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A flexible and easy-to-use open-source tool for designing functionally graded 3D
porous structures
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ABSTRACT
Advances in additive manufacturing technologies are leading to an increased interest in the design
of intricate 3D geometries for applications ranging from aerospace to biomedical engineering. In
this paper, we present ASLI (A Simple Lattice Infiller), a cross-platform tool for the generation of
cellular solid structures that allows users to provide implicitly defined lattice infills to 3D objects
by specifying the desired local unit cell type, size and feature. It is written in C++ and relies on
the open-source libraries Mmg and CGAL to handle the implicit domain discretisation. Although
developed to design lattice infills for skeletal tissue engineering applications, ASLI can be used
for any application that requires the user to provide lattice infills to 3D objects. Its capabilities
are shown through a series of examples that demonstrate complex designs can easily be
accomplished. The code is published under an open-source license and is available for
download at github.com/tpms-lattice/ASLI.
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1. Introduction

Cellular solids can be found everywhere, some common
examples being bees honeycombs, wood and synthetic
foams. Their main characteristic is their cellular structure
formed by an interconnected network of struts or
sheets (Gibson and Ashby 1997). This structure allows cel-
lular solids to have unique combinations of properties
that make them invaluable for a wide range of engineer-
ing applications where competing requirements need to
be fulfilled, or tailoring the material to meet local require-
ments is essential (Schaedler and Carter 2016). Uses of cel-
lular solids include insulation materials, light-weight
structures and catalysts carriers (Gibson and Ashby
1997; Schaedler and Carter 2016). Cellular solids have
also attracted attention in the field of skeletal tissue
engineering (Hollister 2005; Gibson, Ashby, and Harley
2010; Savio et al. 2018). Here, they are at the centre of
an ongoing shift that will ultimately see traditional
implants and tissue grafts replaced by (biodegradable)
functionally graded cellular solids (Hollister 2005; Tan
et al. 2013; Zhao et al. 2017), often seeded with cells
and enhanced with antibacterial and/or osteoinductive
coatings (Van Bael et al. 2012; Cloutier, Mantovani, and
Rosei 2015; Goodman et al. 2013; Raphel et al. 2016).

There are many types of cellular solids (Tang and
Zhao 2016; Yang et al. 2014). Based on the degree of
order, they range from disordered to periodic. Disor-
dered structures have randomly distributed cells of ran-
domly varying geometry and dimensions, while periodic
structures are characterised by a regular pattern that is
repeated, where the smallest representative sample of
the structure is referred to as the unit cell. Periodic cellu-
lar solids can be further subdivided into homogeneous
and heterogeneous. In homogeneous structures, the
unit cells remain identical while in heterogeneous struc-
tures unit cells retain the same topology and size, but
vary in volume fraction. There are also pseudo-periodic
structures, where the unit cell topology and volume frac-
tion remain fixed, but size and shape vary. Finally, there
are the hybrid structures where unit cell topology varies.
Unit cells are comprised of straight or curved, beam or
surface elements. The well-known open-cell cubic and
octahedron lattice families are prime examples of
beam unit cells structures, while closed-cell polyhedrals
and Triply Periodic Minimal Surface (TPMS)-based lat-
tices are good examples of surface unit cell structures.

Unlike many other types of lattices, TPMS-based lat-
tices can be used to obtain biomorphic environments
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suitable for biological cell attachment, migration and
proliferation (Rajagopalan and Robb 2006). This makes
them a particularly good choice for Skeletal Tissue
Engineering (STE) applications where the main role of
these lattice structures, also referred to as scaffolds in
the field, is aiding tissue growth. To fulfill this role suc-
cessfully scaffolds need to provide structural support
and an adequate environment for tissues to grow (Holl-
ister 2005; O’Brien 2011). Achieving this requires balan-
cing a range of competing mechanical and biological
requirements. Yield strength, fatigue strength, bio-com-
patibility and adequate conditions for cell proliferation
and bone tissue formation, like adequate mechanical
stimulus and permeability, are just a few of them. The
complexity of the problem is further increased when
the scaffolds are temporary, as requirements related to
biodegradability will also need to be considered (Tan
et al. 2013; Shuai et al. 2019). All these requirements
not only depend on each other, but also on the
scaffold’s architecture, making the design of scaffolds
for STE applications a far from trivial problem that
remains unsolved and is generally tackled using a trial-
and-error approach considering only a handful of classi-
cal unit cell designs.

Until recently, manufacturing the kind of complex
functionally graded scaffolds needed to meet the
requirements of STE applications, even partially, was
not possible. However, the relatively recent advances
in Additive Manufacturing (AM) technologies, such as
Electron Beam Melting, Selective Laser Melting, robo-
casting and, more recently, 3D-bioprinting, are changing
this (Schaedler and Carter 2016; Heinl et al. 2008; Yan
et al. 2015; Peltola et al. 2008; Sanjairaj et al. 2018; Ng
et al. 2018). The unprecedented control over the
material’s micro-structure that these AM techniques
offer, makes it possible to nowadays manufacture
complex scaffold designs that meet the mechanical
and biological requirements demanded by the field
of STE.

Despite the large potential of TPMS-based scaffolds,
and the available technology to manufacture them,

there still seems to be lacking a simple, easy-to-use,
and affordable (free) open-source tool to design func-
tionally graded TPMS-based scaffolds. There are a few
freeware and free-and-open-source options available
(Dinis et al. 2014; Hsieh and Valdevit 2020; Al-Ketan
and Abu Al-Rub 2020; Maskery et al. 2022), with
varying functionality, while more capable commercial
tools can be prohibitively expensive (NTopology 2021;
McNeel et al. 2021; Synopsys 2021).

In this paper, we present ASLI (A Simple Lattice
Infiller), a cross-platform tool that allows users to
provide 3D objects with a functionally graded lattice
infill (see Figure 1). The generated functionally graded
infills can be hybrid, pseudo-periodic and hetero-
geneous. The resulting structure is provided to the
user in the form of an STL file suitable for 3D printing
purposes. If needed, it is also possible to generate
volume meshes that can be used for computer
simulations.

Although developed due to a need to design func-
tionally graded scaffolds for STE applications, ASLI is
not application-specific and can therefore be used for
any application that requires generating lattice infills.
Moreover, even though we have limited ourselves to
the implementation of TPMS-based infills, ASLI itself
does not have this limitation.

2. Materials and methods

ASLI generates functionally graded scaffold designs fol-
lowing the workflow shown in Figure 2. The process
starts by loading the user-provided inputs. Details con-
cerning the user inputs are discussed in Section 2.2.
Once the input files are loaded, the preprocessing
takes place which, depending on the provided inputs,
can include the filtering of data and the construction
of linear Radial Basis Function (RBF) interpolation
models. Specifics regarding the filtering are found in
Section 2.1.1, while the interested reader is referred to
Buhmann (2004) for detailed background information
on RBF interpolation. The preprocessing is followed by

Figure 1. ASLI can assign functionally graded lattice infills to randomly shaped 3D objects.

VIRTUAL AND PHYSICAL PROTOTYPING 683



the discretisation step, i.e. the step where the object
with its infill is converted into a surface triangulation
or volume mesh. The discretisation is performed using
the Mmg library (Dapogny et al. 2020) or the Compu-
tational Geometry Algorithms Library (CGAL) (CGAL
Project 2020). As a result, the user can choose between
two workflows in ASLI, the Mmg workflow and the
CGAL workflow. The discretised surface is automatically
saved as an STL or MESH file, depending on whether it
is a surface triangulation or volume mesh.

Regardless of the workflow, ASLI uses level-set
equations to describe the lattice infill. Their implemen-
tation in ASLI is discussed in detail in Section 2.1. A
level-set equation provides an implicit description of
the infill. In three dimensions, the level-set function ψ

will describe an isosurface through an equality of the
form c(x, y, z) = l, where x, y and z are the coordinates
of a point in space and l is the isovalue. Isosurfaces are
the three-dimensional equivalent of contour lines,
while the isovalue is the parameter that determines
the isosurface being considered. To provide arbitrary
geometries of their infill, the Mmg workflow first gener-
ates a volume mesh of the external geometry using the
TetGen library (Si 2015). Subsequently, the infill of the
geometry is determined by computing the isovalues at
the nodes of this volume mesh before the discretisation

of the object with its infill starts. The main drawback of
this approach is that this mesh needs to be fine
enough to capture all features of the level-set. As will
be seen in Section 3.1, this means that discretising
times will increase exponentially with decreasing
feature sizes. The CGAL workflow, on the other hand,
uses the Poisson Surface reconstruction method
(Kazhdan, Bolitho, and Hoppe 2006) to first compute
an implicit function of the geometry that is to be pro-
vided with an infill. The infill cinfill is then inscribed to
this implicitly described geometry cgeometry by comput-
ing the Boolean intersection of them (Yoo 2011).

cgeometry > cinfill = min (cgeometry , cinfill) (1)

The implicit surface resulting from this Boolean inter-
section is then discretised by evaluating the implicit
function during the discretisation process. As a result,
the time required to evaluate the implicit function
has a direct impact on the total discretising time. In
ASLI, this can be very detrimental when discretising
hybrid, pseudo-periodic or heterogeneous designs
with the CGAL workflow, as will be discussed in
Section 3.1.

Figure 2. Schematic representation of the ASLI workflow. Users can provide the inputs either by modifying the configuration file or
making use of the graphical user interface. Moreover, they can chose between two different workflows, the Mmg workflow and the
CGAL workflow, each with its own advantages and disadvantages.
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2.1. Unit cells

Developed with STE applications in mind, ASLI has a few
TPMS-based unit cells commonly used in the field already
implemented, i.e. the skeletal and sheet variants of the
Gyroid (G), Diamond (D) and Primitive (P) unit cells. An
example of each is shown in Figure 3. To describe these
TPMS-based unit cells in ASLI, the level-set approxi-
mations given by Wohlgemuth et al. (2001) are used.

cG(�x) = sin k1x1 cos k2x2 + sin k2x2 cos k3x3

+ sin k3x3 cos k1x1 − l (2)

cD(�x)= sink1x1 sink2x2 sink3x3
+ sink1x1 cosk2x2 cosk3x3
+ cosk1x1 sink2x2 cosk3x3
+ cosk1x1 cosk2x2 sink3x3− l

(3)

cP(�x)= cosk1x1+ cosk2x2+ cosk3x3− l (4)

In these equations, �x is a vector containing the x, y
and z coordinate, l is the isovalue, and k is the scaling
given by ki = 2p/si where s is the unit cell size. We
have chosen to take s1 = s2 = s3 such that unit cells
are always scaled uniformly.

In ASLI, it is possible to specify the unit cell type, size
and isovalue1. Since the isovalue is not an ideal par-
ameter from a designers point of view, there is also
the possibility to instead specify the isovalue related par-
ameter of volume fraction V frac, wall size twall or pore size
dpore. The equations relating these parameters to the iso-
value were determined empirically. The approach fol-
lowed and the equations implemented can be found
in Appendix 1. From this point onward, the isovalue
and isovalue-related parameters will collectively be
referred to as the feature value v feature.

While the level-set equations presented above can
describe the lattice infill, the infill described is a
uniform infill. To introduce unit cell size and feature
values that vary throughout the volume, these par-
ameters were simply made dependent on �x, i.e. s(�x)
and v feature(�x). Variation in unit cell type throughout
the volume, although a little more involved, can also
be achieved. The approach taken to introduce it in
ASLI is described in Section 2.1.1.

2.1.1. Unit cell type grading
Designs with more than one unit cell type can be
described by considering the weighted sum of the
level-set functions in the design (Yang et al. 2014).

chybrid(�x) =
∑n
j=1

wj(�x) · cj(�x) (5)

Here, n is the number of different unit cell types in the
design and w is a weight such that w =1 in the region
of unit cell type j, i.e. Rj, and 0 otherwise.

wj(�x) = 1 �x [ Rj
0 �x � Rj

{
(6)

While such a weighted sum allows to introduce any
number of unit cell types in the design, the use of
binary weights causes abrupt changes that can lead to
discontinuities between regions. A grading strategy,
also called hybridisation, can be employed to avoid
these abrupt changes. This strategy allows the unit
cells to gradually morph from one type to the next by
temporarily becoming a hybrid of the unit cells in its sur-
roundings. Although different strategies have already
been proposed to this end (Yang et al. 2014; Yoo and

Figure 3. ASLI has six different unit cells already implemented,
i.e. the (a) skeletal-gyroid, (b) sheet-gyroid, (c) skeletal-diamond,
(d) sheet-diamond, (e) skeletal-primitive and (f) sheet-primitive.
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Kim 2015; Yang et al. 2017), a slightly different approach
is used in ASLI. We use a Gaussian function w to filter the
weights in the neighbourhood Np of point �x.

w∗
j (x, �x) =

∑
k[Np

w( xk − �x
∥∥ ∥∥) · wj(xk)

∑
k[Np

w( xk − �x
∥∥ ∥∥)

with:

Np = k | xk − �x
∥∥ ∥∥ ≤ r

w(x) = e−
2x
r( )2

(7)

where r controls the filter radius and x is a matrix con-
taining the points in the transition region. Filtering the
weights with a Gaussian function constitutes a simple
mechanism to create a gradual transition and provide
direct control over the size of the filtered region.
However, as Maskery et al. (2018) called to attention,
hybrid unit cells can suffer from a thinning effect that
can lead to weakened or disconnected regions. As
they proposed, a correction c is used to compensate
for this. In ASLI, this correction is applied to the feature
value. We base this correction on a user defined correc-
tion factor c factor and the filtered weights w∗.

v∗feature,j(x,�x)= cj(x,�x) · vfeature(�x)
with:

cj(x,�x)= 1+ cfactor · 1− 2
w∗

j (x,�x)

�w∗(x,�x)
∥∥ ∥∥−1

( )2( ) (8)

By using the filtered weights, we ensure both that the
correction taking place is limited to the transition

region, and that the correction will be largest at the
centre of the transition region while gradually decreas-
ing to zero as it approaches the transition boundary.
The correction factor to be provided is a scalar value
equal to or larger than zero. The higher the correction
factor, the stronger the correction that will take place.

By considering the filtered weights and the corrected
feature value, a corrected level-set function c∗ can be
obtained that provides a smooth continuous transition.

c∗
hyb(x, �x) =

∑n
j=1

w∗
j (x, �x)

�w∗(x, �x)
∥∥ ∥∥ · c∗

j (x, �x) (9)

Note that the filtered weights in Equations (8) and (9) are
normalised to ensure the sum of the weight vector com-
ponents remains 1.

2.2. Using ASLI

ASLI requires users to specify the STL file containing the
object that is to be provided with an infill. The STL file
should contain a watertight closed surface. In addition,
users have to specify some settings and parameters.
This can be done by directly modifying the configuration
file located by default in the main folder. Alternatively,
users can make use of the Graphical User Interface
(GUI) of ASLI shown in Figure 4 to provide the input
settings.

Users can specify the type, size and feature par-
ameters of the unit cells as well as the meshing par-
ameters. The unit cell parameters can be varied over
the volume by providing local specifications for the
unit cell type, size and feature. This is achieved by

Figure 4. Graphical user interface of ASLI: (a) main interface with the lattice tab visible, (b) mesh tab and (c) run tab.
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additionally supplying the respective TAP (type at
points), SAP (size at points), and FAP (feature at points)
files. These are comma-delimited files, with 4 columns
per row. The first 3 columns of each row correspond to
the x, y and z coordinates of the point for which the
local scaffold specification is provided in the correspond-
ing 4th column. The local specifications should be given
on a set of discrete points, whose convex hull covers the
domain of the geometry to be provided with an infill.
Figure 5 shows three examples where the type, size
and feature have been specified using a set of discrete
points.

Although interpolation models are constructed to
efficiently compute intermediate values when type,
size and feature values are specified using data points,
it is strongly advised that the density of the provided
data points is not more than strictly necessary. This is
particularly important when using the CGAL workflow,
as a large number of data points will lead to significant
slowdowns during discretisation. This is further dis-
cussed in Section 3.1. Users should also take into con-
sideration that if multiple scaffold types are assigned,
the density of the data points specifying unit cell type
in transition regions should be such that they can ade-
quately capture the effect of the filter (see Section
2.1.1). When variable sizes or feature values are
specified, very large non-smooth variations over small dis-
tances, compared to the local unit cell size, should be
avoided to avoid unconnected unit cells or other unex-
pected behaviours. It should also be taken into account
that changes in size cannot be decoupled from unit cell
deformations. Deformations that may arise due to vari-
able unit cell sizes can be seen in Figure 5(c).

Meshing parameters provided by the user are relative
to unit cell sizes or features. This is done not only to have
more intuitive input parameters, but also to ensure the

resulting surface triangulation captures the infill with
similar accuracy regardless of local unit cell size, and
that in volume meshes the cross section of unit cell
walls discretises with approximately equal number of
elements regardless of local wall sizes. Arguably the
most important mesh parameter in both workflows is
the one controlling how well the surface is approxi-
mated. In the CGAL workflow, this is determined by
the facet distance while in the MMG workflow by the
Hausdorff value. In addition to the aforementioned par-
ameter both workflows have a number of optional set-
tings that allow the user to further control the
properties of the output mesh.

The cube that is provided with an infill in the
workflow shown in Figure 2 is available in ASLI’s reposi-
tory as a sample problem. The infill is uniform by default
and can be set to be hybrid, pseudo-periodic, hetero-
geneous, or a combination thereof, by using the TAP,
SAP and FAP files also available. Step by step instructions
on how to run the demo are given in the User Manual
found in the Supplementary Materials Section.

2.2.1. Compiling the code
While the easiest way to get started with ASLI is to use its
pre-build binaries, available for both Linux and Windows
in ASLI’s repository, more advanced users may prefer to
build ASLI on their computers as this is not only likely to
increase performance but will also enable them to custo-
mise ASLI according to their needs.

Compiling ASLI is fairly simple and straightforward.
Assuming CGAL’s dependencies GMP (see gmplib.org),
MPFR (see www.mpfr.org), Boost (see www.boost.org)
and oneTBB2 (see github.com/intel/tbb) as well as the
GUI dependency QT3 (see www.qt.io) have already
been installed on the system, this will only require the
following steps on a 64-bit Linux platform.

Figure 5. ASLI can generate hybrid, pseudo-periodic and heterogeneous infills by specifying the unit cell type, size and feature at
different points throughout the volume: (a) input STL geometry, (b) specified types with resulting hybrid lattice, (c) specified sizes
with resulting pseudo-periodic lattice, and (d) specified feature values with resulting heterogeneous lattice.
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(1) Download the code from github.com/tpms-lattice/
ASLI and extract

(2) Type in the terminal the following sequence of
commands
$ mkdir build
$ cd build
$ cmake -DCMAKE_BUILD_TYPE=Release

-DMARCH_NATIVE=ON -DASLI_GUI=ON ..
$ make
$ cd ../bin

(3) Type ./ASLI config.yml to run the code.
(4) Visualise the output file(s).4

Fully detailed compilation instructions for Linux as
well as Windows can be found in the User Manual pro-
vided in the Supplementary Material Section.

2.2.2. Extending the code
The code has been divided into the clearly separated
units detailed below.

. ASLI: class containing all the relevant parameters
and general settings.

. Infill: namespace containing all equations related
to the lattice infill.

. Filter: namespace containing the weight filter.

. TrilinearInterpolation: namespace contain-
ing an implementation of an RBF interpolation with
linear kernel.

. MeshMMG: namespace containing the Mmg API calls
required to discretise the infill.

. MeshCGAL: namespace containing the CGAL API calls
required to discretise the infill.

Organising the code in this way allows users to easily
adapt the code to suit their needs. For example, to
include new unit cells, the user only has to add a few
equations to the code. These would be the equation
describing the new unit cell, as well as the correspond-
ing equations relating the isovalue to the wall and
pore size, and the equations relating volume fraction,
wall size and pore size to the isovalue. These are to be
added to the appropriately named functions found in
the Infill namespace: TPMS_function, isova-
lue2wallSize, isovalue2poreSize, vFrac-
tion2isovalue, wallSize2isovalue and
poreSize2isovalue.

Other changes, like introducing new feature
parameters, modifying the filter or introducing non-uni-
formly scaled unit cells, can be accomplished by modify-
ing the relevant namespaces, and at times, also the ASLI
class. More involved changes, like introducing a new

library to discretise the implicit function, can best be
accomplished by writing a new namespace.

3. Results and discussion

To ascertain how the performance of ASLI’s workflows
compare, as well as to better understand their strengths
and weaknesses, a benchmarking was performed whose
results are shown and discussed in Section 3.1. In Section
3.2, the performance of ASLI and similar freeware and
free-and-open-source tools is compared. Finally, the
capabilities of ASLI are showcased in Section 3.3
through a series of examples. In the first two examples,
an acetabular shell and a femoral implant were each pro-
vided with a lattice infill according to different specifica-
tions to afterwards be 3D printed, while in the third
example a cylinder was provided with an infill to later
be used in Finite Element (FE) simulations.

3.1. Performance

Benchmarking was performed on a Linux 64-bit system
equipped with an Intel® CoreTM i7-8850H 6 core CPU
and 32 GB of RAM. Performance was assessed by
measuring discretising times and utilised RAM, while
varying the number of unit cells in a unit cube. The
unit cell was given a uniform skeletal-gyroid infill and
meshing parameters were kept fixed. The unit cube
was considered for infills consisting of one single unit
cell, up to a thousand, with a normalised isovalue of
0.5. Given that different meshing parameters are used
in the Mmg and CGAL workflows, they have been
chosen such that discretisation was performed with
approximately similar accuracy. In the Mmg workflow,
the Hausdorff value was set to 0.42, while in the CGAL
workflow facet distance was set to 0.012. All other
mesh settings were used with their default values.
The program was compiled in release mode, with
MARCH_NATIVE enabled, using GCC v8.3.

The CGAL workflow was found to be the faster of the
two workflows, as shown by Figure 6(a), when no use
was made of data points to specify unit cell type, size
or feature. For a lower number of unit cells the difference
in discretisation times was limited, but for a larger
number of unit cells the difference became significant.
Benchmarkings suggest discretisation times of the
CGAL workflow increase linearly while the discretisation
times of the Mmg workflow increase exponentially, with
increasing number of unit cells (decreasing feature
sizes). The striking difference in performance, especially
for a larger number of unit cells, is the result of the
different approaches to discretisation taken by the
Mmg and CGAL libraries. In the case of Mmg, nodal
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implicit function values are required to capture the level-
set. Therefore, we need a certain node density not to
undersample as we might otherwise miss infill features.
This means that as relative feature sizes decrease, the
number of nodal points required to capture all features
will increase exponentially, which leads to the observed
exponential increase in discretisation times. CGAL does
not rely on nodal values to capture the level-set,
instead it constantly evaluates the implicit function
during discretisation. As can be seen, this clearly pro-
vides an advantage during the discretisation of struc-
tures with a uniform infill. However, as shown by
Figure 6(b), this can be a disadvantage during the discre-
tisation of structures with a hybrid, pseudo-periodic or
heterogeneous infill.

When dealing with hybrid, pseudo-periodic or het-
erogeneous infills the user is required to specify par-
ameters on a set of points throughout the volume, see

Section 2.2. Subsequently, interpolation models are con-
structed for each parameter varying throughout the
volume. The time required to evaluate these interp-
olation models increases with an increasing number of
data points, which in turn increases the evaluation
time of the implicit function. The slowdowns that can
be observed in Figure 6(b) are a direct consequence of
this. We can see the CGAL workflow suffers from an
exponentially increasing slowdown when increasing
number of data points are used to specify the infill.
Not using more data points than strictly necessary to
specify the varying unit cell properties is therefore advi-
sable when using the CGAL workflow. The Mmg
workflow, in contrast, experiences a negligible slow-
down with increasing number of data points. This is
because precomputed nodal implicit function values
are used, meaning the implicit function is evaluated
before and not while discretising.

Figure 6. The performance of ASLI as determined with a skeletal-gyroid: (a) meshing times, (b) interpolation slowdown, (c) memory
consumption and (d) parallel speed-up.
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A preferred workflow from a RAM requirements point
of view is more difficult to ascertain. As seen in Figure 6
(c), up to about two hundred unit cells, memory require-
ments were found to be lower for the CGAL workflow.
For a higher number of unit cells, the Mmg workflow
proved to have lower memory requirements. However,
measurements seem to indicate that memory require-
ments scale linearly for the CGAL workflow and superli-
nearly for the Mmg workflow. If this trend sets forth, the
memory requirements of the Mmg workflow will even-
tually overtake again those of the CGAL workflow, and
therefore, for a larger number of unit cells (smaller
feature sizes), the CGAL workflow should again
become the preferred one from a memory point of view.

ASLI can also operate in parallel mode. This is,
however, limited to the CGAL workflow because the par-
allel version of Mmg (Cirrottola and Froehly 2019) is, at
the time of writing, not yet capable of discretising
implicit functions. The decrease in discretising times
measured for the CGAL workflow when making use of
parallelisation was found to be marginal at best, as can
be seen in Figure 6(d). Speed-up was about 1.45 with
6 threads after which further improvement was found
to be negligible. We expect this can be improved in
the future with some code optimisation on the side of
ASLI.

It should be emphasised that this analysis is intended
to give some insight into the advantages and disadvan-
tages of each workflow, with the goal of placing the user
in a better position when it comes to making a choice on
the workflow to use. It was not, in any way, intended to
determine approximate meshing times or resource
requirements, as these are extremely dependent on
the unit cell type, its minimal feature size, the mesh set-
tings, and computational resources available, among
others.

3.2. Performance compared to other tools

To carry out the performance comparison we retrieved
the freeware and free-and-open-source tools with
similar functionality to ASLI known to us from their repo-
sitories and tested them, i.e. we retrieved FLatt Pack
(Maskery et al. 2022), Interface Scaffold (Dinis et al.
2014), Minisurf (Hsieh and Valdevit 2020) and MSLattice
(Al-Ketan and Abu Al-Rub 2020). The comparison was
carried out in Windows as it is the only operating
system on which all tools are supported. A 64-bit
laptop equipped with an Intel® CoreTM i7-8665U 4 core
CPU, 16 GB RAM and running Windows 10 was used.
To determine performance, unit cubes were assigned
the same infills with each of the tools being considered,
while peak RAM usage and the time it took to discretise

and store the generated infills as STL files was recorded.
In total, four different uniform infills were used to assess
performance. All infills were comprised of 1000 skeletal-
gyroid unit cells, and differed only in volume fraction.
Volume fractions of 0.731e−1, 0.165, 0.303 and 0.473
were prescribed leading to wall sizes of approximately
0.1, 0.2, 0.3 and 0.4. As we consider wall sizes relative
to the unit cell size they are dimensionless. We will
focus on wall sizes for this comparison as they represent
the size of the smallest feature of these infills which, if
using a grid as most of the tools considered do, is ulti-
mately what determines the size of the grid required
to successfully capture all features of the infill and thus
the time it will take to discretise.

Since FLatt Pack does not give users control over the
discretisation accuracy or the density of the grid used to
compute the infills, the grid densities it selects have to
be used. In our case, these were 33, 25 and 20 for the
infills with wall sizes of 0.2, 0.3 and 0.4, respectively. It
was not possible to create a lattice with wall sizes of
0.1 because Flatt Pack has a lower limit of 10% on the
volume fractions of skeletal-gyroids. Therefore, with
FLatt Pack, we instead constructed a lattice at the
lowest possible volume fraction allowed which trans-
lates to a wall size of approximately 0.13. To keep par-
ameters as similar as possible across the different tools,
we used the same grid densities used by FLatt Pack
when constructing the lattices with MSLattice and Min-
isurf.5 As there was no value dictated by FLatt Pack for
the infill with a wall size of 0.1, we considered the
observed exponential decrease in grid density with
decreasing volume fraction to determine a grid density
of 45. Deciding on the input settings for ASLI was less
straightforward as it does not make use of an underlying
grid like the other tools, and inversely, none of the other
tools provide an approximation error. Thus, we opted to
run ASLI with its default settings. This means the CGAL
workflow was used, no use was made of parallel
resources and the approximation error of the final
triangulation was 0.015 times the unit cell size. The
Mmg workflow of ASLI was not considered in this com-
parison as its main function is creating quality tetrahe-
dral meshes, a capability not shared by any of the
other tools. Interface Scaffold was not tested because,
at present, it cannot create skeletal-gyroid infills.

Although the fastest discretisation times achieved
were with FLatt Pack, followed by ASLI as can be seen
in Figure 7, FLatt Pack discretisation times were found
to almost triple as wall sizes grew smaller, while ASLI’s
times remained nearly identical. As a result, the differ-
ence in the time required by FLatt Pack and ASLI to
create the infills reduced to the point of being nearly
identical at the smallest wall size considered. Under
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normal use scenarios, ASLI’s times are expected to
decrease compared to those measured here, as parallel
capabilities would normally be used. MSLattice and Min-
isurf were the slowest tools and, like FLatt Pack, the time
required to create the lattices increased significantly as
wall sizes decreased. A similar trend was observed
when looking at peak memory usage. All tools, except
ASLI, had a noticeable increase in memory consumption
with decreasing wall size. Considering actual memory
footprint, ASLI was found to have the overall lowest
one, followed by FLatt Pack whose memory use
ranged from similar to ASLI’s to about two and a half
times as high. MSLattice was found to use a little more
memory than FLatt Pack, while Minisurf proved to be
particularly memory intensive as made clear by the
fact that our system had to start memory paging while
generating the infill with a wall size of 0.1, which is the
reason this measurement was excluded from the results.

It should be highlighted that this comparison is only
intended to give a sense of how the different tools
perform. A thorough comparison would require the con-
sideration of many more scenarios. Moreover, it would
ideally take place between solutions with the same
approximation errors, as this would be the most
meaningful.

3.3. Examples

In the following, three examples are presented that
showcase ASLI’s capabilities to generate functionally
graded designs for real-world applications. The
examples were generated using 6 threads on a 64-

bit laptop equipped with an Intel® CoreTM i7-8665U 4
core CPU and 16 GB RAM. The laptop was running
Windows 10.

As first example, depicted in Figure 8, a porous acet-
abular shell was generated by varying the volume frac-
tion of skeletal-gyroids with an unit cell size of 1.5 mm,
based on an a priori computed optimised stiffness distri-
bution (see Figure 8(a)). Roughly 1200 data points were
used to specify the volume fraction. The porous shell
was discretised using the CGAL workflow with default
meshing parameters and a facet distance of 0.015. It
took approximately 45 min to discretise and the result-
ing surface triangulation, shown in Figure 8(a), com-
prised 2,635,420 vertices and 5,347,924 faces. The
generated structure was manufactured by 3D Systems
(3D Systems, Leuven, Belgium) in Ti6Al4V ELI (grade

Figure 7. Performance comparison between the different freeware and free-and-open-source tools as determined with a skeletal-
gyroid.

Figure 8. The shell of an acetabular implant was assigned a skel-
etal-gyroid infill of varying volume fraction to match a desired
stiffness distribution: (a) ASLI generated 3D-model overlaid
with the material stiffness distribution (b) additively manufac-
tured acetabular shell.
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23), see Figure 8(b), through direct metal laser sintering
using a DMP Flex 350 machine.

In the second example, the stem of a femoral implant
was provided with the hybrid pseudo-periodic hetero-
geneous infill shown in Figure 9. Skeletal-gyroid, sheet-
gyroid and skeletal-diamond unit cells were used with
sizes ranging from 2 to 5mm and normalised isovalues
between 0.3 and 1. The unit cell type, size and feature
were specified using around 6000, 200 and 1500 data
points, respectively. Discretisation was performed with
the CGAL workflow and took approximately 56 min.
Default meshing parameters were used and facet dis-
tance was set to 0.022. The final triangulated surface
was comprised of 2,074,203 vertices and 4,165,514 faces.

As the third and final example, a 16× 25 porous tita-
nium cylinder, commonly used to experimentally deter-
mine material properties of STE scaffolds, was discretised
to use in a FE simulation. The cylinder was provided with
a skeletal-primitive infill constructed out of unit cells of
2.5 mm with a volume fraction of 0.45. The Mmg
workflow was used to discretise the cylinder with the

Hausdorff value set to 0.2. Additionally, the optional
meshing parameters of minimum and maximum mesh
edge length where set to 0.2 and 0.3, respectively. All
other meshing parameters were kept at their default
values. Discretisation took approximately 15 min and
the generated volume mesh, shown in Figure 10(a), con-
sisted of 45,564 vertices and 167,319 tetrahedra. The
generated mesh was subsequently used to perform a
FE analysis in Abaqus/CAE 2017 (Dassault Systèmes
Simulia Corp., Johnston, RI, USA). Z-symmetric boundary
conditions were applied at the bottom of the cylinder
and a distributed compression load of 1 kN was
applied at the top simulating a standard unconfined
compression test. The material was assumed to be
elastic isotropic with Young’s modulus of 110 GPa and
a Poisson ratio of 0.3. The computed von Mises stresses
are depicted in Figure 10(b).

These examples show ASLI is capable of generating
manufacturable functionally graded lattice structures
for real-world applications as well as for FE simulations.
The lattice structures can be hybrid, pseudo-periodic,

Figure 9. ASLI generated 3D-model of a femoral implant with a graded lattice where unit cell type, size and isovalue are varied. The
top half of the lower section of the implant has been hidden to also show the internal structure. The transition between three different
lattice types can be seen to happen smoothly in the close-up.
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heterogeneous or a combination hereof. Moreover,
there is no limitation when it comes to the shape of
the object that is to be provided with an infill.

4. Concluding remarks

ASLI is a cross-platformopen-source tool capable of creat-
ing functionally graded lattice infills with minimal effort.
Freeware and free-and-open-source tools of similar func-
tionality, although available, are often limited to cuboid
shapes with at most the option to specify different
uniform volume fractions (Dinis et al. 2014; Hsieh and Val-
devit 2020). MSLattice (Al-Ketan and Abu Al-Rub 2020), a
more advanced tool, allows users to create lattices of
varying unit cell types with size and volume fraction
grading. However, the mechanism employed to specify
multiple unit cell types and grading is not ideal, as it
requires users to provide this information in equation
form, which is cumbersome even for the simplest of
cases. Furthermore, although not limited to cuboid
shapes, it is still limited to just a few built-in geometries.
More recently, FLatt Pack (Maskery et al. 2022) was
released which improves on this limitation by making it
possible for users to assign infills with volume fraction
grading to arbitrary shapes. Unfortunately, it does not
support multiple unit cell types in a design nor a varying
unit cell size. Additionally, although it is capable of gener-
ating volume meshes unlike the previous tools, this is
limited to voxel meshes, which restricts the types of ana-
lyses that can be performed with them. In ASLI we have
brought together features currently scattered between
different freeware and free-and-open-source tools and
further improved upon them. As a result, users can
assign infills of varying unit cell type, size and feature,

including volume fraction, to arbitrary shapes and sub-
sequently generate surface triangulations and tetrahedral
volumemeshes. We have also made an effort to keep the
method used to provide gradation data as simple and
straightforward as possible, effectively making it easier
for users to define complex functionally graded designs.
This was achieved by requesting users to specify the
local type, size or feature values on a discrete set of
points. In addition, to ensure optimal mesh sizes through-
out, mesh sizes have been coupled to unit cell size and
feature values, which has the added benefit ofminimising
required resources. In other words, with ASLI it is possible
to create functionally graded scaffolds with more flexi-
bility and at larger scales than was possible with pre-
viously available freeware and free-and-open-source
tools.

Besides freeware and free-and-open-source tools,
there are also some commercial tools available that
offer the functionality of generating TPMS-based lat-
tices. Generally speaking, these are more capable but
tend to be expensive and often require active user inter-
vention, which makes them less suitable for automatic
workflows. Compared to commercial tools, ASLI’s main
advantage, besides its free availability and the possibility
to make changes to its source code, is that it was created
to be used in a workflow with minimal to no user inter-
vention where the functional grading is determined
automatically based on the results of computational
analysis. As a result, it is possible to, e.g. couple it to
an FE simulation or an optimisation routine so that at
the end of the analysis ASLI automatically generates a
functionally graded infill based on the obtained
outputs. An overview of the features offered by the
different tools just discussed is found in Table 1.

Despite its strengths, like every other tool, ASLI also
has its limitations. At present, ASLI cannot process
more than one object at a time nor create conformal
infills. Specific to the CGAL workflow, ASLI tends to fail
at detecting and discretising small closed regions and
is not yet capable of preserving sharp edges when creat-
ing volume meshes. Finally, parallelisation in ASLI is cur-
rently limited to the CGAL workflow and is still
suboptimal. Further code optimisation should lead to
an improvement in the parallel performance of the
CGAL workflow, while the expected future addition of
isovalue discretisation to ParMmg will allow to even-
tually also add parallel capabilities to the Mmgworkflow.

As ASLI matures, we expect to improve on its current
limitations. In the meantime, we believe that its current
capabilities will already prove useful across a wide range
of fields, especially given the increasing interest in TPMS-
based functionally graded materials, not only in the field
of STE, but also for applications ranging from energy-

Figure 10. Volume meshes generated by ASLI can be used in
finite element simulations: (a) volume mesh of a cylinder pro-
vided with a skeleton-primitive infill and (b) FE simulation
result. One quarter of the cylinder has been hidden to show
internal structure and stresses.
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absorbing structures (Maskery et al. 2017; Zhang et al.
2018) to heat transfer modules (Catchpole-Smith et al.
2019; Femmer, Kuehne, and Wessling 2015; Li, Yu, and
Yu 2020) and light-weight fuel cells (Han et al. 2017).

Notes

1. If the isovalue is given as input, it must be provided as a
min-max normalised isovalue.

2. OneTBB is only required if ASLI is compiled for
parallel use. To compile ASLI with parallel support add
-DCGAL_ACTIVATE_CONCURRENT_MESH_3=ON to
the cmake call.

3. QT is only required if the GUI of ASLI is also being
compiled.

4. Gmsh (see gmsh.info) can be used to visualize the STL
and MESH output files.

5. Minisurf limits the faces in the final triangulation to 303.
As this made it impossible to create the lattices used for
the comparison, we changed the source code to instead
reduce the number of initial faces by 90%.
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Appendix 1. Feature-isovalue conversions

The volume fraction, wall size and pore size of TPMS-based unit
cells are intrinsically dependent on the isovalue. Equations
describing these relationships were estimated virtually with
an in-house MATLAB (The MathWorks Inc., Natick, MA, USA)
code. To this end, a unit cube with a single unit cell, built on
a 768× 768× 768 resolution grid, was considered. The resol-
ution was determined by starting with a 3× 3× 3 grid, and
doubling the resolution until the discretisation errors of the
measured quantities were in the order of 10−3. A skeletal-
gyroid unit cell of volume fraction 0.5 is shown in Figure A1
for the intermediate 48× 48× 48 grid.

The volume fraction, defined as the solid side volume
divided by the total volume, was estimated by taking the
number of solid voxels within the unit cube and dividing
them by the total number of voxels. To determine the wall
thickness, i.e. the solid side minimum thickness, different
approaches were used for skeletal and sheet unit cells. The
need for different approaches stems from the fact that in skel-
etal unit cells the triply periodic surface is considered to be the
boundary between solid and void, while in sheet unit cells the
triply periodic surface is offset to create the solid space. The
wall thickness of skeletal unit cells was estimated by first com-
puting the solid side skeleton and, subsequently, determining
the minimum distance from the skeleton to the scaffolds
surface. The wall thickness of sheet unit cells could directly
be determined by computing the minimum solid side distance
between its two surfaces. Finally, the pore size of skeletal and
sheet unit cells was determined, i.e. the diameter of the largest
sphere that can be fitted in the void space of the unit cell. To
determine the pore size, first the void side skeleton nodes of
the unit cell were located. These nodes indicate the locations
of the largest spheres centroids. The diameter of the largest
sphere was determined as the minimum distance between
the void side skeleton node and the scaffold surface. Distances
were determined using a kd-tree nearest neighbour search.

The virtual measurements were taken for the entire isovalue
range of skeletal and sheet-gyroid, diamond and primitive unit
cells. A total of 43 equally distanced data points were acquired
for each unit cell type. The relationships between the measured
quantities and the isovalues were determined by fitting

Figure A1. To estimate the volume fraction, wall size and pore
size of the unit cells, their geometry was approximated on an
increasingly refined grid until the desired accuracy was
reached. The skeletal-gyroid unit cell, with a volume fraction
of 0.5, is here shown for the 48× 48× 48 intermediate grid.
The solid side skeletal graph and void side skeletal nodes
were used to aid in the virtual measurements.
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polynomials ranging between first and sixth order to the data.

P(x) = a+ bx+ cx2 + dx3 + ex4 + fx5 + gx6 (A1)

While volume fraction is independent of unit cell size, wall and
pore sizes scale linearly with it. Therefore, polynomials fitted to

size and feature data are multiplied by the unit cell size in order
to make the estimations size independent, i.e. twall = s · P(x) and
dpore = s · P(x).

The measured data and polynomial fits are shown in
Figure A2 with the corresponding discretisation errors in
Fig A3. The polynomial coefficients are given in Table A1.

Figure A2. Virtually measured volume fraction, wall size and pore size for gyroid, diamond and primitive unit cells with corresponding
polynomial fits.
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Figure A3. Discretisation errors of virtually measured volume fraction, wall size and pore size for gyroid, diamond and primitive unit
cells.
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Table A1. Coefficients of the fitted polynomials.

TPMS Type Function Coefficients

a b c d e f

G
yr
oi
d

Sk
el
et
al

l(V frac) −1.5 3.0 – – – –
l(twall) −1.43 1.05 2.80 19.83 −37.50 16.70
l(dpore) 1.52 −0.486 −7.57 −6.28 21.03 −9.61
twall(l) 0.415 0.197 −0.00343 −0.0202 −0.00393 0.0273
dpore(l) 0.428 −0.191 0.00166 0.00822 −0.00133 −0.0169

Sh
ee
t

l(V frac) −0.00224 1.59 −0.117 − − −
l(twall) −0.0350 6.55 −6.99 – – –
l(dpore) 1.47 −0.314 −6.84 −15.23 50.37 −40.61
twall(l) −0.00584 0.387 −1.24 2.73 −2.43 0.767
dpore(l) 0.432 −0.264 0.418 −0.893 0.782 −0.253

D
ia
m
on

d Sk
el
et
al

l(V frac) −1.36 5.61 −19.59 49.46 −54.60 21.84
l(twall) −0.984 0.904 10.63 −10.19 − −
l(dpore) 1.40 −0.497 −11.42 9.63 − −
twall(l) 0.305 0.222 0.00838 0.00314 −0.0462 0.0470
dpore(l) 0.395 −0.208 0.0180 0.0144 −0.00916 −0.0251

Sh
ee
t

l(V frac) −0.0108 1.82 −5.48 17.74 −23.55 10.88
l(twall) −0.0396 7.07 −13.42 10.71 − −
l(dpore) 1.41 −1.09 3.81 −65.70 153.92 −119.84
twall(l) −0.00219 0.226 −0.155 0.160 − −
dpore(l) 0.421 −0.288 0.568 −1.26 1.16 −0.397

Pr
im
iti
ve Sk

el
et
al

l(V frac) −2.86 18.57 −74.78 170.67 −181.17 72.43
l(twall) −0.999 0.604 3.55 2.18 −4.21 1.19
l(dpore) 3.00 −0.504 −3.83 −1.56 2.68 −0.619
twall(l) 0.442 0.251 −0.0551 0.0690 −0.0370 0.00717
dpore(l) 0.843 −0.193 0.00123 0.00326 −0.000306 −0.00123

Sh
ee
t

l(V frac) −0.0250 2.83 −8.89 26.90 −34.93 17.03
l(twall) 7.80e−05 5.44 0.0212 −3.07 0.170 0.355
l(dpore) 3.05 −1.42 1.23 −13.67 15.75 −5.86
twall(l) −0.00488 0.236 −0.140 0.150 −0.0652 0.0106
dpore(l) 0.847 −0.225 0.113 −0.125 0.0558 −0.00943
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