representing the product of optical depth and envelope

shape. The definitions of τ and γ are

τ =
3

16
σT

∫ ∫

n(r, µ) dr dµ, (18)

and

γ =

∫ ∫

n(r, µ) dr µ2 dµ
∫ ∫

n(r, µ) dr dµ
, (19)

where n(r, µ) is the axisymmetric distribution of elec-

trons throughout the scattering volume. If the scatter-

ing region is spherically symmetric, γ = 1/3, and the

polarization is zero. For a wind whose density varies
as the inverse of the squared distance, τ = 3τ∗/8, with

τ∗ = n0 σT R∗ being the radial optical depth of the wind

in electron scattering.

The integrals for τ and γ are defined with respect to
the star center, and the treatment for axisymmetry does

not require top-down symmetry. Thus one can introduce

τ1 and γ1 associated with polarization from scattering

of starlight from the primary, and then τ2 and γ2 for

scattering of starlight by the secondary. Being opti-

cally thin, the results add linearly as weighted by the
wavelength-dependent luminosities of the two stars:

p0 =
L1(λ) p1 + L2(λ) p2
L1(λ) + L2(λ)

. (20)

This result, in our notation, is equivalent to equa-

tions (6a) and (7) from BME for axisymmetry. The
dependence on viewing inclination is implicit in equa-

tion (20) via equation (17). As pointed out by BME,

we have that i1 = i2 = i so that ptot = p0 sin
2 i as in

equation (17) earlier.
Note that for a particular geometry as expressed by

the wind and orbital properties, p1 and p2 have gener-

ally different values but are defined with respect to the

same axis, the LOC between the stars. While these val-

ues are not wavelength-dependent (i.e., chromatic), p0
can be chromatic because the two illuminating sources

will generally have different spectral energy distributions

(SEDs).

This last point deserves additional comment. When
one star dominates the brightness of the system in a

given wavelength range, the polarization will be flat and

take the polarization value of the dominant star. At

wavelengths for which the emission of both stars follows

a Rayleigh-Jeans law, the relative contribution to the
total luminosity of the stars will always be the same,

hence ptot will also be flat. However, for stars of un-

equal temperatures, at wavelengths around the Wien

peak, the ratio of specific luminosities will vary, and ei-
ther p1 or p2 may dominate, or the dominant terms may

switch. Thus for hot stars, p0 will be chromatic at short

wavelengths, despite the fact that electron scattering is

gray.

3. MODEL RESULTS

3.1. Expressions for the Polarization

Recall that for BME, the polarization depends on

source parameters τ and γ, but these in turn depend on

angle-averaged column densities of free electrons. It is
convenient to introduce two varieties of angle-averaged

column densities, one that is a zeroth-order moment and

one that is a second-order moment:

〈N〉 =
1

2

∫ ∫

n(r, µ) dr dµ, (21)

and

〈Ñ〉 =
1

2

∫ ∫

n(r, µ) dr µ2 dµ. (22)

Then
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τ =
3

8
σT 〈N〉, (23)

and

γ = 〈Ñ〉/〈N〉, (24)

where these parameters would have subscripts 1 or 2

for the primary or secondary stars, respectively. For

example, the primary wind with density given by equa-
tion (3) would have a first-moment column density of

〈N1〉 = n1,0R1,∗.

In application to the colliding wind binary, there are 3

key angular regimes to consider in relation to each of the
two stars. These 3 solid angle sectors contribute to the

parameters γ1,2 and τ1,2. These will be detailed next in

terms of Cases A, B, and C, with reference to Figure 2.

Figure 2 is a copy of Figure 1 in terms of the stars and

the CWI (labeled as “Shock”), now used to emphasize
the 3 angular regimes. There is still the LOC with sep-

aration D. Using the secondary as example, three rays

are labeled with A2, B2, and C2. Similar rays could

be drawn as originating from the primary, which would
then be labeled A1, B1, and C1. Consequently,

〈N〉 = 〈NA〉+ 〈NB〉+ 〈NC〉, (25)

and

〈Ñ〉 = 〈ÑA〉+ 〈ÑB〉+ 〈ÑC〉. (26)

3.1.1. Case A: Rays not intersecting the colliding wind
shock

For θ1 > θ1,∞ or θ2 > θ2,∞, the ray does not inter-

sect the shock nor the opposite star, but travels strictly

through its own wind. In this case the angle-averaged

column densities are trivial for an inverse square law,
with

〈NA1〉=
1

2
n1,0R1,∗ (1 + µ1,∞), (27)

〈ÑA1〉=
1

6
n1,0R1,∗ (1 + µ3

1,∞), (28)

〈NA2〉=
1

2
n2,0R2,∗ (1 + µ2,∞), (29)

〈ÑA2〉=
1

6
n2,0R2,∗ (1 + µ3

2,∞). (30)

3.1.2. Case B: Rays intersecting the shock but not the
opposite star

When a ray intersects the shock, there are three dis-

tinct contributions to the relevant angle-averaged col-

umn densities: a segment of the star’s own wind, the
surface density at the shock itself, and finally a segment

through the wind of the opposite star. The ray does not

Figure 2. Similar to Fig. 1, the two stars and colliding wind
shock are illustrated. For calculation of the polarization
properties, column density moments involve three different
ray categories, here identified as A2, B2, and C2 in relation
to the secondary star. The dotted line is the line of cen-
ters (LOC) for separation D between the stars. The impact
parameter ̟1 is the same as for Fig 1. For Case B2, the
contributions associated with I (path segment), II (point),
and III (semi-bound line segment) are identified.

intercept the surface of the opposite star, a case treated

in the next section.

We denote these three contributions as I for own wind,

II for the shock, and III for the opposite wind, and

use these as subscripts to accompany 1 and 2 to sig-
nify whether the rays originate from the primary or the

secondary star. Note that the angular integrations are

affected by the ray missing or intercepting the opposite

star.
The first segment is the column within the star’s own

wind from its surface to the shock. The columns are:

〈NB1,I〉=
1

2
n1,0R1,∗

∫ µ2,∗

µ1,∞

[

1−
R1,∗

R1,S(µ)

]

dµ, (31)

〈NB2,I〉=
1

2
n2,0R2,∗

∫ µ1,∗

µ2,∞

[

1−
R2,∗

R2,S(µ)

]

dµ, (32)

〈ÑB1,I〉=
1

2
n1,0R1,∗

∫ µ2,∗

µ1,∞

[

1−
R1,∗

R1,S(µ)

]

µ2 dµ,(33)

〈ÑB2,I〉=
1

2
n2,0R2,∗

∫ µ1,∗

µ2,∞

[

1−
R2,∗

R2,S(µ)

]

µ2 dµ,(34)

where µ1,∗ = cos θ1,∗ =
√

1− (R1,∗/D)2 and µ2,∗ =
cos θ2,∗ =

√

1− (R2,∗/D)2. In the integrand, the frac-

tion being subtracted represents the missing column in

the star’s own wind that would be present if not for the

shock.
At the shock itself, the surface density contributes to

the column along the ray, owing to the accumulation
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Figure 3. Similar to Fig. 2, the two stars and colliding wind
shock are illustrated. The cases A2, B2, and C2 in relation
to the secondary star are indicated. The z coordinate is indi-
cated in this version, with z0 labeled. For columns evaluated
along radials from the secondary, z is defined in the wind of
the primary; and vice versa.

of material entering the shock and outflowing along its

surface. However, the kinematics are not of relevance

here; only the surface density itself matters. What is

relevant is the projection of the surface with respect to
the ray. The contribution to the column depends on a

direction cosine between the radial unit vector and the

local normal to the surface. We represent these asK1(µ)

and K2(µ). Omitting the subscripts, K for each star is

given by

K(µ) =
1

√

1 +
(

1
RS

dRS

dθ

)2
. (35)

Then the contribution by the shock to the columns be-

comes

〈NB1,II〉=
1

2
n1,0R1,∗

∫ µ2,∗

µ1,∞

K1(µ)Σ(µ) dµ, (36)

〈NB2,II〉=
1

2

∫ µ1,∗

µ2,∞

K2(µ)Σ(µ) dµ, (37)

〈ÑB1,II〉=
1

2

∫ µ2,∗

µ1,∞

K1(µ)Σ(µ)µ
2 dµ, (38)

〈ÑB2,II〉=
1

2

∫ µ1,∗

µ2,∞

K2(µ)Σ(µ)µ
2 dµ. (39)

The third region is in the wind of the opposite star,

beyond the shock. The integration in radius depends

on whether the ray strikes the star or not. The former
case is treated in the next section. Here we express the

columns along the ray from the shock that stretches to

infinity with impact parameter ̟. Consider, for exam-

ple, a ray originating from the secondary at orientation

θ2. The ray intercepts the shock at R2,S . Further, the

ray is in the wind of the primary. The impact parameter
for that ray is ̟1 = D sin θ2.

For a spherical wind with inverse square density, the

integration for the column along such a chord is analytic:

∫ z0

−∞

n0

R2
∗

r2
dz = n0R∗

R∗

̟(µ)

∫ θ0

0

dθ = n0R∗

R∗

̟(µ)
θ0(µ),

(40)

where the subscripts 1 and 2 have been suppressed for
this general result. Take again the example of a ray

from the secondary. Then z0 refers to the z-coordinate

in the wind of the primary corresponding to R1,S and

̟1. Figure 3 shows the location of z0 in relation to the
system components. With θ0 defined with respect to the

stellar axis, one can show that θ0 + θ1 + θ2 = π.

The next step is to integrate in µ. Again using the

secondary as an example, this integration will be of the

form θ0(µ2)dµ2/̟1 ∼ θ0(θ2)dθ2. The end result from
the columns for section III is:

〈NB1,III〉=
1

2
n2,0R2,∗

R2,∗

D
(41)

×

∫ θ2,∗

θ1,∞

(π − θ1 − θ2) dθ1,

〈NB2,III〉=
1

2
n1,0R1,∗

R1,∗

D
(42)

×

∫ θ1,∗

θ2,∞

(π − θ1 − θ2) dθ2,

〈ÑB1,III〉=
1

2
n2,0R2,∗

R2,∗

D
(43)

×

∫ θ2,∗

θ1,∞

(π − θ1 − θ2) cos
2 θ1 dθ1,

〈ÑB2,III〉=
1

2
n1,0R1,∗

R1,∗

D
(44)

×

∫ θ1,∗

θ2,∞

(π − θ1 − θ2) cos
2 θ2 dθ2.

where sin θ1,∗ = R1,∗/D and sin θ2,∗ = R2,∗/D. When

the ray intercepts the opposite star, the lower limit to
the integral in equation (40) is no longer 0 in dθ. Thus

the integrands for the angular integrations above are

different over the solid angle extent of the opposite star.

For Case B, one adds the contributions from the dif-
ferent segments to obtain

〈NB1〉= 〈NB1,I〉+ 〈NB1,II〉+ 〈NB1,III〉, (45)

〈NB2〉= 〈NB2,I〉+ 〈NB2,II〉+ 〈NB2,III〉, (46)

〈ÑB1〉= 〈ÑB1,I〉+ 〈ÑB1,II〉+ 〈ÑB1,III〉, (47)
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Figure 4. Similar to Fig. 1, but zoomed to emphasize angu-
lar quantities used for case C calculations. The primary star
is shown at top with its extent a dashed curve. The shock
is a dotted curve. For the secondary star at bottom, only its
center is indicated.

Figure 5. For the case of two equal stars and a planar shock,
τ = τ1 = τ2 and γ = γ1 = γ2. The figure shows the vari-
ations of these parameters along with ptot as a function of
binary separation, D/R∗, where R∗ = R1 = R2. Example
lines of D−1 variation are shown for reference; the parame-
ters determining the colliding wind polarization decline much
more slowly than D−1. Note that since ptot < 0, its negative
is plotted for convenience.

〈ÑB2〉= 〈ÑB2,I〉+ 〈ÑB2,II〉+ 〈ÑB2,III〉. (48)

3.1.3. Case C: Rays that intercept the opposite star

In the final scenario, case C, the ray intersects the op-
posite star. This modifies the upper limit for the integral

associated with segment III. Segments I and II from case

B are the same for case C; only segment III differs. To

be explicit, for segment C,I for a star’s own wind up to

the shock, one still uses equations (31)–(34) for B,I but

with different limits to the integrals. The lower limit is
µ∗ for star 1 or 2 as appropriate, and the upper limit is

+1 for all the integrals. Similarly, the contribution C,II

at the shock uses equations (36)–(39) for B,II also with

µ∗ (again, as appropriate for 1 or 2) for the lower limit

and +1 for the upper limit. It is only C,III that requires
reconsideration, as follows.

One way of expressing case C,III is that when̟ < R∗,

or alternatively when θ < θ∗, for primary or secondary

as the case may be, the radial integral along the chord is
still given by an angle, but this angle is not θ0. Instead

we introduce new angles ǫ and δ, with

θ1 + θ2 + ǫ+ δ = π/2. (49)

Figure 4 shows the locations of ǫ and δ with respect to
the system. We have that ̟1 = D sin θ2 = R1,∗ cos ǫ1,

so that ǫ1 is defined in terms of θ2 for a ray originating

from the secondary and intercepting the primary. When

the case is reversed, all the subscripts are reversed. This

allows us to find δ from the definition above, and the
radial integration along the ray segment is δ.

The columns now become

〈NC1,III〉=
1

2
n2,0R2,∗

R2,∗

D

∫ θ2,∗

0

δ(θ1) dθ1, (50)

〈NC2,III〉=
1

2
n1,0R1,∗

R1,∗

D

∫ θ1,∗

0

δ(θ2) dθ2, (51)

〈ÑC1,III〉=
1

2
n2,0R2,∗

R2,∗

D

∫ θ2,∗

0

δ(θ1) cos
2 θ1 dθ1,(52)

〈ÑC2,III〉=
1

2
n1,0R1,∗

R1,∗

D

∫ θ1,∗

0

δ(θ2) cos
2 θ2 dθ2.(53)

3.2. Special Case of a Planar Shock

For a binary consisting of two identical stars, α =

β = 1, and the resulting CWI is a planar shock lo-

cated midway between the stars at D/2 from either
one. Appendix 4 details the simplifications that result

for this scenario, in particular an analytic expression for

RS,1 = RS,2 in terms of µ, K1 = K2, and the surface

density distribution.

We introduce the simplifying notation τ = τ1 = τ2
and γ = γ1 = γ2, and display in Figure 5 how these

properties vary with separation between the stars. Note

also that p1 = p2 ≡ p0, and because the two stars have

L1 = L2, p0 is a constant at all wavelengths. For this
figure we assume a stellar radius of 10R∗, wind speed

2000 km s−1, and mass loss rates 10−5M⊙ yr−1. The
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Table 1. Stellar and Wind Properties for Parameter Study Displayed in Figure 6

Panel R2,∗ R1,∗ Ṁ2 Ṁ1 v2 v1 D

(R⊙) (R⊙) (10−7M⊙ yr−1) (10−7M⊙ yr−1) (103 km s−1) (103 km s−1) (R⊙)

Top 10 10 65 100 2 2 100

Top 10 10 70 100 2 2 100

Top 10 10 75 100 2 2 100

Top 10 10 80 100 2 2 100

Top 10 10 85 100 2 2 100

Top 10 10 90 100 2 2 100

Top 10 10 95 100 2 2 100

Top 10 10 100 100 2 2 100

Mid 10 10 100 100 1.3 2 100

Mid 10 10 100 100 1.4 2 100

Mid 10 10 100 100 1.5 2 100

Mid 10 10 100 100 1.6 2 100

Mid 10 10 100 100 1.7 2 100

Mid 10 10 100 100 1.8 2 100

Mid 10 10 100 100 1.9 2 100

Mid 10 10 100 100 2.0 2 100

Bot 3 10 100 100 2 2 100

Bot 4 10 100 100 2 2 100

Bot 5 10 100 100 2 2 100

Bot 6 10 100 100 2 2 100

Bot 7 10 100 100 2 2 100

Bot 8 10 100 100 2 2 100

Bot 9 10 100 100 2 2 100

Bot 10 10 100 100 2 2 100

polarization amplitude scales with Ṁ/v for the case of

equal stars.

By our convention for Figure 1, both (1 − 3γ) and

p0 are negative, so are shown in Figure 5 as multiplied
by −1 for convenience. Since many, but not all, terms

associated with the calculation scale asD−1, dotted ma-

genta curves are shown with that scaling for comparison.

The outcome is that the polarization amplitude p0 does
indeed decline with binary separation, but much less

steeply than D−1; its behavior is closer to linear for the

chosen parameters and distances shown.

3.3. Parameter Study

We conducted a parameter study of relatively similar
winds for primary and secondary components. Results

are displayed in Figure 6, with model parameters iden-

tified in Table 1. The figure has 3 panels – top, middle

(“mid”), and bottom (“bot”) – with model parameters
similarly grouped in Table 1. The top is for variation

of the ratio of mass-loss rates (which turns out to be

β because α is fixed); the middle is for variation of the

ratio of the wind terminal speeds (which is α = v2/v1,

but also β = α for fixed mass-loss rates); and bottom is

for variation of radii. Note that for the top and middle
panels, the far right side corresponds to equal winds and

a planar shock. For the bottom panel, β = 1 and the

shock is always planar.

In the top panel, the ratio of mass-loss rates varies
from 0.65 up to 1.0. The four curves are for τ1 in red, τ2
in purple, 1 − 3γ1 in blue, and 1 − 3γ2 in green. While

the primary wind has the higher optical depth, the de-

viation of the envelope from spherical increases faster

for the secondary (green) than the primary (blue) as β
declines. This is an important feature of the discussion

in Section 3.6, where small β values are emphasized as

being typical of WR+OB binary systems.

For the middle panel, β = α, yet the behavior is re-
versed. Lowering the wind speed of the secondary actu-

ally elevates the density scale for its wind.

Finally for the bottom panel, β = α = 1 is fixed,
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Figure 6. Variation of optical depth τ1 (red) and τ2 (purple),
shape factors (1− 3γ1) (blue), and (1− 3γ2) (green) for the
parameter study with model properties detailed in Table 1;
solid points are optical depths and open squares are for the
shape factors involving γ. The top panel shows how the po-
larization varies with the ratio of mass-loss rates for the stars;
middle is for the ratio of wind speeds, v2/v1 = α; bottom is
for the ratio of stellar radii. For each panel (“top”, “mid”,
“bot”), the 8 points on the curves correspond to model cal-
culations for the 8 parameter combinations shown in Table 1.

and the wind shock is planar. Despite the geometry

being invariant, the polarization depends on the radii

of the two stars. This arises because the polarization
properties scale with column density, which are generally

inverse to radius. For example, with a secondary smaller

than the primary yet having the same mass-loss rate

and wind speed, the column density is higher in the

secondary wind, so τ2 (purple) increases with decreasing
R2.

3.4. Chromatic Effects

To illustrate chromatic effects, we fixed a particular

set of binary parameters while allowing the tempera-

tures of the two stars to vary. The fixed properties lead

to p1 = 0.009 and p2 = 0.192. In this example, the

binary components are separated by 40 R⊙. The sec-
ondary is twice as large (10R⊙) as the primary (5R⊙);

the two winds have equal speeds (2000 km s−1); and the

mass-loss rate for the primary is 3.3× larger than the

secondary (Ṁ2 = 3 × 10−6M⊙ yr−1). Additionally, we
took sin i = 1; the effect of viewing inclination is to scale

the curves by sin2 i at all wavelengths.

To illustrate changes in the spectropolarimetric con-

tinuum shape, we treated the two stars as simple

Planckian sources with effective temperatures T1 and

T2. We fixed the temperature of the secondary at
T2 = 25, 000 K. We varied the temperature of the pri-

mary from 16, 000 K to 40, 000 K in 3, 000 K intervals,

and display the results in Figure 7, where polarization

is shown as positive. These variations may not be con-

sistent with actual combinations of parameters for real
stars. The point of the exercise is to highlight the fact

that when the stars have different spectral energy dis-

tributions, the continuum polarization is not generally

constant with wavelength, even though electron scatter-
ing is gray. Only when the two stars have equal tem-

peratures is the continuum polarization truly flat at all

wavelengths.

Note especially that the polarization signal changes

strongly from the FUV through the optical to 1 micron.
For massive stars with typical temperatures well in ex-

cess of 10, 000 K, both the primary and secondary spec-

tra are in the Rayleigh-Jeans tail in the optical, and so

the continuum will always be flat or nearly flat in that
waveband. It is only in the UV that the polarization de-

viates significantly from constant. For the selected pa-

rameters, the polarization actually drops toward the UV

when the primary is hotter (i.e., more luminous), owing

to the fact that p1 ≪ p2. By contrast, when the sec-
ondary is hotter (i.e., more luminous), the polarization

increases significantly. Ultimately, for any combination

of binary parameters, when the more luminous star in

the UV also has the higher polarimetric component (i.e.,
p1 or p2), the polarization is enhanced in the UV rela-

tive to the optical; when the more luminous UV source

has the lower polarimetric component, the polarization

will drop toward the UV.

The behavior in Figure 7 is included in the formal-
ism of BME, but is specific to binaries with two hot

stars. Other categories of binaries can certainly show

rather different behavior. For example, consider symbi-

otic stars, which involve a hot white dwarf and a cool
giant star (e.g., Muerset et al. 1991). In such a case, the

polarigenic opacity may be more complex than simple

electron scattering (i.e., not simply gray opacity), and

may not involve a colliding wind but perhaps instead

accretion onto a disk. Nonetheless, if the scattering
opacity is dominated by Thomson scattering, the com-

bination of an optically-bright component with a UV-

bright component would yield a wavelength-dependent

polarization that would reveal a telltale gradual varia-
tion from the FUV to the IR.

In any situation where intrinsic polarization from

Thomson scattering is observable over a wide spectral

domain (separable from interstellar polarization either

by its binary variation in the time domain, or line ef-



11

fects in the stellar winds, or modeling the wavelength

dependence of the interstellar polarization), these re-

sults show that the residual wavelength dependence of

the intrinsic polarization offers a unique and important
diagnostic. Via the following analysis, we obtain com-

plementary leverage in our understanding of both the

different polarizations produced by the two stellar light

sources, and also the spectral shape of the continua of

both stars. This stems from the grayness of Thom-
son scattering, which implies that the sole source of

wavelength dependence in the intrinsic polarization de-

rives from the contrasting brightnesses of the two stars.

Hence if L21(λ) is the wavelength-dependent ratio of the
secondary brightness to the primary, then the total po-

larization q(λ) presents as a brightness-weighted average

of the wavelength independent polarization induced by

the primary light source, q1, and that induced by the

secondary, q2, according to

q(λ) =
q1 + q2L21(λ)

1 + L21(λ)
. (54)

If the spectral shape contrast L21(λ) is regarded as

known by the stellar spectral types, then observing q

at two different wavelengths that sample suitably differ-

ent values of L21(λ) allows the above equation to sepa-
rate the q1 and q2 contributions. This separation of the

polarizations caused by the two different light sources

allows a unique probe of the geometry of the wind col-

lision zone.

Furthermore, to the extent that q1 and q2 are expected
to be wavelength independent, a self-consistency check

on the assumed L21(λ) becomes possible by inverting

the above equation into

L21(λ) =
q1 − q(λ)

q(λ) − q2
. (55)

To whatever extent this inferred brightness contrast de-

viates from its assumed value, we have the opportunity

to update it to recover consistency with the polarized
spectrum q(λ). For example, a (q1, q2) pair can be in-

ferred from wavelength pairs generated by fixing a wave-

length at the UV end of the observed q(λ) and sweeping

the second wavelength over the full observed range. If
the assumed L21(λ) contains errors, that would gener-

ate a curve in (q1, q2) space rather than a single con-

sistent point. Then by fixing the second wavelength at

its longest value and sweeping the first wavelength back

toward the UV, the curve is closed back to its start-
ing (q1, q2) point. The resulting closed curve then gives

an estimate of the preferred (q1, q2) value near the cen-

ter of this curve, and that preferred (q1, q2) pair then

allows L21(λ) to be self-consistently updated via the
above equation. The wavelength independence of the

intrinsic polarization contributions q1 and q2, assum-

Figure 7. Variation of the polarized continuum with wave-
length, here shown from the FUV to 1 micron. The stars
are treated as Planckian. The temperature of the secondary
is fixed at 25,000 K, and the temperature of the primary
varies from 16,000 K to 40,000 K in 3,000 K increments.
The particulars of the stellar and wind parameters for this
illustrative case are described in Sect. 3.4. For the selected
parameters, the limiting polarizations p1 and p2 are indi-
cated with horizontal red and blue dotted lines, respectively.

ing they are dominated by Thomson scattering in the

colliding winds, then provides an improved estimate of

L21(λ) and an independent check of our understanding
of binary spectral types. Also, when both q1 and q2 are

appreciable, independent knowledge of both allows an

important probe of the colliding wind geometry, since

the two stars illuminate that geometry differently.
On the other hand, in situations where one contribu-

tion dominates, say q1, as may be the case in WR/O

binaries discussed below, the wavelength dependence of

the intrinsic q(λ) directly inherits the wavelength depen-

dence of L21(λ) via q(λ) = q1/ (1 + L21(λ)). Hence in
this case we have an even more direct handle on the cor-

rect brightness contrast between the two stars over the

full wavelength regime of the observed polarization. The

wider that wavelength regime accessed by our technol-
ogy, the more powerful is this constraint, underscoring

the value of extending our polarization capabilities into

the FUV range for understanding binaries containing

hot stars.

3.5. Orbital Effects

The polarimetric properties of the colliding wind sys-

tem depend on the binary separation, D. When the

orbit is circular (i.e., D is constant), the values p1 and

p2 are constant as well. For an eccentric orbit with ec-
centricity e and semi-major axis a, the binary separation

varies as
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Figure 8. Comparison of the percent polarization from a
face-on binary system with colliding winds (CWs) against
that from a binary with non-interacting winds (NIWs; § 3.5).
The points represent separations of 25R⊙ to 115R⊙ in
5R⊙ increments, with monotonic sequence as indicated by
“Closer” and “Farther”. Wind collision significantly in-
creases the level of polarization of CWs over NIWs, but less
so as the binary separation increases to large values. The
green line represents the analytic derivation from App 4 for
wide-binary separations.

D(ϕ) = a
1− e2

1 + e cosϕ
, (56)

where ϕ is the orbital azimuth, defined so that ϕ = 0
corresponds to periastron. Thus p1 and p2 are functions

of orbital phase through the variation of D(ϕ).

The polarization also varies throughout the orbital

motion because the inclination, i, of the LOC between
the stars changes relative to the observer’s line of sight.

Let iorb be the viewing inclination of the orbital plane,

so that iorb = 0◦ is a top-down view of the orbit and

iorb = 90◦ is an edge-on view. Despite a fixed orienta-

tion of the orbital plane, iorb, our construction for calcu-
lating polarization depends on the system axis defined

by the LOC between the stars, and this rotates in the

fixed orbital plane to produce variability.

The time-variable polarization is given by

q=p0(D) sin2 i(t) cos 2ψ(t), and (57)

u=p0(D) sin2 i(t) sin 2ψ(t), (58)

where D = D(t) for eccentric orbits, t depends on or-

bital phase through the azimuth (ϕ of the LOC), and

the polarization position angle ψ relates to the orbital
azimuth and the fixed viewing inclination of the orbital

plane via

Figure 9. (Top) Example q−u loops for a binary consisting
of identical stars, for which p1 = p2 ≡ p0. Eccentricities e
and inclinations iorb are indicated for line type and color.
There are two loops per orbit, but with eccentric orbits, the
pair separate into different sizes except for e = 0. (Bottom)
Same 6 models as top, now displayed as lightcurves in q
(red), u (blue), and total polarization ptot (black). Periastron
passage is at phase 0.0, and apastron at phase 0.5. The
line types still relate to e as in the top panel. The case
iorb = 45◦ has the higher polarization in ptot and larger
amplitude variation in q and u.

tanψ = − cos iorb/ tanϕ. (59)

The inclination, i, for the LOC to the viewer’s line of

sight is given by

cos i = sin iorb cosϕ. (60)

In order to understand the relevance of CWIs for

the polarization level, we introduce the idea of “non-

interacting winds” (NIWs). The concept of a NIW pro-
vides a reference against which to compare the physical

case of CWI polarization arising from the shock. What

CWI ultimately represents is a redistribution of mat-

ter from the two stellar winds via the wind collision.
There is polarization without a CWI, because each of

the two stars shines on the wind of the other, even if

both winds remain spherical. The CWI represents an-

other contribution by breaking spherical symmetry. For

wide binary separations (D ≫ R∗), we expect the two
cases to become proportional, since the column depths

of the various regions will scale as D−1 (see App. 4).

We thus define a NIW simply as a superposition of

the two separate binary winds as if no collision takes
place and neither wind impacts the opposite star. This

means each wind is spherically symmetric about its own

star, which contributes no polarization. Instead, polar-

ization arises only from scattering of starlight from the

secondary by the wind of the primary, and vice versa.
We do, however, account for occultation of the wind be-

hind each respective star in calculating the polarization.

Our results are shown in Figure 8, with the polariza-

tion amplitude in percent for the NIW along the horizon-
tal, and for the CWI along the vertical. For this example

we assume two equal winds and thus a planar shock for
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the CWI case. The points represent stellar separations

of D = 25R⊙ to 115R⊙ in 5R⊙ increments, with closer

and farther separations labeled for the sequence. The

values are for a face-on binary, oriented so that u = 0
and q < 0, and p = |q| for this plot. The dotted diag-

onal indicates where the polarizations would be equal;

the solid green line is the asymptotic relation derived in

Appendix 4.

For the CWI case, we fitted a linear regression to
p0(D) in the case of a binary with two identical stars

(i.e., planar CWI shock) to obtain p0 = 1.328−0.0111D,

normalized so that p0 = 1% at D = 30 R⊙. For the

NIWs, we used the same stellar wind and star proper-
ties as for the wind collision case. The polarization from

a CWI is larger than for a NIW, often by a significant

factor. At larger separations, the trend is for the points

to approach the diagonal line, signifying that the wind

collision is becoming irrelevant.
We recognize that we are using a model for a bow

shock with radiative cooling, and that at large sepa-

rations, the cooling will be adiabatic. Even so, with

identical stars and winds, the shock will still be planar,
and the qualitative conclusion remains valid even if the

quantitative values are inaccurate.

Figure 9 displays a suite of polarimetric variations for

CWIs with different values of e and iorb. We show model

variable polarization curves for inclinations and eccen-
tricities, as labeled. The top panel displays the result-

ing q − u loops; the bottom panel shows polarized light

curves as a function of orbital phase. At iorb = 90◦ (not

shown), all curves in Figure 9 would become horizontal
lines with only q variation but no u variation. Note also

that ptot =
√

q2 + u2.

3.6. Special Case of WR+OB Binaries

Among the more extreme massive star colliding wind

systems (β ≪ 1) are the ones involving an evolved

WR star with an OB companion. While the wind speeds

of the two stars can be comparable in this case, the mass-
loss rate of the WR wind will be one to several orders

of magnitude larger than for the OB component. As a

result, the CWI shock is significantly displaced from the

WR star and considerably closer to the OB star; it also
significantly confines the spatial scope of the OB wind.

On the other hand, the WR and OB components may

or may not have comparable luminosities. In terms of a

UV study, the situation can be ideal for extracting in-

formation about the orbital parameters and properties
of the CWI region from both temporal and chromatic

effects.

The scenario of β ≪ 1 offers some simplifications

for the problem of the polarization. Foremost is that
the “primary” (defined as above as the WR wind with

higher mass loss, not necessarily the more luminous com-

Figure 10. Top-down view of a WR+OB binary with den-
sity contours superposed. The WR star is the smaller com-
ponent at right; at left is the OB star. The magenta curve
highlights the CWI shock. Two representative contours indi-
cate relative densities, normalized to unity at the surface of
the WR star. The contours are displayed in roughly 0.5 dex
intervals. In this example, the binary separation is 60 R⊙,
the OB star has a radius of 12 R⊙, and the WR star has a
radius of 1 R⊙.

ponent) is relatively far from the CWI shock. Conse-

quently, one expects the angle-averaged column densi-

ties over the WR wind component to approach zero.

The associated column densities for the secondary wind

evaluated at the primary will be small. It may seem
that p1 = pWR would be dominated by the CWI shock,

but this may not mean that the WR component dom-

inates the polarization, since the CWI is relatively far

removed, and thus only acts as a perturbation on the
otherwise spherical wind of the WR star. The result for

the O star, p2 = pO, is less clear. Its wind has lower col-

umn density than the WR, but the distorted envelope

is closer to the O star at low β. Also, the CWI wraps

around the O star, leading to polarimetric cancellation.
We use the Cantó et al. (1996) formalism to evaluate

the possibilities.

To illustrate some of these features, Figure 10 shows a

density contour plot in the orbital plane for a WR+OB
binary. The WR star is the smaller star at right; the

secondary is taken to be an O star. The dotted curves

are density contours at approximately 0.5 dex intervals,

with two labeled for illustration, normalized to unit den-

sity at the surface of the WR star.
To explore the polarization expected from WR+OB

colliding winds, we adopted the following stellar and or-

bital parameters. For the WR as primary and an O star

as secondary, we assumedM1 =M2 = 30M⊙; R1 = R⊙

and R2 = 12 R⊙, v1 = v2 so that α = 1; and we consid-

ered orbital scenarios ranging from a short-period orbit
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of PS = 7 d to a medium-period orbit of PM = 30 d

(a typical range for colliding winds in circular orbits;

see, e.g., Fahed & Moffat 2012; Zhekov 2012). Given

the masses, these two orbits correspond to semi-major
axes of aS = 60 R⊙ and aM = 160 R⊙.

As a fiducial, we also adopted Ṁ1 = 10 Ṁ2 so that

β = 0.1. At this value of β, the relative standoff dis-

tance for the bow shock is RS,2/D = 0.24, which is a

fixed ratio regardless of binary eccentricity, given that
we assumed the winds are at terminal speed. For the

short-period binary, we assumed a circular orbit, hence

RS,2 = 14.4R⊙. For a typical O star wind, this would be

well within the zone of wind acceleration, where effects
such as radiative braking could be significant (as seen in

the WR+O binary V444 Cyg; Lomax et al. 2015). For

the sake of illustration, we ignored such effects.

We calculated pWR and pO for three scenarios, with

a summary of results displayed in Figure 11. The first
case is β = 0.1 with orbital separation ranging from

60 R⊙ to 160 R⊙ for “slow” winds of 1000 km s−1 for

both stars. The second case is for fast winds at 3000 km

s−1, with all other parameters fixed. The third scenario
corresponds to an intermediate wind speed of 2000 km

s−1 at a fixed separation of D = 160 R⊙, but with β

ranging between 1/15 and 1/5.

The upper panel of Figure 11 summarizes the com-

parison between slow and fast winds. Note that polar-
ization is negative for our convention. In this panel,

the red lines represent pO and the blue lines represent

pWR. The solid circles are for the slow wind cases, and

the open circles are for the fast wind cases. The re-
sults are plotted against D−1, normalized as indicated.

The net result is that the polarization is overall larger

for a slower wind, since the density is larger. We find

that τWR is roughly constant as D changes, indicating

that its value is dominated by the relatively extended
spherical wind of the WR star, since the CWI is far re-

moved. Because the CWI is relatively farther from the

WR star with increasingD, (1−3γWR) becomes smaller

with D. Consequently, pWR decreases with increasing
D. The behavior for the O star is that the polarization

is dominated by the CWI. The surface density of the

CWI shock for the Cantó et al. (1996) solution scales as

D−1 overall. This is evidenced by the fact that both

blue curves appear quite linear in the plot.
For the lower panel of Figure 11, we display the re-

sults differently, as β is allowed to vary between 1/15

and 1/5; with smaller β, the CWI is closer to the O star

component. Consider first the dashed and dotted curves
in black, for τWR and τO, respectively. As β becomes

smaller, τWR is larger, approaching the limit of the

strictly spherical wind value. The value of τO is much

lower, and is plotted as scaled up by 10×.

The blue curve in this lower panel represents the ratio

of pWR/pO. Its behavior indicates that from geometrical

considerations, the contribution to the polarization from

the O star wind is much greater than for the WR wind,

even more so as β becomes smaller. Even though the
WR wind has a much higher optical depth scale, the

distortion of the scattering envelope from spherical is

quite minor from the perspective of the WR star. This

is made clear by the red curve, where “shape” is the ratio

(1−3γWR)/(1−3γO), and scaled up by 100×. From the
perspective of the O component, the scattering envelope

is highly distorted.

In combination, these results suggest that at wave-

lengths where the O star is more luminous, the polar-
ization will overall be larger (biased toward pO) than at

wavelengths where the WR star is more luminous (polar-

ization biased toward pWR). Our treatment does have

limitations, the most important being that we ignore the

wind acceleration region, and that we treat the WR wind
as optically thin to electron scattering. Radiative trans-

fer models have shown that multiple scattering in bow

shock structures can increase the degree of polarization

as well as changing the polarization behavior with in-
clination angle (Shrestha et al. 2018). However, in this

case it is clear that the WR wind is already a minor con-

tributor to the polarization when β ≪ 1, and a more full

treatment of multiple scattering at the inner WR wind

is not expected to impact that conclusion. For the rare
case of WR-WR binaries, multiple scattering could be

significant and future modelling will need to take it into

consideration. Inclusion of the wind acceleration region

and associated density distribution, along with radiative
inhibition, could certainly change the detailed outcomes

of the models presented here. Additionally, WR+O bi-

naries can generally be expected to show chromatic be-

havior over a broader waveband than indicated in Sec-

tion 3.4. Free-free opacity is important in the winds
of WR stars at all wavelengths; hence the WR stellar

spectrum is never Rayleigh-Taylor even though the OB

SED can be (e.g., Hillier 1987). Nonetheless, the present

treatment indicates that pO ≫ pWR, another qualitative
result that is unlikely to change despite our more sim-

plistic assumptions.

3.7. Comment on the Overall Scale of the Polarization

As mentioned above for identical stars, the polariza-

tion is proportional to Ṁ/v. This extends more gener-

ally to unequal stars, where the two different mass loss

rates receive different weightings, as a change in both
mass-loss rates by any given factor produces a change

in polarization by that same factor. This implies that a

good model of the polarizing geometry allows the scale

of the observed polarization to yield a constraint on the
stellar mass-loss rates that is independent, and hence

complementary, of all other methods for such determi-
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Figure 11. Model results for a WR+O star binary (§ 3.6).
The upper panel shows results for a fixed value of β = 0.1 for
the slow and fast wind cases, plotted against binary separa-
tion as D−1. Blue lines represent pO and red lines represent
pWR; solid circles are for slow models and open circles for fast
wind models. The lower panel shows results for D = 160 R⊙

with β varying between 1/15 and 1/5. Black curves represent
the WR and O optical depths, as labeled. The blue line in
this panel represents the ratio of pWR/pO. The red line rep-
resents the “shape,” defined as the ratio (1−3γO)/(1−3γWR)
and scaled up by 100×.

nations. Furthermore, to the extent that the polariza-

tion is due to optically thin scattering, the connection

between polarization and mass-loss rate is independent
of local clumping in the winds. Hence contrasting the

mass-loss rates inferred from the overall scale of the po-

larization to those obtained from conventional methods

that are sensitive to clumping (often termed “density-
squared” type mass-loss rate diagnostics such as radio

free-free emission or H α emission) provide an indepen-

dent measure of the degree of clumping. Constraining

wind clumping is an important goal for understanding

the basic dynamics of radiatively driven winds.

4. SUMMARY

This study has made use of the theory of BME for op-

tically thin electron scattering polarization for a massive
colliding-wind binary. The main novelty has been to ex-

plore the analytic solution for the CWI shock structure

in terms of shape and density from Cantó et al. (1996),

who assume radiative cooling to derive a thin shell re-

sult. We assume axisymmetry throughout and explore
polarization characteristics and contributions from the

two separate components. Our results range from the

limiting case of equal star scenarios with β = 1 and a

planar shock interface (more appropriate to O+O bina-
ries) to small β scenarios (more appropriate to WR+O

binaries).

Overall, there are numerous free parameters for the

model, from the binary separation to the wind proper-

ties. Even when most star and wind properties are held

fixed, raising and lowering the terminal wind speeds at
fixed ratio α still affects the polarization characteristics,

since slower winds are more dense and faster ones are

less dense.

Our three main results are as follows:

1. From a detailed consideration of the contributions

to the column density moments, there are various

terms that scale with D−1 for the binary separa-

tion. However, for the equal wind scenario, the

scale of polarization declines far less steeply than
D−1, so that even relatively wide binaries may dis-

play a significant polarimetric amplitude, with a

telltale orbitally varying phase angle. (See Fig. 5.)

2. Chromatic effects can become quite significant to-

ward UV wavelengths. When dealing with massive
stars, all of which are “hot” at > 10, 000 K, the

optical emission is mostly or even very closely fol-

lowing the Rayleigh-Jeans law. The consequence

is that for optical and longer wavelengths, the
continuum polarization is flat. That polarization

can still vary with orbital phase, but there are no

chromatic effects. However, at UV wavelengths

for stars with different temperatures, the contin-

uum polarization will generally deviate from flat
(unless one star dominates the luminosity at all

wavelengths). The wavelength-dependent polar-

ization provides additional diagnostic leverage for

extracting information about the winds and CWI
shock (Fig. 7). This motivates UV polarimetric

observations of colliding wind binaries, such as

would be provided by the proposed Polstar satel-

lite (Scowen et al. 2021).

3. Orbital effects produce distinguishable shapes in

the q–u plane. The shapes are mainly elliptical,
as pointed out by BME already. Importantly, we

used the context of orbital effects to explore the

influence of the CWI shock, and its boundary sep-

arating the two stellar winds, on the amplitude of
polarization. For this purpose we introduced the

“non-interacting winds” (NIWs) construct. This

assumes an (unphysical) superposition of the re-

spective two winds, with polarization arising solely

from each star shining on the spherical wind of
the other. In this way the scenario for NIWs and

CWIs can be compared on the scale of the same

mass fluxes. For the case of equal winds and a

planar shock, inclusion of the CWI increases the
polarization by factors of several, until the sepa-

ration of the two stars becomes large compared
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to the stellar radii. As expected, the CWI and

NIW polarizations become equal, since the CWI

is far removed from either star and thus adds only

a small column density compared to the spherical
winds.

4. When β ≪ 1, as for example in the case of

WR+OB binaries, we find the interesting re-
sult that the polarization for the OB compo-

nent is much higher than for the WR component.

Whether the observed polarization is dominated

by the WR or the OB star will depend on the

weighting by the specific luminosities. However,
it is clear that at wavelengths where the WR star

is more luminous, the polarization will be lower

as set by pWR, and where it is less luminous, the

polarization will be higher as set by pO (or pB, as
the case may be; Fig. 11.)

In closing it is worth noting that the individual stars

in a massive colliding wind system may themselves be

sources of polarization, which may be steady or vari-
able. For example, around 10% of massive stars are

known to be magnetic (Wade et al. 2016), and it is

possible (although very rare) for massive star binaries

to have a component that possesses a significant mag-

netic field (e.g., Plaskett’s Star, Grunhut et al. 2013).
Munoz et al. (2022) has recently explored the effects of

variable linear polarization from electron scattering for

rotating magnetospheres. While this could complicate

efforts to isolate the variable polarization from the CWI,
the polarization from individual stars will be modulated

on a rotation period whereas the colliding wind polar-

ization is modulated on the orbital period. Unless the

binaries are very close, these periods are unlikely to be

the same.

WR stars in particular are known to be sources

of polarization. However, typical polarization behav-
ior from individual WR stars appears stochastic (e.g.,

St.-Louis et al. 1987; Drissen et al. 1987). The behav-

ior is likely associated with the wind flow time, R∗/v∞,

that is much shorter than binary orbital periods. In ad-

dition to being stochastic in nature, the effect could be
averaged out to emphasize the smoother variable polar-

ization from the CWI on the longer period of the orbit.

In addition to variable polarization, some WR stars may

have long-term stable polarizations (e.g., Harries et al.
1998). Abdellaoui et al. (2022) have explored the polar-

ization that could result for axisymmetric rotationally

distorted winds of WR stars. However, such polariza-

tion would be constant. The effect would be to con-

tribute to a constant offset to the system polarization,
similar to the effect of interstellar polarization. Variable

polarization would arise entirely from the CWI over the

timescale of the orbital period.

RI acknowledges funding support for this research
from grants by the National Science Foundation (NSF),

AST-2009412 and AST-1747658. YN acknowledges sup-

port from the Fonds National de la Recherche Scien-

tifique (Belgium), the European Space Agency (ESA)

and the Belgian Federal Science Policy Office (BELSPO)
in the framework of the PRODEX Programme. JLH

is grateful for NSF funding under award AST-1816944,

and acknowledges that the University of Denver occupies

land within the traditional territories of the Arapaho,
Cheyenne, and Ute peoples. NSL wishes to thank the

National Sciences and Engineering Council (NSERC) for

financial support.

APPENDIX

SPECIAL CASE OF α = β = 1

When β = 1 and α = 1, with stars of identical stellar and wind parameters, the CWI is planar, and the solution for
the shock properties simplifies considerably. First, we introduce θ = θ1 = θ2 as the angle from either star to a point

on the planar shock. The distance of the shock from either star becomes

RS = D/2µ. (1)

The projection factors become K = K1 = K2 = µ. Simplification of the surface density was noted already in eq. (16).

Contributions to the polarization from the CWI component depends on the following integrals (see eqs. [36]-[39]):

∫ 1

0

Σ(µ)K(µ) dµ = 4Σ0

∫ 1

0

µ2(1− µ)2

sin θ(θ − µ sin θ)
dµ ≈ 0.56Σ0, (2)

and

∫ 1

0

Σ(µ)K(µ)µ2 dµ = 4Σ0

∫ 1

0

µ4(1− µ)2

sin θ(θ − µ sin θ)
dµ ≈ 0.32Σ0. (3)

Using these two results, we can analytically derive the polarization for the scenario of two equal stars that are
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widely separated, with D ≫ R∗. At wide separation we can ignore the finite size of each star (i.e., θ∗ → 0), which

amounts to not having to consider case C (c.f., § 3.1.3). Additionally, the region of case A for each star (c.f., § 3.1.1)

is hemispherical and consequently makes no contribution to the net polarization. All that remains are contributions

I., II., and III. for case B (c.f., § 3.1.2), where the limits of the angular integrations are 0 to π/2 in θ or +1 to 0 in µ.
The total polarization becomes:

p=
3

8
σT

(

N̄ − 3Ñ
)

(4)

=
3

8
σT

[

N̄B,I + N̄B,II + N̄B,III − 3ÑB,I − 3ÑB,II − 3ÑB,III

]

(5)

=
3

8
σT n0R∗

(

R∗

D

)

[−1.00 + 0.56 + 2.47 + 075− 0.96− 6.30] (6)

=−1.68 σT n0R∗

(

R∗

D

)

, (7)

where each number in the square brackets of eq. (6) corresponds to each term in the preceding line of eq. (5). Note

that if grouped by region, each of I., II., and III. would separately yield net negative polarizations.

For comparison the polarization for the non-interacting wind (NIW) case introduced in § 3.5 can also be evaluated

analytically for D ≫ R∗. The two relevant angle-averaged column densities are

N̄ = n0R∗

(

R∗

D

)
∫ π/2

0

π dθ =
π2

2
n0R∗

(

R∗

D

)

, (8)

and

Ñ = n0R∗

(

R∗

D

)
∫ π/2

0

π cos2 θ dθ =
π2

4
n0R∗

(

R∗

D

)

. (9)

For an NIW with wide binary separation, the polarization is

pNIW =
3

8
σT n0R∗

(

R∗

D

) (

π2

2
− 3

π2

4

)

= −0.93 σT n0R∗

(

R∗

D

)

. (10)

The ratio of the coefficients from eqs. (7) and (10) is 1.8, which is the solid green line appearing in Fig. 8.
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