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moving interfaces
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Abstract
A combination of reaction–diffusion models with moving-boundary problems yields a system in which the diffusion
(spreading and penetration) and reaction (transformation) evolve the system’s state and geometry over time. These
systems can be used in a wide range of engineering applications. In this study, as an example of such a system, the
degradation of metallic materials is investigated. A mathematical model is constructed of the diffusion-reaction processes
and the movement of corrosion front of a magnesium block floating in a chemical solution. The corresponding parallelized
computational model is implemented using the finite element method, and the weak and strong-scaling behaviors of the
model are evaluated to analyze the performance and efficiency of the employed high-performance computing techniques.
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Introduction

Moving-boundary problems (Crank, 1987) are a subset of the
general concept of boundary-value problems which not only
require the solution of the underlying partial differential
equation (PDE), but also the determination of the boundary of
the domain (or sub-domains) as part of the solution. Moving-
boundary problems are usually referred to as Stefan problems
(Crank, 1987) and can be used to model a plethora of
phenomena ranging from phase separation and multiphase
flows in materials engineering to bone development and
tumor growth in biology. Reaction-diffusion systems are the
mathematical models in which the change of state variables
occurs via transformation and spreading. These systems are
described by a set of parabolic PDEs and can model a large
number of different systems in science and engineering, for
instance, predator-prey models in biology and chemical
components reactions in chemistry (Grindrod, 1996).
Combining the reaction–diffusion systems with moving-
boundary problems provides a way to study the systems
in which the diffusion and reaction lead to the change of
domain geometry. Such systems have great importance in
various real-world scenarios in chemistry and chemical en-
gineering as well as environmental and life sciences.

In this study, the material degradation phenomenon has
been investigated as an example of a reaction–diffusion

system with moving boundaries, in which the loss of ma-
terial due to corrosion leads to movement of the interface of
the bulk material and surrounding corrosion environment.
More specifically, the degradation of magnesium (Mg) in
simulated body fluid has been chosen as a case study.
Magnesium has been chosen due to its growing usability as
a degradable material in biomedicine, where it is usually
used in biodegradable implants for bone tissue engineering
and cardiovascular applications (Chen et al., 2014; Zhao
et al., 2017). The ultimate application of such a model can
be then to study the degradation behavior of resorbable Mg-
based biomaterials.

A wide range of different techniques has already been
developed to study the moving interfaces in reaction–
diffusion problems, which can be grouped into 3 main
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categories: (1) mesh elimination techniques, in which some
elements are eliminated to simulate the interface move-
ment (or loss of material in corrosion problems), (2) ex-
plicit surface representation, such as the arbitrary
Lagrangian-Eulerian (ALE) method, which tracks the
interface by moving a Lagrangian mesh inside an Eulerian
grid, and (3) implicit surface tracking, in which an implicit
criterion is responsible to define the moving interface
during the reaction–diffusion process. Related to the
aforementioned case study, studies performed by Gao et al.
(2018) and Gastaldi et al. (2011) are examples of the first
group. Gao et al. (2018) have constructed a simulation of
degradation using the mesh elimination technique.
Gastaldi et al. (2011) have developed a continuous damage
(CD) model by using an explicit solver to study the
degradation. The work of Grogan et al. (2014) is an ex-
ample of the second group as they have developed one of
the first models to correlate the mass flux of the metallic
ions in the biodegradation interface to the velocity of said
interface. This was used to build an ALE model to ex-
plicitly track the boundary of the material during degra-
dation. Studies of the third category are based more on
mathematical modeling rather than available models in
simulation software packages. This approach results in
more flexibility and control over the implementation of the
computational model. For instance, Wilder et al. (2014)
have derived a system of mathematical equations to study
galvanic corrosion of metals, taking advantage of the level
set method (LSM) to track the corrosion front. Bajger et al.
(2016) have used the definition of velocity of the bio-
degradation interface as the speed of the moving-boundary
in LSM, enabling them to track the geometrical changes of
the material during degradation. Similarly, Vagbharathi
and Gopalakrishnan (2014) have used a combination of
LSM and extended finite element method (XFEM), a
method to model regions with spatial discontinuities, to
study the moving corrosion front in the pitting corrosion
process. A very similar approach and formulation has been
taken by Duddu (2014) to model localized pitting corro-
sion. An alternative method for tracking the moving in-
terface is the phase-field method, which has been used in a
wide range of relevant studies. A comparison between the
behavior of phase-field and LSM formulations for an
evolving solid-liquid interface has been performed by Xu
et al. (2012), showing that both methods lead to the same
results for diffusion-reaction systems. The approach taken
in this study was similar to the one from Bajger et al.,
where LSM was employed to correlate the diffusion and
reaction processes to the movement of the solid-solution
interface using continuous variables.

Tracking the moving front at the diffusion interface
requires high numerical accuracy of the diffusive state
variables, which can be achieved using a refined com-
putational grid. This makes the model computationally

intensive, and as a consequence, implementing paralle-
lization is an inevitable aspect of simulating such a model.
Such an approach enables the model to simulate large-
scale systems with a large number of degrees of freedom
(DOF) in 3D with higher performance and efficiency in
high-performance computing (HPC) environments. In
recent years, parallelization of diffusion-reaction systems
simulation has been investigated, but the studies are
mainly conducted for stochastic (statistical) models. For
instance, Chen and Schutter (2017) have developed a
parallel stochastic model for large-scale spatial reaction–
diffusion simulation, and similarly, Arjunan et al. (2020)
have developed a stochastic high-performance simulator
for specific biological applications. Also as an example for
massively parallel systems, Hallock et al. (2014) have
conducted a simulation of reaction–diffusion processes in
biology using graphics processing units (GPUs). Al-
though stochastic models have more parallel-friendly
algorithms, explaining the underlying process, espe-
cially when it involves reaction–diffusion processes of
chemistry and biology, is less complex and more universal
using mechanistic (deterministic) models, which are
based on well-developed mathematical models of con-
tinuous systems (Kendall et al., 1999). To the best of
authors’ knowledge, none of the previous contributions to
the topic of reaction–diffusion systems with moving in-
terfaces has employed parallelization techniques to in-
crease the performance and speed of execution of the
model without compromising the accuracy of the interface
tracking.

In the current study, we developed a mechanistic model
of a reaction–diffusion system coupled with a moving
interface problem. Improving the accuracy of the interface
capturing requires a refined computational mesh, leading
to a more computation-intensive simulation. To overcome
this challenge and yield more interactable simulations,
scalable parallelization techniques were implemented
making the model capable of being run on massively
parallel systems to reduce the simulation time. The in-
vestigated case-study is the material degradation process.
The developed model captures the release of metallic ions
to the medium, formation of a protective film on the
surface of the material, the effect of presented ions in the
medium on the thickness of this protection layer, and
tracking of the movement of the corrosion front (Figure 1).
The interface tracking was performed using an implicit
distance function that defined the position of the interface
during degradation. This implicit function was obtained by
constructing and solving a level set model. It is also worth
noting that in a real-world application, such systems re-
quire a calibration (also called parameter estimation or
inverse problem), in which the model should be simulated
hundreds of times. This makes the parallelization even
more crucial for these models.
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Background theory and model description

Before elaborating the parallel implementation strategy, the
mathematical model is briefly described in this section. The
model is constructed based on the chemistry of degradation,
starting from the previouswork byBajger et al. (2016), inwhich
the ions can diffuse to the medium and react with each other.

Chemistry of degradation

In metals, degradation occurs through the corrosion process,
which usually consists of electrochemical reactions, in-
cluding anodic and cathodic reactions as well as the for-
mation of side products (Zheng et al., 2014).

For Mg, the corrosion reactions comprise the following
steps (Zheng et al., 2014): first, the material is released as
metallic ions and free electrons, which causes the volume of
the bulk material to be reduced

Mg→Mg2þ þ 2e� (1)

The free electron reduces water to hydrogen gas and
hydroxide ions

2H2Oþ 2e� →H2 þ 2OH� (2)

Then, with the combination of the metallic and hy-
droxide ions, a porous film is formed on the surface, slowing
down the degradation rate by protecting the material
underneath

Mg2þ þ 2OH� →MgðOHÞ2 (3)

With the presence of some specific ions in the surrounding
medium, such as chloride ions in a saline solution, the
protective film might be broken partially, which contributes
to an increase of the rate of degradation

MgðOHÞ2 þ 2Cl� →Mg2þ þ 2Cl�þ 2OH� (4)

The degradation process of metals is a continuous rep-
etition of the above reactions.

Reaction–diffusion equation

A reaction–diffusion partial differential equation can de-
scribe the state of a reaction–diffusion system by tracking
the change of the concentration of the different components
of the system over time (Grindrod, 1996). The equation is a
parabolic PDE and can be expressed as

∂u
∂t

� = � ½D=u� ¼ f ðuÞ (5)

In which the change of the state variable u ¼ uðx,tÞ,x2V �
R

3 is described as a combination of how it diffuses and how
it is produced or eliminated via reactions. The term f(u) is a
smooth function that describes the reaction processes. In the
example used in this study, the state variable in equation (5)
is the concentration of effective chemical components in-
volved in the degradation process, namely magnesium ions
and the protective layer, denoted by CMg and CFilm,
respectively

CMg ¼ CMgðx,tÞ, CFilm ¼ CFilmðx,tÞ x2V � R
3 (6)

V is the whole domain of interest, including the bulk
material and its surrounding medium. So, by assuming that
the reaction rates of equations (3) and (4) are k1 and k2,
respectively, one can write the change of those state vari-
ables according to equations (3) and (4) as

∂CMg

∂t
¼ = �

�
De

Mg=CMg

�
� k1CMg þ k2CFilm½Cl�2 (7)

∂CFilm

∂t
¼ k1CMg � k2CFilm½Cl�2: (8)

We assumed that the concentration of the chloride
ions is constant (denoted by [Cl] in the equation) and
does not diffuse into the protective film. The missing
part of the model described by equations (7) and (8) is
the effect of the protective film on the reduction of the
degradation rate. To this end, we defined a saturation
term,

�
1� CFilm

½Film�max

�
for the concentration of Mg ions in

the equations. By considering the film’s porosity (ϵ), the

Figure 1: A schematic representation of different components of the developed model for simulation of the degradation process with a
moving front.
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maximum concentration of the protective layer can be
calculated based on its density ðρMgðOHÞ2Þ

½Film�max ¼ ρMgðOHÞ2 � ð1� ϵÞ (9)

The defined saturation term acts as a function of space
that varies between 0 and 1 in each point. By adding this
term to the concentration of Mg ions, we can write

∂CMg

∂t
¼ = �

�
De

Mg=CMg

�
� k1CMg

�
1� CFilm

½Film�max

�

þk2CFilm½Cl�2 (10)

∂CFilm

∂t
¼ k1CMg

�
1� CFilm

½Film�max

�
� k2CFilm½Cl�2 (11)

Since the film is a porous layer and allows the ions to
diffuse through it, the diffusion coefficient in equation
(10) is a function of space and not a constant value (which
is the reason for being denoted as De

Mg). We can calculate
this effective diffusion function by interpolating two
values at any point: (1)De

Mg ¼ DMg when CFilm = 0 and (2)
De

Mg ¼ ϵ
τDMg when CFilm = [Film]max, in which ϵ and τ are

the porosity and tortuosity of the protective film, re-
spectively. The interpolation leads to the effective dif-
fusion function

De
Mg ¼ DMg

��
1� CFilm

½Film�max

�
þ CFilm

½Film�max

ϵ
τ

�
: (12)

Level set method

The level set method is a methodology that allows moving
interfaces to be described by an implicit function. In other
words, the boundaries of domains can be tracked as a
function instead of being explicitly defined. In the level set
method, a signed distance function, f = f(x, y, z, t), de-
scribes the distance of each point in space to the interface,
and the zero iso-contour of this function implies the in-
terface (Ronald Fedkiw, 2002). In the current study, this
function was defined in a way that divides the domain into
two sub-domains: (1) the bulk material, in which the im-
plicit function is positive (f > 0), and (2) the medium, in
which the function is negative (f < 0). The interface is
defined as the points in space where f = 0. Figure 2 shows a
schematic representation of the solid-medium interface in
the current study, in which the interface moves as the
material degrades over time.

The level set equation defines this implicit function. The
full level set equation can be written as (Ronald Fedkiw,
2002)

∂f
∂t

þ V E
�!

� =fþ VN

				=f
				 ¼ bκ

				=f
				 (13)

In which the terms correspond to temporal changes, external
velocity field effect, normal direction motion, and curvature-
dependent interface movement, respectively. VE

�!
is the

external velocity field, and VN is the magnitude of the
interface velocity along the normal axis. In practical usage,
some of the terms are neglected. In this study, perfusion
(rotation of the liquid around the bulk sample) is not
considered, and the degradation rate does not depend on
the curvature of the interface. As a result, by assuming that
the interface moves in normal direction only, equation (13)
can be simplified to

∂f
∂t

þ VN

				=f
				 ¼ 0 (14)

where VN is depicted in Figure 2. The Rankine–Hugoniot
equation can be used to calculate the interface velocity in
mass transfer problems (Scheiner and Hellmich, 2007)

fJðx,tÞ � ðcsol � csatÞVðx,tÞg � n ¼ 0 (15)

in which J is the mass flux, csol is the concentration of the
material in the bulk part (i.e., its density), and csat is the
concentration at which the material (here, the ions) saturates
through the medium. So, for the investigated Mg degra-
dation problem, equation (15) will be

De
Mg=nCMg � ð½Mg�sol � ½Mg� satÞVN ¼ 0: (16)

Inserting the obtained velocity of equation (16) into
equation (14) and considering the direction of the shrinkage
velocity, which is in the opposite direction of the surface
normal vector, yields

∂f
∂t

�
De

Mg=nCMg

½Mg�sol � ½Mg�sat

				=f
				 ¼ 0: (17)

Equation (17) is the final formulation of the level set
equation in the current study, which alongside equations
(10) and (11), forms the mathematical model of degradation
of Mg with a moving interface. Equation (17) contributes
indirectly to the evolution of equations (10) and (11) as it
defines the boundary, the zero iso-contour of the f function,

Figure 2: A schematic representation of the implicit function
definition in the current study. V denotes the shrinkage speed of
the interface due to degradation.
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on which the boundary conditions of the equations are
applied.

Methodology of model implementation

The developed mathematical model comprises equations
(10), (11), and (17), and cannot be solved using analytical
techniques. The alternative approach in these scenarios is
solving the derived PDEs numerically. In this study, we used
a combination of finite element and finite difference
methods to solve the aforementioned equations. In the
developed numerical model, the PDEs are solved one by
one, each of which is a linear equation, so the model im-
plementation follows the principles of solving linear sys-
tems. In the following section, only the process to obtain the
solution of equation (10) is described in detail, but the other
PDEs were solved using the same principle. Although the
adopted finite element method is standard, we elaborate on
its derivation to clarify the bottlenecks of the later-discussed
implementation.

Finite element discretization (bottleneck of
the algorithm)

In order to solve equation (10) numerically, we used a finite
difference scheme for the temporal term and a finite element
formulation for the spatial terms. For simplicity of writing,
notations of variables are changed, so CMg is represented as
u (the main unknown state variable to find), CFilm is denoted
by p, [Cl] is denoted by q, and the saturation term

�
1� F

Fmax

�
is denoted by s. By doing this, equation (10) can be written
as

∂u
∂t

¼ = � ðD=uÞ � k1suþ k2pq
2: (18)

To obtain the finite element formulation, the weak form
of derived PDE is required. In order to get this, we define a
space of test functions and then, multiply each term of the
PDE by any arbitrary function as a member of this space.
The test function space is

V ¼


vðxÞ

		x2V,vðxÞ 2H1ðVÞ, and vðxÞ ¼ 0 on Γ
�
(19)

in which the V is the domain of interest, Γ is the
boundary of V, and H1 denotes the Sobolev space of the
domain V, which is a space of functions whose deriv-
atives are square-integrable functions in V. The solution
of the PDE belongs to a trial function space, which is
similarly defined as

St ¼
�
uðx,tÞ

				x2V,t>0,uðx,tÞ2H1ðVÞ, and ∂u
∂n

¼ 0 on Γ


:

(20)

Then, we multiply equation (18) to an arbitrary function
v2V

∂u
∂t

v ¼ = � ðD=uÞv� k1suvþ k2pq
2v: (21)

Integrating over the whole domain yieldsZ
V

∂u
∂t
vdω¼

Z
V

= � ðD=uÞvdω�
Z
V

k1suvdωþ
Z
V

k2pq
2vdω:

(22)

The diffusion term can be split using the integration by
parts techniqueZ

V

= � ðD=uÞvdω¼
Z
V

= � ½vðD=uÞ�dω�
Z
V

ð=vÞ � ðD=uÞdω

(23)

in which the second term can be converted to a surface
integral on the domain boundary by applying the Green’s
divergence theoryZ

V

= � ½vðD=uÞ�dω ¼
Z
Γ
Dv

∂u
∂n

dγ: (24)

For the temporal term, we use the finite difference
method and apply a first-order backward Euler scheme for
discretization, which makes it possible to solve the PDE
implicitly

∂u
∂t

¼ u� un

Δt
(25)

where un denotes the value of the state variable in the
previous time step (or initial condition for the first time
step). Inserting equations (23)–(25) into equation (22)
yields:Z

V

u� un

Δt
vdω ¼

Z
Γ

Dv
∂u
∂n

dγ�
Z
V

D=u � =vdω

�
Z
V

k1suvdωþ
Z
V

k2pq
2vdω (26)

The surface integral is zero because there is a no-flux
boundary condition on the boundary of the computational
domain (defined in the trial function space according to
equation (20)). By reordering the equation, we get the weak
form of equation (18)Z

V

uvdωþ
Z
V

ΔtD=u � =vdωþ
Z
V

Δtk1suvdω

¼
Z
V

unvdωþ
Z
V

Δtk2pq
2vdω

(27)

So, the problem is finding a function uðtÞ 2St such that
for all v2V equation (27) would be satisfied. By defining a
linear functional (f, v) =

R
V fvdω and encapsulating the
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independent concentration terms into f n = pq2, equation
(27) can be simplified as

ðu,vÞ½1þ Δtk1s� þ ΔtðD=u,=vÞ ¼ ðun,vÞ þ Δtðf n,vÞ (28)

which can be further converted to the common form of the
weak formulation of time-dependent reaction–diffusion
PDEs by multiplying to a new coefficient α ¼ 1

1þΔtk1s

ðu,vÞ þ αΔtðD=u,=vÞ ¼ αðun,vÞ þ αΔtðf n,vÞ: (29)

One can approximate the unknown function u in equation

(29) by uðxÞ ≈
PN
i¼0

ciψiðxÞ, where the ψi are the basis functions

used to discretize the function space, and c0, …, cN are the
unknown coefficients. The finite elementmethod uses Lagrange
polynomials as the basis function and discretizes the compu-
tational domain using a new function space υh spanned by the
basis function fψigi2I s

, in which I s is defined as
I s ¼ f0,…,Ng, whereN denotes the degrees of freedom in the
computational mesh. The computational mesh discretizes the
space into a finite number of elements, in each of which theψi is
non-zero inside the ith element and zero everywhere else. In this
study, first-order Lagrange polynomials were used as the basis
functions to define the finite element space.

In order to derive a linear system of equations for ob-
taining the unknown coefficients cj, we define

u ¼
XN
j¼0

cjψjðxÞ, un ¼
XN
j¼0

cnj ψjðxÞ (30)

as the definition of the unknown function u and its value in the
previous time step un. We then insert it into equation (29),
which yields the following equation for each degree of free-
dom i = 0,…,N, where the test functions are selected as v = ψi

XN
j¼0

�
ψi,ψj

�
cj þ αΔt

XN
j¼0

�
=ψi,D=ψj

�
cj

¼
XN
j¼0

α
�
ψi,ψj

�
cnj þ αΔtðf n,ψiÞ:

(31)

Equation (31) is a linear systemX
j

Ai,jcj ¼ bi (32)

with

Ai,j ¼
�
ψi,ψj

�
þ αΔt

�
=ψi,D=ψj

�
(33)

bi ¼
XN
j¼0

α
�
ψi,ψj

�
cnj þ αΔtðf n,ψiÞ (34)

By solving equation (32) and substituting the obtained c
in equation (30), u (CMg in the example in this study) can be

calculated in the current time step. As stated before, the
same approach can be applied to equations (11) and (17) to
get CFilm and f. This procedure is repeated in each time step
to compute the values of CMg, CFilm, and f over time.

A common practice to save time for solving equation
(32) for a constant time step size is to compute the left-hand
side matrix [A in equation (33)] once and compute only the
right-hand side vector of the equation at each time iteration.
But in this case, although the time step size is fixed, due to
the presence of the α coefficient, the matrix changes along
the time. The α coefficient is not constant and should be
updated in each time step because it depends on the pe-
nalization term s [which is a function of the concentration of
the film as can be seen by comparing equations (10) and
(18)]. In addition to this, the diffusion coefficient is not
constant [Equation (12)], making the second term in
equation (33) non-constant even in the absence of α co-
efficient. Consequently, the left-hand side matrix of the
equation (32) cannot be computed before the start of the
main time loop, and computing it in each time step is an
extra but inevitable computational task in comparison to
similar efficient and high-performance finite element im-
plementations. This contributes to a slower algorithm for
solving the aforementioned PDEs.

Implementation and parallelization

The model was implemented in FreeFEM (Hecht, 2012),
which is an open-source PDE solver to facilitate converting
the weak formulation [Equation (27)] to a linear system Ax =
b [with A from equation (33) and b from equation (34)]. The
computational mesh was generated using Netgen (Schöberl,
1997) in the SALOME platform (Ribes and Caremoli,
2007) by a set of linear tetrahedral elements, and all the
other preprocessing steps were performed in FreeFEM. The
mesh was adaptively refined on the material-medium in-
terface in order to increase the accuracy of the level set
model. Postprocessing of the results was carried out using
Paraview (Ahrens et al., 2005).

Computing the diffusion solely in the medium domain
causes oscillations close to the interface, and to prevent this,
the mass lumping feature of FreeFEMwas employed. In this
technique, the desired mass matrix is handled node-wise and
not element-wise. Technically speaking, this means that the
state variable is stored in the mesh nodes, and although this
is the natural formulation in the finite difference method, it
requires artificial modification in the standard finite element
formulation (Wendland and Schulz, 2005). The mass
lumping feature of FreeFEM applies a quadratic formula at
the vertices of elements to make the mass matrix diagonal,
which contributes positively to the convergence of the
solution.

The main parallelization approach for the current study
was domain decomposition, in which the mesh is split into
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smaller domains (can be overlapping or non-overlapping),
and the global solution of the linear system is achieved by
solving the problem on each smaller local mesh.What really
matters in this approach is providing virtual boundary
conditions to the smaller sub-domains by ghost elements,
transferring neighboring sub-domain solutions (Badri et al.,
2018). As a result, a high-performance parallelism is fea-
sible by assigning each sub-domain to one processing unit.

In computational science, preconditioning is widely used
to enhance the convergence, which means instead of di-
rectly working with a linear system Ax = b, one can consider
the preconditioned system (Daas et al., 2019)

M�1Ax ¼ M�1b (35)

in which theM�1 is the preconditioner. In the current study,
we considered this approach for both the domain compo-
sition and the solution of the linear system. We opted to use
an overlapping Schwarz method for domain decomposition,
in which the mesh is first divided into a graph of N non-
overlapping meshes using METIS (or ParMETIS) (Karypis
and Kumar, 1998). Then, by defining a positive number δ,
the overlapping decomposition fT δ

i g1#i#N can be created
recursively for each sub-mesh fT ig1#i#N by adding all
adjacent elements of T δ�1

i to it. Then, the finite element
space νh [Equation (19)] can be mapped to the local space
fυδi g1#i#N by considering the restrictions fRig1#i#N and a
local partition of unity fDig1#i#N such that

XN
j¼1

Ru
j DjRj ¼ In×n (36)

where I and n denote identity matrix and the global number
of unknowns, respectively (Dolean et al., 2015).

In this study, we decomposed the mesh by using the one-
level preconditioner Restricted Additive Schwarz (RAS)

M�1
RAS ¼

XN
i¼1

Ru
i DiA

�1
i Ri (37)

in which fAig1#i#N is the local operator of the sub-matrices
(Dolean et al., 2015). For this purpose, we took advantage of
the HPDDM (high-performance domain decomposition
methods) package interface in FreeFEM (Jolivet et al.,
2013). The partitioned mesh is shown in Figure 3. The
effect of the construction of these local sub-domains on the
sparsity pattern of the global matrix is also depicted in
Figure 4. The global matrix is a sparse matrix according to
equation (33) and the definition of the basis function ψ.

Generally, two categories of methods have been used to
solve a large linear system of equations on parallel ma-
chines: direct solvers [e.g., Multifrontal Massively Parallel
Sparse, MUMPS (Amestoy et al., 2001)] and iterative
solvers [e.g., Generalized Minimal Residual Method,

GMRES (Saad and Schultz, 1986)]. While direct solvers are
quite robust, they suffer from the memory requirement
problem on large systems. Inversely, iterative solvers are
quite efficient on memory consumption, but similar to other
iterative approaches, they are not very reliable in some cases
(Saad, 2003). Direct solvers modify the matrix by factor-
ization (e.g., Cholesky decomposition), but an iterative
solver does not manipulate the matrix and works solely
using basic algebraic operations. However, for an efficient
usage of iterative solvers, a proper preconditioner is crucial
(Saad, 2003). By evaluating and comparing the perfor-
mance of the aforementioned methods for the current
model, we decided to use an iterative approach using the
Krylov subspaces (KSP) method, in which we precondi-
tioned the equation using a proper preconditioner [Equation
(35)] and then solved it with an iterative solver.

Krylov methods have been frequently used by re-
searchers as robust iterative approaches to parallelism
(Ipsen and Meyer, 1998). What matters in this regard is
ensuring proper scaling of the parallelized algorithm for
both the assembling of the matrices and the solution of the
linear system of equations. One good solution to this
challenge is taking advantage of HPC-ready mathematical
libraries to achieve efficient distributed-memory parallelism
through the Message Passing Interface (MPI). In the current
study, we used the PETSc (Portable, Extensible Toolkit for
Scientific Computation) library (Balay et al., 2019), which
provides a collection of high-performance preconditioners
and solvers for this purpose.

In order to yield the highest performance, a variety of
different combinations of KSP types and preconditioners
were evaluated, such as Conjugate Gradients (CG)
(Hestenes and Stiefel, 1952), Successive Over-Relaxation
(SOR) (Habetler and Wachspress, 1961), block Jacobi, and

Figure 3: Overlapping domain decomposition in the current
study. Each color shows a separate sub-domain, and the narrow
lighter bands are the overlapped regions.
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Algebraic Multigrid (AMG) (McCormick, 1987), to name
a few. The performance tests results are presented in the
supplementary materials of this paper. The best performance
for the reaction–diffusion system model was achieved using
theHYPREBoomerAMGpreconditioner (Falgout andYang,
2002) and the GMRES solver (Saad and Schultz, 1986). This
was the combination used for all the performance analysis
tests.

Level set issues

As mentioned before, in order to track the interface of the
bulk material and the surrounding fluid, an implicit signed
distance function is defined as the solution of equation (17).
This equation can be solved using the aforementioned finite
element discretization, but in a practical implementation,
there are usually a couple of problems associated with this
PDE.

The first issue is defining De
Mg and =nCMg on the moving

interface. To ensure correct boundary conditions for
equation (16), the value of CMg is set constant on the whole
bulk material by using the penalty method. As a result, the
implicit interface is not necessarily aligned on the com-
putational mesh. Although this is a beneficial fact for the
interface tracking, it inserts the problem of overestimation
of CMg on the nodes close to the interface, which makes it
difficult to calculate =nCMg on these nodes correctly. The
same problem exists for calculating De

Mg. To overcome this
issue, the values of CMg and De

Mg are calculated at the
distance h from the interface in the normal direction (to-
wards the medium), where h is the edge size of the smallest
element of the computational mesh.

The next issue is a well-known problem of the level set
method: If the velocity of the interface is not constant [as in
Equation (13)], the level set function f may become dis-
torted by having too flat or too steep gradients close to the
moving front. This could cause unwanted movements of
the interface. The problem becomes even worse when the

distance function is advected. A solution to this issue is re-
initializing the distance function in each time step (re-
distancing), but this operation requires solving a new PDE.
From numerical investigations, it has been observed that this
operation inserts new errors in the numerical computation of
the level set equation (Russo and Smereka, 2000). This can be
resolved by improving the method of reconstruction of the
distance function (Russo and Smereka, 2000).

However, re-initialization results in another issue on a
massively parallel implementation: as the mesh is parti-
tioned into smaller sub-meshes, it is not feasible anymore to
evaluate the distance to the interface globally on each sub-
domain. As a result, the inverse process of domain de-
composition should be taken to assemble the mesh again.
This can be done by the restriction matrix and the partition
of unity [defined in Equations (36) and (37)], but it is rather
a very inefficient procedure regarding the parallelization of
the simulation and results in a long execution time in each
time step.

In the current study, the distance function f was ini-
tialized only once at the beginning of the simulation. The re-
initialization process was unnecessary in this case because
according to equation (17), the distance function is advected
only in the regions where there is a gradient of the con-
centration of Mg ions, which means that advection is ap-
plied only on the regions close to the interface in the
medium. This prevented the whole distance function of
being distorted, and as a result, it was not required to re-
initialize it in each time step. This also removed the need for
inverting the decomposition process.

Simulation setup

In order to verify the performance of the developed model, a
degradation experiment was reconstructed in-silico, in
which the degradation of a block of Mg (with the size of
13 mm × 13 mm × 4 mm) was investigated in a simulated
body fluid solution. All the experimental parameter data

Figure 4: Comparison of the sparsity patterns (highlighting non-zero elements) of the global matrix A for a different number of
decomposed domains: (a) 1 domain, (b) 2 sub-domains, (c) 4 sub-domains, and (d) 8 sub-domains.
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(used to setup the simulation), as well as the degradation
rates (used to calibrate and validate the numerical model)
were extracted from Mei et al. (2019).

As can be seen in equations (1) and (2), each mole re-
moved from the Mg block corresponds to one mole of the
produced hydrogen. As a result, instead of a direct mea-
surement of mass loss, one can collect and measure the
amount of produced hydrogen to monitor the degradation
rate. This is a common way of reporting degradation in this
type of studies (Abidin et al., 2013). In order to get this
quantity out of the developed model, we used the level set
model output. The total mass loss of Mg at each desired time
can be calculated based on the movement of the corrosion
front

Mglost ¼
Z
VþðtÞ

MgsoliddV �
Z
Vþð0Þ

MgsoliddV (38)

where V+(t) = {x: f(x, t) ≥ 0}. It is worth noting that this
integration should be performed by ignoring the ghost el-
ements generated in the mesh partitioning process, other-
wise the calculated material loss will be higher than the real
value. Then, the amount of formed hydrogen gas can be
calculated based on the ideal gas law

Hf ¼
Mglost
Mgmol

RT

PA
(39)

in which R is the universal gas constant, P is the pressure, T
is the solution temperature, A is the exposed corrosion
surface area (which can be computed using the level set
function), and Mgmol is the molar mass of Mg. Plotting a
comparison of the predicted and experimentally obtained
values of hydrogen can show the overall validity of the
mathematical model because both the diffusion-reaction
equations and the level set equation contribute to the pre-
diction made by the computational model.

The geometry of the simulation experiment is depicted in
Figure 5. Based on this geometry, an Eulerian computa-
tional mesh was constructed by generating tetrahedral el-
ements on the whole domain, including the Mg block and
the medium. This resulted in 830,808 elements with a total
of 143,719 DOFs for each PDE [equations (10), (11), and
(17)], which indicates the size of matrix A in equation (33).
Model parameters and material properties were obtained
from Bajger et al. (2016). The diffusion coefficient of Mg
was calculated using an inverse problem setup in which a
Bayesian optimization process (Mockus, 1989) was used to
run the simulation code multiple times and minimize the
difference of the model output and the experimental data
reported byMei et al. (2019). A time step convergence study
was performed to measure the sensitivity of the model to the
time stepping parameter, and based on the results, the time
step value was set to 0.025 h.

Performance analysis

To investigate the performance and scaling behavior of the
implemented parallel code, we conducted a set of weak-
scaling and strong-scaling tests on the computational model.
To do this, the time required to solve each PDE in each time
step was measured in a simulation. This acted as a rough
estimation of the time required in each time step because it
ignores all the other factors contributing to speedup results
such as communication costs, load imbalance, limited
memory bandwidth, and parallelization-caused overhead.

Weak-scaling was evaluated by dividing the computa-
tional domain into smaller sub-domains (each of which was
1
16 of the whole domain, Figure 6) and conducting simulation
experiments with 1, 2, 4, and 8 computational cores in a way
that the number of processors corresponded to the number
of employed sub-domains. In Figure 6 the upper row shows
different domains as an accumulation of the smaller

Figure 5: Representation of the experimental setup simulated to perform numerical validation of the developed model and evaluate
parallel performance. (a) A cuboid of Mg (with the size of 13 mm × 13 mm × 4 mm) is floating inside a simulated body fluid solution to
investigate the degradation process, and (b) a cross-section of the computational mesh, refined on the metal-medium interface to
increase the interface capturing accuracy.

206 The International Journal of High Performance Computing Applications 36(2)



divisions, and the lower row shows the corresponding
domain decomposition for parallel computing by depicting
each processing unit in a different color. In fact, it dem-
onstrates the concept of increasing the number of MPI
processing units as we increase the size of the problem.

After calculating the speedup of each test (by comparing
the differences in execution time), we can use Gustafson’s
law (Gustafson, 1988) to calculate the sequential and
parallelizable portion of computation in the current im-
plementation in weak-scaling evaluation

Speedup ¼ f þ ð1� f Þ×N (40)

where N is the total number of computational cores, f is the
fraction of operations in the computation that are sequential,
and as a result, 1 � f is the fraction of the execution time
spent on the parallelizable part.

The strong-scaling evaluation was performed using the
entire domain. The evaluation was done using 1, 8, 16, 40,
60, 90, 200, and 300MPI cores. In strong-scaling, Amdahl’s
law (Amdahl, 1967) is used to calculate the portion of the
algorithm that runs in parallel

Speedup ¼ 1

f þ 1�f
N

(41)

in which the parameters are the same as equation (40).

Compute environment

Simulations were conducted on the VSC (Flemish Super-
computer Center) supercomputer with the availability of
Intel CPUs in three different micro-architectures: Ivy
Bridge, Haswell, and Skylake. Due to a better performance,
the strong and weak-scaling measurements were solely
performed on the Skylake nodes. On this supercomputer, we
made use of 9 nodes, 36 cores each, with 1.7 TB of the total
memory, each node holding 2 Intel Xeon Gold 6132 CPUs
with a base clock speed of 2.6 GHz. The supercomputer
uses CentOS 7.6.1810 with kernel version 3.10.0. For in-
terprocess communication, Intel’s MPI implementation
2018 was used.

Results

Numerical simulation results

The performed numerical simulation produces the output of
three main quantities: the concentration of the Mg ions in
the medium [as the solution of equation (10)], the con-
centration of the protective film [as the solution of equation
(11)], and the level set function values at each element [as
the solution of equation (17)]. In addition to this, a quan-
titative prediction of the mass loss is also generated ac-
cording to equations (38) and (39).

Figure 6: Models used for weak-scaling, in which the number of elements was doubled each time while doubling the number of
computational cores. Upper row: actual computational domain in which colors show the medium (blue) and the material block (red).
Lower row: domain decomposition for parallelization, colors show different decomposed mesh parts (distributed to different MPI
processing units). Each column corresponds to a different simulation with (a) 1 MPI unit, (b) 2 MPI units, (c) 4 MPI units, and (d) 8 MPI
units.
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In order to have quantitative predictions, the coeffi-
cients of equations (10) and (11) (diffusion rates and re-
action rates) should be calibrated using an inverse
problem. Figure 7 shows the results produced by the
computational model after this parameter estimation stage.
A narrow layer of the protective film is formed on the
surface of the Mg block, and the volume of produced
hydrogen gas is compared with values obtained from
experiments. Additionally, by plotting the zero iso-contour
of the level set function, we can obtain the shape of the
material block as it degrades during the degradation

process (i.e., tracking the moving corrosion front). This is
depicted by the gray surface in Figure 7.

Weak and strong-scaling results

Weak-scaling results are plotted in Figure 8, in which the
execution time of each time step is broken down into the
time spent on each PDE. The results show good scalability
of the parallel implementation.

Speedup and parallel efficiency of the weak-scaling
experiment is plotted in Figure 9. By fitting a curve

Figure 7: Numerical simulation result. Left: formation of a protective layer on the surface of the Mg block (red region). Right:
comparison of the produced hydrogen (a surrogate for the material loss) in the computational model and the experimental data, which
is a validation of the full model as both the reaction–diffusion equations and the level set equation are involved in the computation of this
quantity.

Figure 8: Weak-scaling test result. Results are broken down into contributions for each PDE, which are plotted cumulatively and
separately in the left and right plot, respectively.

Figure 9: Speedup and parallel efficiency of the weak-scaling experiment. The orange line in the left plot shows the fitted curve based on
the Gustafson equation.
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based on the Gustafson equation [equation (40)] on the
obtained results (Figure 9), the sequential proportion of the
current implementation was calculated to be 18%, which
means that 82% of the code can be parallelized, which is a
proper but not an ideal scalability.

The strong-scaling results are plotted in Figure 10, which
shows a better scalability in comparison to the weak-scaling
test. For a better representation, exact measured values are
presented in Table 1.

Similar to weak-scaling results, Figure 11 demonstrates
the speedup and parallel efficiency of the developed code
for strong-scaling evaluation. From the results, it is obvious
that increasing the number of cores leads to a better per-
formance but a lower efficiency. By fitting Amdahl’s
equation [equation (41)] on the obtained speedup results
(Figure 11), f was obtained as 0.01, which means in strong-
scaling terms that 99% of the code can run in parallel.

Discussion
In this investigation, the derivation and implementation of a
reaction–diffusion model with moving boundaries were
presented. Such an approach finds application in many
scientific and engineering problems. The target application
in the current work was the degradation of a bulk metal
cuboid in a liquid environment, specifically Mg in an
aqueous ion solution as a representative for temporary
medical devices. The simulations were based on the cor-
rosion of Mg metal to Mg ions to form a film of Mg hy-
droxide that partially protects the metal block from further
degradation except where this film is impacted by reaction
with other ions in the environment (such as chloride ion).
The reactive moving-boundary problem was cast in the
form of equations in which the change of the concentrations
of the different chemical components is represented by
parabolic PDEs. The coupled equations depend on several

Figure 10: Strong-scaling test result. Results are broken down into contributions for each PDE, which are plotted cumulatively and
separately in the left and right plot, respectively.

Table 1: Strong-scaling test result, presented by the execution time of each PDE in simulations with a different number of employed MPI
cores.

MPI size 1 8 16 40 60 90 200 300

Solution time of each time step (s) LS PDE 9 1.39 0.75 0.36 0.26 0.19 0.11 0.07
Mg PDE 13.04 1.76 0.94 0.46 0.31 0.22 0.12 0.09
Film PDE 6.38 0.84 0.45 0.21 0.14 0.09 0.05 0.04

Total time (s) 28.42 3.99 2.14 1.03 0.71 0.5 0.28 0.2

Figure 11: Speedup and parallel efficiency of the strong-scaling experiment. The orange line in the left plot is the fitted equation based
on the Amdahl rule.
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kinetic constants that have been calibrated from experi-
ments. The moving interface between the metal bulk and the
liquid phase was described by an implicit function using the
level set method. The derivation led to equations that require
the use of numerical techniques for which a combination of
finite difference and finite element methods was im-
plemented. As the required high accuracy on the moving
interface results in an increase in computation time, par-
allelization was crucial for the computational model to
decrease the execution time of the simulations. The results
of the total execution time in each time step (Table 1) clearly
indicate that without the parallelization, the simulation of
the model is slow and as a result, less interactable for real-
world simulation analyses. Considering the properly em-
ployed parallelization, the computational time has been
decreased noticeably for the investigated case-study.

The output of the conducted numerical simulation
demonstrates that the developed mathematical model is
capable of capturing the degradation interface movement
and of modeling of the underlying chemical phenomena.
The predicted mass loss is in line with the experimental
results, and the simulated corrosion behavior is as expected
for such a system. It is worth noting that the chosen system
is highly idealized as a model for medical devices. A more
realistic chemical environment would contain many more
species that play a role in the formation of either soluble ions
or the protective film. Moreover, in real-world scenarios,
corrosion occurs in a more complex way than the simplified
one described in this paper, which will have a significant
influence on the local concentration of ions in the regions
close to the solid surface. Nevertheless, the developed
framework is capable of capturing these physical and
chemical phenomena in the future by simply adding the
appropriate terms to the base PDEs without any major
changes in the computational model. Furthermore, although
it requires some changes to the parallelization approach, the
addition of the fluid flow around the block is feasible by
adding convective terms to form a reaction–diffusion-
convection system. Such a system can be used to model
relevant systems such as experimental bioreactor setups in
biology and medical sciences.

The parallel algorithm was implemented using a domain
decomposition method. Standard domain decomposition
preconditioners, such as restricted additive Schwarz, are
widely used for parallel implementation of computational
models. In a parallel implementation, such preconditioners
bring the benefit of relatively low communication costs
(Daas et al., 2019). Beside this, the formed linear system of
equations in each partition of the mesh was solved using
Krylov methods by taking advantage of the highly-efficient
preconditioners and iterative solvers of the PETSc library.
According to the obtained results, the employed paralleli-
zation approach of the current study yields reasonable
scaling with respect to the available computational

resources (or the number of sub-domains). Out of multiple
evaluations, the best performance was achieved using the
preconditioner/solver combination of HYPRE/GMRES,
which is in agreement with findings in more specific
studies in this regard (Ghai et al., 2018).

To evaluate the scaling performance of the implemented
parallelism, a set of weak and strong-scaling tests was
conducted. In weak-scaling, the main approach is changing
the problem size proportional to the change in the available
computing resources. In an ideal parallelization, we expect
that the speedup remains the same for all the setups because
we provide double resources as we double the size of the
problem. In strong-scaling, the size of the problem remains
constant, but the number of computing units increases. So,
in an ideal case, we should observe a double speedup as the
number of computing units doubles. By fitting Gustafson’s
and Amdahl’s laws on the scaling test results (Figures 9 and
11), the maximum parallelizable portion of the code was
calculated to be 82% and 99% for the weak-scaling and
strong-scaling tests, respectively. This is a reasonable
theoretical scaling for both cases.

The obtained scaling behavior is similar to other con-
ducted studies for diffusion or diffusion-convection systems
(Hassan and El-Shenawee, 2011; Rettinger et al., 2017), in
which the efficiency of the parallelization decreases with
increasing the number of available computational resources.
The reason behind this behavior in the current model lies in
the mesh partitioning process. Indeed, the mesh is parti-
tioned into semi-equal partitions, each of which has the
same number of elements, but the main computation is only
carried out on the nodes located outside the degrading
material block (i.e., in the medium). In other words, the
computational resources assigned to the nodes inside the
material bulk do not contribute significantly to the simu-
lation. This limitation can be prevented by modifying the
mesh generation process in a way that a lower number of
elements be generated inside the material block, but doing
this requires remeshing of the interior region as the moving
interface approaches it, which imposes even more com-
plexity to the algorithm due to the partitioned mesh. An-
other bottleneck of the current model, as discussed before,
routed in the non-constant right-hand matrix of the linear
system [equation (32)], which requires computing the A
matrix [equation (33)] in each time step and leads to a
slower execution time.

One important point in this regard is that the way that the
results are interpreted does not necessarily imply the true
scaling behavior of the system. Indeed, it is more like a
surrogate model of the system performance. The correct
methodology for obtaining true scaling factors is rather
starting from an analysis of the code and time used in each
routine for a non-parallel run. Then, based on the fraction of
routines that are possible to execute in parallel, one can get a
theoretical limit for the speedup. This will be reduced by
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practical limitations such as load balancing and commu-
nication costs of the network. Since it is a theoretical limit, it
is not fully correct to ignore those extra parts and use the
execution time to invert the relation to predict the fraction of
the code that is parallel. However, for a complex compu-
tational model like the one that was developed in the current
study, doing such a measurement of each routine is very
difficult due to the complexity of the orchestrated libraries
and tools. As a result, we were limited to use the roughly
approximated speedup limit to evaluate the scaling of the
constructed model. Regarding the scalability results, it is
worth mentioning that although having studies with thou-
sands of MPI ranks is more common in this field, due to the
limitation we faced in accessing computational resources,
the maximum number of employed cores were limited to
300. The goal of the current study was to demonstrate the
scalability of the developed model on massively parallel
systems, and the behavior of the model in moving from 90
cores to 300 shows the consistency in the performed per-
formance analysis. As a result, we expect to see the same
scalability behavior for problems in a larger scale with a
higher number of employed computing nodes.

Conclusion

In this work, a mathematical model of a reaction–diffusion
system with a moving front was constructed, and the cor-
responding computational model was implemented using
the finite element method. In order to correlate the diffusion
phenomenon to the moving-boundary position, high nu-
merical accuracy is necessary at the diffusion interface,
which requires a finer discretization of space near the
moving front. This leads to an expensive computational
model, which makes employing HPC techniques crucial in
order to improve the simulation execution time. To this end,
a high-performance domain decomposition approach was
employed to partition the mesh and distribute the workload
to available computing resources. Additionally, an efficient
preconditioner/solver combination for reaction–diffusion
PDEs was used to optimize the model to be used for the
high-performance simulation of large-scale systems in
which the movement of system boundaries is controlled by
reaction–diffusion phenomena.

The investigated problem was the degradation of a
magnesium block inside a solution, in which the surface of
the block moves due to the reaction–diffusion phenomena in
themetal-medium interface. The implemented model showed
a good agreement with the experimental data in terms of the
degradation rate and chemical reactions, and the parallel
efficiency and linear scalability were appropriate in perfor-
mance evaluation tests. For the next stage of the study, it
could be interesting to evaluate themodel and its performance
on a much larger system and tune the resources and memory
usage by testing different preconditioners and solvers.
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