Generalized Interpolation: a Functorial Point of View

Thomas Lamby and Samuel Nicolay

WFCA22 - VALLADOLID

June 20, 2022

Thomas Lamby and Samuel Nicolay Generalized Interpolation: a Functorial Point of View

Boyd functions

A function $\phi: (0,\infty) \to (0,\infty)$ is a *Boyd function* if it is continuous, $\phi(1) = 1$ and

$$ar{\phi}(t):=\sup_{s>0}rac{\phi(st)}{\phi(s)}<\infty,$$

for all $t \in (0, \infty)$. The *lower* and *upper Boyd indices* of a Boyd function ϕ are defined by

$$\underline{b}(\phi) := \sup_{t < 1} \frac{\log \overline{\phi}(t)}{\log t} = \lim_{t \to 0} \frac{\log \overline{\phi}(t)}{\log t}$$

and

$$\overline{b}(\phi) := \inf_{t>1} \frac{\log \overline{\phi}(t)}{\log t} = \lim_{t \to \infty} \frac{\log \overline{\phi}(t)}{\log t},$$

Boyd functions

A function $\phi: (0,\infty) \to (0,\infty)$ is a *Boyd function* if it is continuous, $\phi(1) = 1$ and

$$ar{\phi}(t) := \sup_{s>0} rac{\phi(st)}{\phi(s)} < \infty,$$

for all $t \in (0, \infty)$. The *lower* and *upper Boyd indices* of a Boyd function ϕ are defined by

$$\underline{b}(\phi) := \sup_{t < 1} \frac{\log \bar{\phi}(t)}{\log t} = \lim_{t \to 0} \frac{\log \bar{\phi}(t)}{\log t}$$

and

$$\overline{b}(\phi) := \inf_{t>1} rac{\log ar{\phi}(t)}{\log t} = \lim_{t o \infty} rac{\log ar{\phi}(t)}{\log t},$$

A sequence $\sigma = (\sigma_j)_{j \in \mathbb{N}}$ of positive real numbers is admissible if there exists a constant C > 0 such that $C^{-1}\sigma_j \leq \sigma_{j+1} \leq C\sigma_j$ for all j. Let $\underline{\sigma}_j := \inf_{k \geq 1} \sigma_{j+k}/\sigma_k$ and $\overline{\sigma}_j := \sup_{k \geq 1} \sigma_{j+k}/\sigma_k$. The lower and upper Boyd indices of σ are defined by

$$\underline{s}(\sigma) := \sup_{j \in \mathbb{N}} rac{\log \underline{\sigma}_j}{\log 2^j} = \lim_j rac{\log \underline{\sigma}_j}{\log 2^j}$$

and

$$\overline{s}(\sigma) := \inf_{j \in \mathbb{N}} \frac{\log \overline{\sigma}_j}{\log 2^j} = \lim_j \frac{\log \overline{\sigma}_j}{\log 2^j},$$

A sequence $\sigma = (\sigma_j)_{j \in \mathbb{N}}$ of positive real numbers is admissible if there exists a constant C > 0 such that $C^{-1}\sigma_j \leq \sigma_{j+1} \leq C\sigma_j$ for all j. Let $\underline{\sigma}_j := \inf_{k \geq 1} \sigma_{j+k} / \sigma_k$ and $\overline{\sigma}_j := \sup_{k \geq 1} \sigma_{j+k} / \sigma_k$. The lower and upper Boyd indices of σ are defined by

$$\underline{s}(\sigma) := \sup_{j \in \mathbb{N}} rac{\log \underline{\sigma}_j}{\log 2^j} = \lim_j rac{\log \underline{\sigma}_j}{\log 2^j}$$

and

$$\overline{s}(\sigma) := \inf_{j \in \mathbb{N}} \frac{\log \overline{\sigma}_j}{\log 2^j} = \lim_j \frac{\log \overline{\sigma}_j}{\log 2^j},$$

Given an admissible sequence σ , the function

$$\phi_\sigma(t):= \left\{ egin{array}{c} rac{\sigma_{j+1}-\sigma_j}{2^j}(t-2^j)+\sigma_j & ext{if } t\in [2^j,2^{j+1}),\,j\in\mathbb{N}_0\ \sigma_0 & ext{if } t\in (0,1) \end{array}
ight.,$$

with $\sigma_0 = 1$ is a Boyd function.

Properties of the Boyd functions

- The indices $\underline{b}(\phi)$ and $\overline{b}(\phi)$ are two numbers such that $\underline{b}(\phi) \leq \overline{b}(\phi)$.
- Given $\varepsilon > 0$ and R > 0, there exists C > 0 such that

$$C^{-1}t^{\overline{b}(\phi)+arepsilon} \leq \phi(t) \leq Ct^{\underline{b}(\phi)-arepsilon}$$

for any $t \leq R$.

In the same way, we also have

$$C^{-1}t^{\underline{b}(\phi)-\varepsilon} \leq \phi(t) \leq Ct^{\overline{b}(\phi)+\varepsilon},$$

for any $t \geq R$.

5/65

Properties of the Boyd functions

- The indices $\underline{b}(\phi)$ and $\overline{b}(\phi)$ are two numbers such that $\underline{b}(\phi) \leq \overline{b}(\phi)$.
- Given $\varepsilon > 0$ and R > 0, there exists C > 0 such that

$$C^{-1}t^{\overline{b}(\phi)+\varepsilon} \leq \phi(t) \leq Ct^{\underline{b}(\phi)-\varepsilon},$$

for any $t \leq R$.

In the same way, we also have

$$C^{-1}t^{\underline{b}(\phi)-\varepsilon} \leq \phi(t) \leq Ct^{\overline{b}(\phi)+\varepsilon},$$

for any $t \geq R$.

5/65

Properties of the Boyd functions

- The indices $\underline{b}(\phi)$ and $\overline{b}(\phi)$ are two numbers such that $\underline{b}(\phi) \leq \overline{b}(\phi)$.
- Given $\varepsilon > 0$ and R > 0, there exists C > 0 such that

$$C^{-1}t^{\overline{b}(\phi)+\varepsilon} \leq \phi(t) \leq Ct^{\underline{b}(\phi)-\varepsilon},$$

for any $t \leq R$.

In the same way, we also have

$$C^{-1}t^{\underline{b}(\phi)-\varepsilon} \leq \phi(t) \leq Ct^{\overline{b}(\phi)+\varepsilon},$$

for any $t \geq R$.

1 germ versus 2 germs

We will denote by \mathcal{B}^∞ the set of continuous functions $\phi: [1,\infty) \to I$ such that $\phi(1) = 1$ and

$$0 < \underline{\phi}(t) := \inf_{s \geq 1} rac{\phi(ts)}{\phi(s)} \leq \overline{\phi}(t) := \sup_{s \geq 1} rac{\phi(ts)}{\phi(s)} < \infty,$$

for any $t \ge 1$. Given $\phi \in \mathcal{B}$, we denote by ϕ_{∞} the restriction of ϕ to $[1, \infty)$ and by ϕ_0 the restriction of ϕ to (0, 1].

Proposition

The application

$$au:\mathcal{B}
ightarrow\mathcal{B}^{\infty} imes\mathcal{B}^{\infty} \quad \phi\mapsto(t\mapstorac{1}{\phi_0(1/t)},\phi_{\infty})$$

is a bijection.

Theorem

A function $\phi : [1, \infty) \to I$ belongs to \mathcal{B}^{∞} if and only if $\phi(1) = 1$ and there exist two bounded continuous functions $\eta, \xi : [1, \infty) \to I$ such that

$$\phi(t) = e^{\eta(t) + \int_1^t \xi(s) \frac{ds}{s}}$$

Corollary

A function $\phi: I \to I$ belongs to \mathcal{B} if and only if $\phi(1) = 1$ and there exist four bounded continuous functions $\eta_0, \xi_0: (0,1] \to I$ and $\eta_{\infty}, \xi_{\infty}: [1,\infty) \to I$ such that

$$\phi(t) = \begin{cases} e^{\eta_0(t) + \int_1^{1/t} \xi_0(s) \frac{ds}{s}} & \text{if } t \in (0, 1] \\ e^{\eta_\infty(t) + \int_1^t \xi_\infty(s) \frac{ds}{s}} & \text{if } t \in [1, \infty) \end{cases}$$

Theorem

A function $\phi : [1, \infty) \to I$ belongs to \mathcal{B}^{∞} if and only if $\phi(1) = 1$ and there exist two bounded continuous functions $\eta, \xi : [1, \infty) \to I$ such that

$$\phi(t) = e^{\eta(t) + \int_1^t \xi(s) \frac{ds}{s}}$$

Corollary

A function $\phi: I \to I$ belongs to \mathcal{B} if and only if $\phi(1) = 1$ and there exist four bounded continuous functions $\eta_0, \xi_0: (0, 1] \to I$ and $\eta_{\infty}, \xi_{\infty}: [1, \infty) \to I$ such that

$$\phi(t) = \left\{ egin{array}{ll} e^{\eta_0(t) + \int_1^{1/t} \xi_0(s) rac{ds}{s}} & ext{if } t \in (0,1] \ e^{\eta_\infty(t) + \int_1^t \xi_\infty(s) rac{ds}{s}} & ext{if } t \in [1,\infty) \end{array}
ight.$$

One has $SV \subset \mathfrak{B}^{\infty} \subset R$.

Corollary

If σ is an admissible sequence, then there exist two bounded continuous functions $\eta, \xi : [1, \infty) \to I$ such that

$$\sigma_j = e^{\eta(2^j) + \int_1^{2^j} \xi(s) \frac{ds}{s}},$$

for all $j \in \mathbb{N}$.

One has $SV \subset \mathfrak{B}^{\infty} \subset R$.

Corollary

If σ is an admissible sequence, then there exist two bounded continuous functions $\eta, \xi : [1, \infty) \to I$ such that

$$\sigma_j = e^{\eta(2^j) + \int_1^{2^j} \xi(s) \frac{ds}{s}},$$

for all $j \in \mathbb{N}$.

If σ is an admissible sequence, for any $\varepsilon>0$ there exists a constant C>0 such that

$$C^{-1}2^{(\underline{s}(\sigma)-\varepsilon)j} \leq \underline{\sigma}_j \leq \frac{\sigma_{j+k}}{\sigma_k} \leq \overline{\sigma}_j \leq C2^{(\overline{s}(\sigma)+\varepsilon)j},$$

for any $j, k \in \mathbb{N}$.

Remark

The previous inequalities are not necessarily valid for arepsilon= 0.

If σ is an admissible sequence, for any $\varepsilon>0$ there exists a constant C>0 such that

$$C^{-1}2^{(\underline{s}(\sigma)-\varepsilon)j} \leq \underline{\sigma}_j \leq \frac{\sigma_{j+k}}{\sigma_k} \leq \overline{\sigma}_j \leq C2^{(\overline{s}(\sigma)+\varepsilon)j},$$

for any $j, k \in \mathbb{N}$.

Remark

The previous inequalities are not necessarily valid for $\varepsilon = 0$.

Consider the increasing sequence $(j_n)_n$ defined by

$$\begin{cases} j_0 = 0, \\ j_1 = 1, \\ j_{2n} = 2j_{2n-1} - j_{2n-2}, \\ j_{2n+1} = 2^{j_{2n}}. \end{cases}$$

Then, define the admissible sequence σ by

$$\sigma_j := \begin{cases} 2^{j_{2n}} & \text{if } j_{2n} \le j \le j_{2n+1} \\ 2^{j_{2n}} 4^{j-j_{2n+1}} & \text{if } j_{2n+1} \le j < j_{2n+2} \end{cases}$$

The sequence oscillates between $(j)_j$ and $(2^j)_j$ and we have $\underline{s}(\sigma) = 0$ and $\overline{s}(\sigma) = 1$.

Let $\sigma_0 = 1$, $\alpha > 0$ and σ be defined by

$$\sigma_{j+1} := \begin{cases} \sigma_j & \text{if } j_{2n} \le j \le j_{2n+1} \\ \sigma_j 2^\alpha & \text{if } j_{2n+1} \le j < j_{2n+2} \end{cases}$$

We have $\underline{s}(\sigma) = 0$, $\overline{s}(\sigma) = 1$ and for all $\varepsilon > 0$, there exists C > 0 such that $\sigma_j \leq C 2^{j\varepsilon}$ for all j.

٠

Proposition

If
$$\phi \in \mathcal{B}$$
 and $\sigma_j = \phi(2^j)$ or $\sigma_j = 1/\phi(2^{-j})$ then we have $\underline{b}(\phi) \leq \underline{s}(\sigma) \leq \overline{s}(\sigma) \leq \overline{b}(\phi)$.

Proposition

If
$$\phi \in \mathcal{B}$$
, $\sigma_j = \phi(2^j)$ and $\theta_j = 1/\phi(2^{-j})$ then

 $\underline{b}(\phi) = \min\{\underline{s}(\sigma), \underline{s}(\theta)\} \quad and \quad \overline{b}(\phi) = \max\{\overline{s}(\sigma), \overline{s}(\theta)\}.$

Corollary

If ϕ belongs to \mathcal{B} , then we have $\underline{b}(\phi) = \min\{\underline{s}(\tau_1(\phi)), \underline{s}(\tau_2(\phi))\}\)$ and $\overline{b}(\phi) = \max\{\overline{s}(\tau_1(\phi)), \overline{s}(\tau_2(\phi))\}.$

Proposition

If
$$\phi \in \mathcal{B}$$
 and $\sigma_j = \phi(2^j)$ or $\sigma_j = 1/\phi(2^{-j})$ then we have $\underline{b}(\phi) \leq \underline{s}(\sigma) \leq \overline{s}(\sigma) \leq \overline{b}(\phi)$.

Proposition

If
$$\phi \in \mathcal{B}$$
, $\sigma_j = \phi(2^j)$ and $heta_j = 1/\phi(2^{-j})$ then

 $\underline{b}(\phi) = \min\{\underline{s}(\sigma), \underline{s}(\theta)\} \text{ and } \overline{b}(\phi) = \max\{\overline{s}(\sigma), \overline{s}(\theta)\}.$

Corollary

If ϕ belongs to \mathcal{B} , then we have $\underline{b}(\phi) = \min\{\underline{s}(\tau_1(\phi)), \underline{s}(\tau_2(\phi))\}\$ and $\overline{b}(\phi) = \max\{\overline{s}(\tau_1(\phi)), \overline{s}(\tau_2(\phi))\}.$

Proposition

If
$$\phi \in \mathcal{B}$$
 and $\sigma_j = \phi(2^j)$ or $\sigma_j = 1/\phi(2^{-j})$ then we have $\underline{b}(\phi) \leq \underline{s}(\sigma) \leq \overline{s}(\sigma) \leq \overline{b}(\phi)$.

Proposition

If
$$\phi \in \mathcal{B}$$
, $\sigma_j = \phi(2^j)$ and $heta_j = 1/\phi(2^{-j})$ then

 $\underline{b}(\phi) = \min\{\underline{s}(\sigma), \underline{s}(\theta)\} \text{ and } \overline{b}(\phi) = \max\{\overline{s}(\sigma), \overline{s}(\theta)\}.$

Corollary

If ϕ belongs to \mathcal{B} , then we have $\underline{b}(\phi) = \min\{\underline{s}(\tau_1(\phi)), \underline{s}(\tau_2(\phi))\}\$ and $\overline{b}(\phi) = \max\{\overline{s}(\tau_1(\phi)), \overline{s}(\tau_2(\phi))\}.$

Boyd function obtained from one admissible sequence

Some elementary examples :

$$\phi_{\sigma}(t) = \begin{cases} \frac{\sigma_{j+1} - \sigma_j}{2^j} (t - 2^j) + \sigma_j & \text{if } t \in [2^j, 2^{j+1}), \\ \frac{1/\sigma_j - 1/\sigma_{j+1}}{2^j} (t - 2^{-j-1}) + 1/\sigma_{j+1} & \text{if } t \in (2^{-j-1}, 2^{-j}]. \end{cases}$$

Some elementary examples :

Some elementary examples :

$$\phi_{\sigma}(t) = \begin{cases} \frac{\sigma_{j+1} - \sigma_j}{2^j} (t - 2^j) + \sigma_j & \text{if } t \in [2^j, 2^{j+1}), j \in \mathbb{N}_0 \\ t^s & \text{if } t \in (0, 1) \end{cases}$$

where s satisfies $\underline{s}(\sigma) \leq s \leq \overline{s}(\sigma)$.

17/65

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

For $j \in \mathbb{N}$, we set

$$\left\{ \begin{array}{l} X_j = 2^j \cos \alpha + \sigma_j \sin \alpha \\ Y_j = -2^j \sin \alpha + \sigma_j \cos \alpha \end{array} \right. , \label{eq:Xj}$$

$$\xi^{(j)}(X) = \frac{X - X_j}{X_{j+1} - X_j}$$

and

$$\tau^{(j)}(X) = Y_j + (Y_{j+1} - Y_j)X$$

to consider the curve

$$Y = \tau^{(j)}(g(\xi^{(j)}(X)))$$

on $[X_j, X_{j+1}]$.

18/65

It gives rise to

$$Y(y) = \tau^{(j)}(g(\xi^{(j)}(X(x))))$$

on the original Euclidean plane.

Let $\eta_j^{(lpha)}$ be the function $x\mapsto y$ on $[2^j,2^{j+1}].$ We can construct $\phi\in \mathcal{B}$ by setting

$$\phi(t) = \begin{cases} \eta_j^{(\alpha)}(t) & \text{if } t \in [2^j, 2^{j+1}), j \in \mathbb{N}_0 \\ \frac{1}{\phi(1/t)} & \text{if } t \in (0, 1) \end{cases}$$

It gives rise to

$$Y(y) = \tau^{(j)}(g(\xi^{(j)}(X(x))))$$

on the original Euclidean plane. Let $\eta_j^{(\alpha)}$ be the function $x \mapsto y$ on $[2^j, 2^{j+1}]$. We can construct $\phi \in \mathcal{B}$ by setting

$$\phi(t) = \left\{ egin{array}{ll} \eta_j^{(lpha)}(t) & ext{if } t \in [2^j, 2^{j+1}), \, j \in \mathbb{N}_0 \ rac{1}{\phi(1/t)} & ext{if } t \in (0,1) \end{array}
ight.$$

For $\alpha = 0$, we explicitly get

Figure: The function $\eta^{(\alpha)}$ (left panel) and its derivative (right panel) for $\alpha = 0$ and σ such that $\sigma_1 = 2$, $\sigma_2 = 4$, $\sigma_3 = 20$ and $\sigma_4 = 22$.

If $\alpha > 0$ is small enough, we get a function $\eta_j^{(\alpha)}$ whose explicit form is far more complicated.

Figure: The function $\eta^{(\alpha)}$ (left panel) and its derivative (right panel) for $\alpha = 0.1$ and σ such that $\sigma_1 = 2$, $\sigma_2 = 4$, $\sigma_3 = 20$ and $\sigma_4 = 22$.

Let \mathcal{B}' denote the set of functions $f: I \to I$ that belong to $C^1(I)$ with f(1) = 1 and satisfy

$$0 < \inf_{t>0} t \frac{|f'(t)|}{f(t)} \le \sup_{t>0} t \frac{|f'(t)|}{f(t)} < \infty$$

One can show that \mathcal{B}' is a subset of \mathcal{B} . If $\phi \in \mathcal{B}$ with $\underline{b}(\phi) > 0$ (resp. $\overline{b}(\phi) < 0$), then there exists a non-decreasing bijection (resp. a non-increasing bijection) $\psi \in \mathcal{B}'$ such that $\phi \sim \psi$ and $\psi^{-1} \in \mathcal{B}'$

Proposition

If σ is an admissible sequence such that either $\underline{s}(\sigma) > 0$ or $\overline{s}(\sigma) < 0$, then there exists $\xi \in \mathcal{B}' \cap C^{\infty}(I)$ such that $(\xi(2^j))_j \sim \sigma$.

Proposition

If $\phi \in \mathcal{B}$ is such that $\underline{b}(\phi) > 0$ or $\overline{b}(\phi) < 0$, then there exists $\xi \in \mathcal{B}' \cap C^{\infty}(I)$ such that $\xi \sim \phi$.

Proposition

If σ is an admissible sequence such that either $\underline{s}(\sigma) > 0$ or $\overline{s}(\sigma) < 0$, then there exists $\xi \in \mathcal{B}' \cap C^{\infty}(I)$ such that $(\xi(2^j))_j \sim \sigma$.

Proposition

If $\phi \in \mathcal{B}$ is such that $\underline{b}(\phi) > 0$ or $\overline{b}(\phi) < 0$, then there exists $\xi \in \mathcal{B}' \cap C^{\infty}(I)$ such that $\xi \sim \phi$.

• Let \mathcal{J} be Bessel operator of order s:

$$\mathcal{J}^{s}f = \mathcal{F}^{-1}((1+|\cdot|^2)^{s/2}\mathcal{F}f),$$

for $f \in \mathcal{S}'$ and $s \in \mathbb{R}$.

• The fractional Sobolev space H^s_p $(p \in [1,\infty])$ is defined by

$$H_p^s = \{f \in \mathcal{S}' : \|\mathcal{J}^s f\|_{L^p} < \infty\}.$$

• Let \mathcal{J} be Bessel operator of order s:

$$\mathcal{J}^s f = \mathcal{F}^{-1}((1+|\cdot|^2)^{s/2}\mathcal{F}f),$$

for $f \in S'$ and $s \in \mathbb{R}$.

• The fractional Sobolev space H_p^s $(p \in [1,\infty])$ is defined by

$$H_p^s = \{f \in \mathcal{S}' : \|\mathcal{J}^s f\|_{L^p} < \infty\}.$$
• Let \mathcal{B}'' be the set of functions $\phi \in \mathcal{B}$ that belong to $C^{\infty}([1,\infty))$ and satisfy

$$x^m |\phi^{(m)}(x)| < C_m \phi(x),$$

for all $m \in \mathbb{N}$ and $x \geq 1$.

• For example, $\phi(x) = x^s (1 + |\log x|)^{\gamma}$ $(s, \gamma \in \mathbb{R})$ belongs to \mathcal{B}'' .

• Let \mathcal{B}'' be the set of functions $\phi \in \mathcal{B}$ that belong to $C^{\infty}([1,\infty))$ and satisfy

$$x^m |\phi^{(m)}(x)| < C_m \phi(x),$$

for all $m \in \mathbb{N}$ and $x \geq 1$.

• For example, $\phi(x) = x^s (1 + |\log x|)^{\gamma}$ $(s, \gamma \in \mathbb{R})$ belongs to \mathcal{B}'' .

• Given $\phi \in \mathcal{B}''$, the generalized Bessel operator \mathcal{J}^{ϕ} is given by

$$\mathcal{J}^{\phi}f = \mathcal{F}^{-1}(\phi(\sqrt{1+|\cdot|^2})\mathcal{F}f),$$

for $f \in \mathcal{S}'$.

• \mathcal{J}^{ϕ} is a linear bijective operator such that $(\mathcal{J}^{\phi})^{-1} = \mathcal{J}^{1/\phi}$ and $\mathcal{J}^{\phi}(\mathcal{S}) = \mathcal{S}$. • Given $\phi \in \mathcal{B}''$, the generalized Bessel operator \mathcal{J}^{ϕ} is given by

$$\mathcal{J}^{\phi}f = \mathcal{F}^{-1}(\phi(\sqrt{1+|\cdot|^2})\mathcal{F}f),$$

for $f \in \mathcal{S}'$.

• \mathcal{J}^{ϕ} is a linear bijective operator such that $(\mathcal{J}^{\phi})^{-1} = \mathcal{J}^{1/\phi}$ and $\mathcal{J}^{\phi}(\mathcal{S}) = \mathcal{S}$. • Given $\phi \in \mathcal{B}''$ and $p \in [1,\infty]$, the generalized Sobolev space H_p^{ϕ} is defined by

$$H^{\phi}_{p} = \{f \in \mathcal{S}' : \|\mathcal{J}^{\phi}f\|_{L^{p}} < \infty\}.$$

• For
$$\phi(t)=t^s~(s\in\mathbb{R})$$
, we have $H^\phi_p=H^s_p$.

• Given $\phi \in \mathcal{B}''$ and $p \in [1, \infty]$, the generalized Sobolev space H_p^{ϕ} is defined by

$$H^{\phi}_{p} = \{f \in \mathcal{S}' : \|\mathcal{J}^{\phi}f\|_{L^{p}} < \infty\}.$$

• For
$$\phi(t)=t^s~(s\in\mathbb{R})$$
, we have $H^\phi_p=H^s_p$.

• Let $q \in [1, \infty]$ and $\phi \in \mathcal{B}$; given a Banach space X, the space $I^q_{\phi}(X)$ is the space of sequences $(a_j)_j$ of X such that

 $(\phi(2^j)\|a_j\|_X)\in I^q.$

We set $I^q_\phi = I^q_\phi(\mathbb{C})$.

• This space is equipped with the norm

 $\|(a_j)_j\|_{l^q_{\phi}(X)} = \|\phi(2^j)\|a_j\|_X\|_{l^q}.$

• If $\phi(t) = t^s$, we write $l_s^q(X) = l_{\phi}^q(X)$.

28/65

• Let $q \in [1, \infty]$ and $\phi \in \mathcal{B}$; given a Banach space X, the space $I^q_{\phi}(X)$ is the space of sequences $(a_j)_j$ of X such that

 $(\phi(2^j)\|a_j\|_X)\in I^q.$

We set $I^q_{\phi} = I^q_{\phi}(\mathbb{C})$.

$$\|(a_j)_j\|_{l^q_{\phi}(X)} = \|\phi(2^j)\|a_j\|_X\|_{l^q}.$$

• If
$$\phi(t) = t^s$$
, we write $l_s^q(X) = l_\phi^q(X)$.

• Let $q \in [1, \infty]$ and $\phi \in \mathcal{B}$; given a Banach space X, the space $I^q_{\phi}(X)$ is the space of sequences $(a_j)_j$ of X such that

 $(\phi(2^j)\|a_j\|_X)\in I^q.$

We set $I^q_{\phi} = I^q_{\phi}(\mathbb{C})$.

$$\|(a_j)_j\|_{l^q_{\phi}(X)} = \|\phi(2^j)\|a_j\|_X\|_{l^q}.$$

• If
$$\phi(t) = t^s$$
, we write $l_s^q(X) = l_{\phi}^q(X)$.

• Let $\varphi \in S$ be a function with support in $\{x \in \mathbb{R}^d : 1/2 \le |x| \le 2\}$ such that $\varphi(x) > 0$ and $\sum_{j \in \mathbb{Z}} \varphi(2^{-j}x) = 1$ for $x \ne 0$.

• Let us define ψ_0 and Φ_j $(j \in \mathbb{Z})$ such that

$$\mathcal{F}\psi_0(x) = 1 - \sum_{j=1}^{\infty} \varphi(2^{-j}x)$$

and

$$\mathcal{F}\Phi_j(x) = \varphi(2^{-j}x).$$

We set φ₀ = ψ₀ and φ_j = Φ_j for j ∈ N; these functions are called test functions.

- Let $\varphi \in S$ be a function with support in $\{x \in \mathbb{R}^d : 1/2 \le |x| \le 2\}$ such that $\varphi(x) > 0$ and $\sum_{j \in \mathbb{Z}} \varphi(2^{-j}x) = 1$ for $x \ne 0$.
- Let us define ψ_0 and Φ_j $(j \in \mathbb{Z})$ such that

$$\mathcal{F}\psi_0(x) = 1 - \sum_{j=1}^{\infty} \varphi(2^{-j}x)$$

and

$$\mathcal{F}\Phi_j(x)=\varphi(2^{-j}x).$$

We set φ₀ = ψ₀ and φ_j = Φ_j for j ∈ N; these functions are called test functions.

- Let $\varphi \in S$ be a function with support in $\{x \in \mathbb{R}^d : 1/2 \le |x| \le 2\}$ such that $\varphi(x) > 0$ and $\sum_{j \in \mathbb{Z}} \varphi(2^{-j}x) = 1$ for $x \ne 0$.
- Let us define ψ_0 and Φ_j $(j \in \mathbb{Z})$ such that

$$\mathcal{F}\psi_0(x) = 1 - \sum_{j=1}^{\infty} \varphi(2^{-j}x)$$

and

$$\mathcal{F}\Phi_j(x)=\varphi(2^{-j}x).$$

We set φ₀ = ψ₀ and φ_j = Φ_j for j ∈ N; these functions are called test functions.

Let p, q ∈ [1,∞] and φ ∈ B; the generalized Besov space B^φ_{p,q} is defined by

$$B^{\phi}_{p,q} = \{ f \in \mathcal{S}' : (\varphi_k * f)_k \in I^q_{\phi}(L^p) \}.$$

$$\|f\|_{B^{\phi}_{p,q}} = \|(\varphi_k * f)_k\|_{l^q_{\phi}(L^p)} = \|(\|\varphi_k * f\|_{L^p})_k\|_{l^q_{\phi}}.$$

Let p, q ∈ [1,∞] and φ ∈ B; the generalized Besov space B^φ_{p,q} is defined by

$$B^{\phi}_{p,q} = \{ f \in \mathcal{S}' : (\varphi_k * f)_k \in I^q_{\phi}(L^p) \}.$$

$$\|f\|_{B^{\phi}_{p,q}} = \|(\varphi_k * f)_k\|_{I^q_{\phi}(L^p)} = \|(\|\varphi_k * f\|_{L^p})_k\|_{I^q_{\phi}}$$

Let p, q ∈ [1,∞] and φ ∈ B; the generalized Besov space B^φ_{p,q} is defined by

$$B^{\phi}_{p,q} = \{ f \in \mathcal{S}' : (\varphi_k * f)_k \in I^q_{\phi}(L^p) \}.$$

$$\|f\|_{B^{\phi}_{p,q}} = \|(\varphi_k * f)_k\|_{I^q_{\phi}(L^p)} = \|(\|\varphi_k * f\|_{L^p})_k\|_{I^q_{\phi}}$$

Let p, q ∈ [1,∞] and φ ∈ B; the generalized Hardy-Sobolev space F^φ_{p,q} is defined by

$$F^{\phi}_{p,q} = \{ f \in \mathcal{S}' : (\varphi_k * f)_k \in L^p(I^q_{\phi}) \}.$$

$$\|f\|_{F^{\phi}_{p,q}} = \|(\varphi_k * f)_k\|_{L^p(l^q_{\phi})} = \|\|(\varphi_k * f)_k\|_{l^q_{\phi}}\|_{L^p}.$$

Let p, q ∈ [1,∞] and φ ∈ B; the generalized Hardy-Sobolev space F^φ_{p,q} is defined by

$$F_{p,q}^{\phi} = \{ f \in \mathcal{S}' : (\varphi_k * f)_k \in L^p(I_{\phi}^q) \}.$$

$$\|f\|_{F^{\phi}_{p,q}} = \|(\varphi_k * f)_k\|_{L^p(I^q_{\phi})} = \|\|(\varphi_k * f)_k\|_{I^q_{\phi}}\|_{L^p}.$$

- An object B in a given category is a retract of an object A if there exist morphisms u : B → A and v : A → B in the category such that v ∘ u is the identity on B.
- For $\phi \in \mathcal{B}$,
 - $B^{\phi}_{p,q}$ is a retract of $I^q_{\phi}(L^p)$ for $p,q\in [1,\infty]$,
 - $F^{\phi}_{p,q}$ is a retract of $L^p(I^q_{\phi})$ for $p,q \in (1,\infty]$.

- An object B in a given category is a retract of an object A if there exist morphisms u : B → A and v : A → B in the category such that v ∘ u is the identity on B.
- For $\phi \in \mathcal{B}$,
 - $B^{\phi}_{p,q}$ is a retract of $I^q_{\phi}(L^p)$ for $p,q\in [1,\infty]$,
 - $F^{\phi}_{p,q}$ is a retract of $L^p(I^q_{\phi})$ for $p,q\in(1,\infty].$

- Two topological vector spaces A_0 and A_1 are *compatible* if there is a Hausdorff topological vector space H such that A_0 and A_1 are sub-spaces of H.
- *N* denotes the category of all normed vector spaces (a sub-category of all topological vector spaces).
- $\bullet \ {\mathscr C}$ denotes any sub-category of the category ${\mathscr N}$ that is closed under the operations sum and intersection
- \mathscr{C}_1 denotes the category of all compatible couples $\overline{A} = (A_0, A_1)$ of spaces in \mathscr{C} .

- Two topological vector spaces A_0 and A_1 are *compatible* if there is a Hausdorff topological vector space H such that A_0 and A_1 are sub-spaces of H.
- *N* denotes the category of all normed vector spaces (a sub-category of all topological vector spaces).
- $\bullet~\mathscr{C}$ denotes any sub-category of the category \mathscr{N} that is closed under the operations sum and intersection
- \mathscr{C}_1 denotes the category of all compatible couples $\overline{A} = (A_0, A_1)$ of spaces in \mathscr{C} .

- Two topological vector spaces A_0 and A_1 are *compatible* if there is a Hausdorff topological vector space H such that A_0 and A_1 are sub-spaces of H.
- *N* denotes the category of all normed vector spaces (a sub-category of all topological vector spaces).
- ${\mathscr C}$ denotes any sub-category of the category ${\mathscr N}$ that is closed under the operations sum and intersection
- \mathscr{C}_1 denotes the category of all compatible couples $\overline{A} = (A_0, A_1)$ of spaces in \mathscr{C} .

- Two topological vector spaces A_0 and A_1 are *compatible* if there is a Hausdorff topological vector space H such that A_0 and A_1 are sub-spaces of H.
- *N* denotes the category of all normed vector spaces (a sub-category of all topological vector spaces).
- $\bullet \ {\mathscr C}$ denotes any sub-category of the category ${\mathscr N}$ that is closed under the operations sum and intersection
- \mathscr{C}_1 denotes the category of all compatible couples $\overline{A} = (A_0, A_1)$ of spaces in \mathscr{C} .

More conventions

• The morphisms $T : (A_0, A_1) \rightarrow (B_0, B_1)$ in \mathscr{C}_1 are all bounded linear mappings from $A_0 + A_1$ to $B_0 + B_1$ such that

$$T_{A_0}: A_0 \rightarrow B_0, \quad T_{A_1}: A_1 \rightarrow B_1$$

are morphisms in \mathscr{C} . In the sequel, T will stand for the restrictions to the various subspaces of $A_0 + A_1$.

• Two basic functors from \mathscr{C}_1 to \mathscr{C} : $\Sigma(T) = \Delta(T) = T$ and

 $\Delta(\overline{A}) = A_0 \cap A_1,$ $\Sigma(\overline{A}) = A_0 + A_1.$

More conventions

• The morphisms $T : (A_0, A_1) \rightarrow (B_0, B_1)$ in \mathscr{C}_1 are all bounded linear mappings from $A_0 + A_1$ to $B_0 + B_1$ such that

$$T_{A_0}: A_0 \rightarrow B_0, \quad T_{A_1}: A_1 \rightarrow B_1$$

are morphisms in \mathscr{C} . In the sequel, T will stand for the restrictions to the various subspaces of $A_0 + A_1$.

• Two basic functors from \mathscr{C}_1 to \mathscr{C} : $\Sigma(T) = \Delta(T) = T$ and

$$\Delta(\overline{A}) = A_0 \cap A_1,$$

 $\Sigma(\overline{A}) = A_0 + A_1.$

Interpolation spaces

Let A
= (A₀, A₁) be a given couple in C₁. Then a space A in C will be called an *intermediate space* between A₀ and A₁ (or with respect to A) if

 $\Delta(\overline{A})\subset A\subset \Sigma(\overline{A}),$

with continuous inclusions.

• The space A is called an *interpolation space* between A₀ and A₁ (or with respect to \overline{A}) if in addition

 $T:\overline{A}\to\overline{A}$ implies $T:A\to A$.

More generally, let A and B be two couples in C₁. Then we say that two spaces A and B in C are *interpolation spaces* with respect to A and B if A and B are intermediate spaces with respect to A and B respectively, and if

 $T:\overline{A}\to\overline{B}$ implies $T:A\to B$.

Interpolation spaces

Let A
= (A₀, A₁) be a given couple in C₁. Then a space A in C will be called an *intermediate space* between A₀ and A₁ (or with respect to A) if

$$\Delta(\overline{A}) \subset A \subset \Sigma(\overline{A}),$$

with continuous inclusions.

• The space A is called an *interpolation space* between A_0 and A_1 (or with respect to \overline{A}) if in addition

$$T:\overline{A}\to\overline{A}$$
 implies $T:A\to A$.

More generally, let A and B be two couples in C₁. Then we say that two spaces A and B in C are *interpolation spaces* with respect to A and B if A and B are intermediate spaces with respect to A and B respectively, and if

$T:\overline{A}\to\overline{B}$ implies $T:A\to B$.

Interpolation spaces

Let A
= (A₀, A₁) be a given couple in C₁. Then a space A in C will be called an *intermediate space* between A₀ and A₁ (or with respect to A) if

$$\Delta(\overline{A}) \subset A \subset \Sigma(\overline{A}),$$

with continuous inclusions.

• The space A is called an *interpolation space* between A_0 and A_1 (or with respect to \overline{A}) if in addition

$$T:\overline{A}\to\overline{A}$$
 implies $T:A\to A$.

• More generally, let \overline{A} and \overline{B} be two couples in \mathscr{C}_1 . Then we say that two spaces A and B in \mathscr{C} are *interpolation spaces* with respect to \overline{A} and \overline{B} if A and B are intermediate spaces with respect to A and B respectively, and if

$$T:\overline{A}\to\overline{B}$$
 implies $T:A\to B$.

- Clearly Δ(A) and Δ(B) (Σ(A) and Σ(B)) are interpolation spaces with respect to A and B.
- If ||T||_{A,B} ≤ max{||T||_{A0,B0}, ||T||_{A1,B1}} holds, we shall say that A and B are exact interpolation spaces.
- If $||T||_{A,B} \leq C \max\{||T||_{A_0,B_0}, ||T||_{A_1,B_1}\}$ holds, we shall say that A and B are *uniform* interpolation spaces.

- Clearly Δ(A) and Δ(B) (Σ(A) and Σ(B)) are interpolation spaces with respect to A and B.
- If || T ||_{A,B} ≤ max{|| T ||_{A0,B0}, || T ||_{A1,B1}} holds, we shall say that A and B are *exact* interpolation spaces.
- If $||T||_{A,B} \leq C \max\{||T||_{A_0,B_0}, ||T||_{A_1,B_1}\}$ holds, we shall say that A and B are *uniform* interpolation spaces.

- Clearly Δ(A) and Δ(B) (Σ(A) and Σ(B)) are interpolation spaces with respect to A and B.
- If || T ||_{A,B} ≤ max{|| T ||_{A0,B0}, || T ||_{A1,B1}} holds, we shall say that A and B are *exact* interpolation spaces.
- If $||T||_{A,B} \leq C \max\{||T||_{A_0,B_0}, ||T||_{A_1,B_1}\}$ holds, we shall say that A and B are *uniform* interpolation spaces.

• The interpolation spaces A and B are of exponent $\theta \in [0, 1]$ if $\|T\|_{A,B} \leq C \|T\|_{A_0,B_0}^{1-\theta} \|T\|_{A_1,B_1}^{\theta}.$

• If C = 1, we say that A and B are exact of exponent θ .

- The interpolation spaces A and B are of exponent $\theta \in [0, 1]$ if $\|T\|_{A,B} \leq C \|T\|_{A_0,B_0}^{1-\theta} \|T\|_{A_1,B_1}^{\theta}.$
- If C = 1, we say that A and B are exact of exponent θ .

• The interpolation spaces A and B are of exponent $\phi \in \mathcal{B}$ if $\|\mathcal{T}\|_{A,B} \leq C \overline{\psi}(\|\mathcal{T}\|_{A_0,X_0})\overline{\phi}(\|\mathcal{T}\|_{A_1,X_1}),$

where $\psi(t)=t/\phi(t)$ for all t>0.

• If C = 1, we say that A and B are exact of exponent ϕ .

• The interpolation spaces A and B are of exponent $\phi \in \mathcal{B}$ if

$$\|T\|_{A,B} \leq C \,\overline{\psi}(\|T\|_{A_0,X_0})\overline{\phi}(\|T\|_{A_1,X_1}),$$

where $\psi(t) = t/\phi(t)$ for all t > 0.

• If C = 1, we say that A and B are exact of exponent ϕ .

An interpolation functor on C is a functor F from C₁ into C such that if A and B are couples in C₁, then F(A) and F(B) are interpolation spaces with respect to A and B and

F(T) = T for all $T : \overline{A} \to \overline{B}$.

• *F* is a *uniform* (*exact*) interpolation functor if $F(\overline{A})$ and $F(\overline{B})$ are uniform (exact) interpolation spaces with respect to \overline{A} and \overline{B} . Similarly, *F* is (*exact*) of *exponent* θ ($\phi \in B$) if $F(\overline{A})$ and $F(\overline{B})$ are (*exact*) of exponent θ ($\phi \in B$).
An interpolation functor on C is a functor F from C₁ into C such that if A and B are couples in C₁, then F(A) and F(B) are interpolation spaces with respect to A and B and

$$F(T) = T$$
 for all $T : \overline{A} \to \overline{B}$.

F is a uniform (exact) interpolation functor if F(A) and F(B) are uniform (exact) interpolation spaces with respect to A and B. Similarly, F is (exact) of exponent θ (φ ∈ B) if F(A) and F(B) are (exact) of exponent θ (φ ∈ B).

The *K*-operator of interpolation is defined for t > 0 and $a \in \Sigma(\overline{A})$ by

$$K(t,a) = \inf\{\|a_0\|_{A_0} + t\|a_1\|_{A_1} : a = a_0 + a_1\}.$$

If $\theta \in (0,1)$ and $q \in [1,\infty]$, then *a* belongs to the interpolation space $K_{\theta,q}(A_0, A_1)$ if $a \in \Sigma(\overline{A})$ and

$$(2^{-\theta j}K(2^j,a))_{j\in\mathbb{Z}}\in I^q(\mathbb{Z}).$$

This last condition is equivalent to $t \mapsto t^{-\theta} K(t, a) \in L^q_*$.

For example, $B_{p,q}^s = K_{\alpha,q}(H_p^t, H_p^u)$ for $s = (1 - \alpha)t + \alpha u$.

The *K*-operator of interpolation is defined for t > 0 and $a \in \Sigma(\overline{A})$ by

$$K(t,a) = \inf\{\|a_0\|_{A_0} + t\|a_1\|_{A_1} : a = a_0 + a_1\}.$$

If $\theta \in (0,1)$ and $q \in [1,\infty]$, then *a* belongs to the interpolation space $K_{\theta,q}(A_0, A_1)$ if $a \in \Sigma(\overline{A})$ and

$$(2^{-\theta j}K(2^j,a))_{j\in\mathbb{Z}}\in I^q(\mathbb{Z}).$$

This last condition is equivalent to $t \mapsto t^{-\theta} K(t, a) \in L^q_*$. For example, $B^s_{p,q} = K_{\alpha,q}(H^t_p, H^u_p)$ for $s = (1 - \alpha)t + \alpha u$.

Let $\phi \in \mathcal{B}$ and $q \in [1, \infty]$, we let $\mathcal{K}_{\phi,q}(\overline{A})$ denote the space of all $a \in \Sigma(\overline{A})$ such that

$$\|a\|_{\phi,q,K}:=\int_0^\infty (rac{1}{\phi(t)}K(t,a))^qrac{dt}{t}<\infty$$

holds.

Theorem

 $K_{\phi,q}$ is an exact interpolation functor of exponent $\phi \in \mathcal{B}$ on the category \mathcal{N} . Moreover, we have

 $K(t,a) \leq C \phi(t) \|a\|_{\phi,q,K}.$

Let $\phi \in \mathcal{B}$ and $q \in [1, \infty]$, we let $\mathcal{K}_{\phi,q}(\overline{A})$ denote the space of all $a \in \Sigma(\overline{A})$ such that

$$\|a\|_{\phi,q,K} := \int_0^\infty (rac{1}{\phi(t)}K(t,a))^qrac{dt}{t} < \infty$$

holds.

Theorem

 $K_{\phi,q}$ is an exact interpolation functor of exponent $\phi \in \mathcal{B}$ on the category \mathcal{N} . Moreover, we have

$$K(t,a) \leq C \phi(t) \|a\|_{\phi,q,K}.$$

Figure: Differents interpolation spaces where for example $\phi_1(t) = t^{\alpha} \log(1/t), \ \phi_2(t) = t^{\alpha} \chi_{]0,1]} + t^{\beta} \chi_{]1,\infty[}$ and $\phi_3(t) = (t^{\alpha} \chi_{]0,1]} + t^{\beta} \chi_{]1,\infty[}) \log(1/t).$

12/65

Given $\phi, \gamma \in \mathcal{B}$ and $q \in [1, \infty]$, *a* belongs to the generalized interpolation space $[A_0, A_1]^{\gamma}_{\phi, q}$ if $a \in A_0 + A_1$ and

$$\|a\|_{[\mathcal{A}_0,\mathcal{A}_1]^{\gamma}_{\phi,q}}:=\|\phi(t)^{-1}\mathcal{K}(\gamma(t),a)\|_{L^q_*}<\infty.$$

Proposition

If $\phi, \gamma \in \mathcal{B}$ and $q \in [1, \infty]$, then a belongs to $[A_0, A_1]^{\gamma}_{\phi,q}$ if and only if $\sum_{j \in \mathbb{Z}} \left(\frac{1}{\phi(2^j)} K(\gamma(2^j), a)\right)^q < \infty$.

Proposition

Let $\phi, \gamma \in \mathcal{B}$ and $q \in [1, \infty]$; if $\underline{b}(\gamma) > 0$, then there exists $\xi \in \mathcal{B}'_+$ such that $\xi \sim \gamma$ and

$$[A_0, A_1]_{\phi, q}^{\gamma} = K_{\phi \circ \xi^{-1}, q}(A_0, A_1).$$

Given $\phi, \gamma \in \mathcal{B}$ and $q \in [1, \infty]$, *a* belongs to the generalized interpolation space $[A_0, A_1]^{\gamma}_{\phi, q}$ if $a \in A_0 + A_1$ and

$$\|a\|_{[\mathcal{A}_0,\mathcal{A}_1]^{\gamma}_{\phi,q}}:=\|\phi(t)^{-1}\mathcal{K}(\gamma(t),a)\|_{L^q_*}<\infty.$$

Proposition

If $\phi, \gamma \in \mathcal{B}$ and $q \in [1, \infty]$, then a belongs to $[A_0, A_1]^{\gamma}_{\phi,q}$ if and only if $\sum_{j \in \mathbb{Z}} \left(\frac{1}{\phi(2^j)} K(\gamma(2^j), a)\right)^q < \infty$.

Proposition

Let $\phi, \gamma \in \mathcal{B}$ and $q \in [1, \infty]$; if $\underline{b}(\gamma) > 0$, then there exists $\xi \in \mathcal{B}'_+$ such that $\xi \sim \gamma$ and

$$[A_0, A_1]^{\gamma}_{\phi, q} = K_{\phi \circ \xi^{-1}, q}(A_0, A_1).$$

Let σ be an admissible sequence and $q \in [1, \infty]$; *a* belongs to the upper generalized interpolation space $[A_0, A_1]^{\wedge}_{\sigma,q}$ if $a \in A_0 + A_1$ and

$$\|\mathbf{a}\|_{[\mathcal{A}_0,\mathcal{A}_1]^{\wedge}_{\sigma,q}} := \sum_{j=1}^{\infty} \frac{1}{\sigma_j} \mathcal{K}(2^j,\mathbf{a}) < \infty.$$

In the same way, *a* belongs to the lower generalized interpolation space $[A_0, A_1]_{\sigma,q}^{\lor}$ if $a \in A_0 + A_1$ and

$$\|a\|_{[\mathcal{A}_0,\mathcal{A}_1]_{K,\sigma,q}^{\vee}} := \sum_{j=1}^{\infty} \sigma_j K(2^{-j},a) < \infty.$$

Proposition

If $\phi \in \mathcal{B}$, $\sigma_j = \phi(2^j)$ and $heta_j = 1/\phi(2^{-j})$ then

 $K_{\phi,q}(A_0, A_1) = [A_0, A_1]_{\delta,q}^{\vee} \cap [A_0, A_1]_{\sigma,q}^{\wedge}.$

Thomas Lamby and Samuel Nicolay

Generalized Interpolation: a Functorial Point of View

44/65

Let σ be an admissible sequence and $q \in [1, \infty]$; *a* belongs to the upper generalized interpolation space $[A_0, A_1]^{\wedge}_{\sigma,q}$ if $a \in A_0 + A_1$ and

$$\|\mathbf{a}\|_{[\mathcal{A}_0,\mathcal{A}_1]^\wedge_{\sigma,q}} := \sum_{j=1}^\infty rac{1}{\sigma_j} \mathcal{K}(2^j,\mathbf{a}) < \infty.$$

In the same way, *a* belongs to the lower generalized interpolation space $[A_0, A_1]_{\sigma,q}^{\lor}$ if $a \in A_0 + A_1$ and

$$\|a\|_{[\mathcal{A}_0,\mathcal{A}_1]_{\mathcal{K},\sigma,q}^{\vee}} := \sum_{j=1}^{\infty} \sigma_j \mathcal{K}(2^{-j},a) < \infty.$$

Proposition

If
$$\phi \in \mathcal{B}$$
, $\sigma_j = \phi(2^j)$ and $heta_j = 1/\phi(2^{-j})$ then

$$\mathcal{K}_{\phi,q}(\mathcal{A}_0,\mathcal{A}_1)=[\mathcal{A}_0,\mathcal{A}_1]_{\delta,q}^ee\cap [\mathcal{A}_0,\mathcal{A}_1]_{\sigma,q}^\wedge.$$

Generalized Interpolation: a Functorial Point of View

14/65

Proposition

Let $\phi \in \mathcal{B}$, $1 \leq p \leq q \leq +\infty$, one has

$$K_{\phi,p}(\overline{A})\subseteq K_{\phi,q}(\overline{A}),$$

with continuous embedding.

Proposition

Let $q, q_0, q_1 \in [1, +\infty]$ and $\phi, \phi_0, \phi_1 \in \mathcal{B}$ such that

 $\overline{b}(\phi_0) < \underline{b}(\phi) \le \overline{b}(\phi) < \underline{b}(\phi_1).$

Then,

$$K_{\phi_0,q_0}(\overline{A})\cap K_{\phi_1,q_1}(\overline{A})\subset K_{\phi,q}(\overline{A}),$$

with continuous embedding.

Proposition

Let $\phi \in \mathcal{B}$, $1 \leq p \leq q \leq +\infty$, one has

$$K_{\phi,p}(\overline{A})\subseteq K_{\phi,q}(\overline{A}),$$

with continuous embedding.

Proposition

Let ${\it q}, {\it q}_0, {\it q}_1 \in [1, +\infty]$ and $\phi, \phi_0, \phi_1 \in {\cal B}$ such that

$$\overline{b}(\phi_0) < \underline{b}(\phi) \le \overline{b}(\phi) < \underline{b}(\phi_1).$$

Then,

$$\mathcal{K}_{\phi_0, q_0}(\overline{A}) \cap \mathcal{K}_{\phi_1, q_1}(\overline{A}) \subset \mathcal{K}_{\phi, q}(\overline{A}),$$

with continuous embedding.

Proposition

If $A_1 \subset A_0$ and $\overline{b}(\phi_0) < \underline{b}(\phi_1)$, then

$K_{\phi_1,q}(\overline{A}) \subset K_{\phi_0,q}(\overline{A}).$

Proposition

If A_0 and A_1 are complete, then so is $K_{\phi,q}(\overline{A})$.

Proposition

If $A_1 \subset A_0$ and $\overline{b}(\phi_0) < \underline{b}(\phi_1)$, then

$$K_{\phi_1,q}(\overline{A}) \subset K_{\phi_0,q}(\overline{A}).$$

Proposition

If A_0 and A_1 are complete, then so is $K_{\phi,q}(\overline{A})$.

Let $\phi \in \mathcal{B}$, $q \in [1, \infty]$, and let $J_{\phi,q}(\overline{A})$ denote the space of all $a \in \Sigma(\overline{A})$ which can be represented by $a = \int_0^\infty b(t) \frac{dt}{t}$, where $b(t) \in \Delta(\overline{A})$ for all t > 0 and

$$t\mapsto \phi(t)^{-1}J(\gamma(t),b(t))\in L^q_\star.$$

This space is equipped with the norm

$$\|a\|_{\phi,q,J} := \inf_{b} \|\phi(t)^{-1} J(\gamma(t,b(t)))\|_{L^{q}_{*}},$$

the infimum being taken on all b such that $a=\int_0^\infty b(t)rac{dt}{t}.$

Let $\phi \in \mathcal{B}$, $q \in [1, \infty]$, and let $J_{\phi,q}(\overline{A})$ denote the space of all $a \in \Sigma(\overline{A})$ which can be represented by $a = \int_0^\infty b(t) \frac{dt}{t}$, where $b(t) \in \Delta(\overline{A})$ for all t > 0 and

$$t\mapsto \phi(t)^{-1}J(\gamma(t),b(t))\in L^q_\star.$$

This space is equipped with the norm

$$\|a\|_{\phi,q,J} := \inf_{b} \left\|\phi(t)^{-1} J(\gamma(t,b(t)))\right\|_{L^{q}_{\star}},$$

the infimum being taken on all b such that $a = \int_0^\infty b(t) \frac{dt}{t}$.

 $J_{\phi,q}$ is an exact interpolation functor of exponent $\phi \in \mathcal{B}$ on the category \mathcal{N} . Moreover, we have

$$\|a\|_{\phi,q,J} \leq C \frac{1}{\phi(t)} J(t,a)$$

for $a \in \Delta(\overline{A})$.

Let $\phi \in \mathcal{B}$ such that $0 < \underline{b}(\phi) \le \overline{b}(\phi) < 1$, $q \in [1, \infty]$, then $J_{\phi,q}(\overline{A}) = K_{\phi,q}(\overline{A}).$

Proposition

- If $q < \infty$, then $\Delta(\overline{A})$ is dense in $K_{\phi,q}(\overline{A})$,
- The closure of $\Delta(\overline{A})$ in $K_{\phi,\infty}(\overline{A})$ is the space $\overline{A}^0_{\phi,\infty}$ of all a such that

$$rac{1}{\phi(t)}K(t,a) o 0 \quad as \quad t o 0 \quad or \quad t o \infty.$$

Let \overline{A} be a given couple of normed vector spaces and $\phi \in \mathcal{B}$ and suppose that X is an intermediate space with respect to \overline{A} . Then,

- X is of class $\mathscr{C}_{K}(\phi; \overline{A})$ if $K(t, a) \leq C \phi(t) \|a\|_{X}$ for all $a \in X$;
- X is of class $\mathscr{C}_J(\phi; \overline{A})$ if $||a||_X \leq C \frac{1}{\phi(t)} J(t, a)$ for all $a \in \Delta(\overline{A})$.

Furthermore, X is of class $\mathscr{C}(\phi; \overline{A})$ if X is of class $\mathscr{C}_{K}(\phi; \overline{A})$ and $\mathscr{C}_{J}(\phi; \overline{A})$. $\mathcal{K}_{\phi,\sigma}(\overline{A})$ is of class $\mathscr{C}(\phi; \overline{A})$. Let \overline{A} be a given couple of normed vector spaces and $\phi \in \mathcal{B}$ and suppose that X is an intermediate space with respect to \overline{A} . Then,

- X is of class $\mathscr{C}_{K}(\phi; \overline{A})$ if $K(t, a) \leq C \phi(t) \|a\|_{X}$ for all $a \in X$;
- X is of class $\mathscr{C}_J(\phi; \overline{A})$ if $||a||_X \leq C \frac{1}{\phi(t)} J(t, a)$ for all $a \in \Delta(\overline{A})$.

Furthermore, X is of class $\mathscr{C}(\phi; \overline{A})$ if X is of class $\mathscr{C}_{\mathcal{K}}(\phi; \overline{A})$ and $\mathscr{C}_{J}(\phi; \overline{A})$. $\mathcal{K}_{\phi,q}(\overline{A})$ is of class $\mathscr{C}(\phi; \overline{A})$.

If $0 < \underline{b}(\phi) \le \overline{b}(\phi) < 1$, then

• X is of class $\mathscr{C}_{K}(\phi; \overline{A})$ iif

$$\Delta(\overline{A}) \subset X \subset K_{\phi,\infty}(\overline{A}).$$

• a Banach space X is of class $\mathscr{C}_{J}(\phi; \overline{A})$ iif

$$K_{\phi,1}(\overline{A}) \subset X \subset \Sigma(\overline{A}).$$

For $j \in \{0, 1\}$, assume that X_j are complete and of class $\mathscr{C}(\phi_j; \overline{A})$, where $0 \leq \underline{b}(\phi_j) \leq \overline{b}(\phi_j) \leq 1$. Let $\phi \in \mathcal{B}$ such that $0 < \underline{b}(\phi) \leq \overline{b}(\phi) < 1$ and set $f = \phi_1/\phi_0$ and $\psi = \phi_0 \cdot (\phi \circ f)$. If $\underline{b}(f) > 0$ or $\overline{b}(f) < 0$, then

$$\mathcal{K}_{\phi,q}(\overline{X}) = \mathcal{K}_{\psi,q}(\overline{A}).$$

In particular, if $0 < \underline{b}(\phi_j) \le \overline{b}(\phi_j) < 1$ and $K_{\phi_j,q_j}(\overline{A})$ are complete, then

$$K_{\phi,q}((K_{\phi_0,q_0}(\overline{A}),K_{\phi_1,q_1}(\overline{A})))=K_{\psi,q}(\overline{A}).$$

There exists a version for semi-normed spaces.

For $j \in \{0, 1\}$, assume that X_j are complete and of class $\mathscr{C}(\phi_j; \overline{A})$, where $0 \leq \underline{b}(\phi_j) \leq \overline{b}(\phi_j) \leq 1$. Let $\phi \in \mathcal{B}$ such that $0 < \underline{b}(\phi) \leq \overline{b}(\phi) < 1$ and set $f = \phi_1/\phi_0$ and $\psi = \phi_0 \cdot (\phi \circ f)$. If $\underline{b}(f) > 0$ or $\overline{b}(f) < 0$, then

$$\mathcal{K}_{\phi,q}(\overline{X}) = \mathcal{K}_{\psi,q}(\overline{A}).$$

In particular, if $0 < \underline{b}(\phi_j) \le \overline{b}(\phi_j) < 1$ and $K_{\phi_j,q_j}(\overline{A})$ are complete, then

$$\mathcal{K}_{\phi,q}((\mathcal{K}_{\phi_0,q_0}(\overline{A}),\mathcal{K}_{\phi_1,q_1}(\overline{A})))=\mathcal{K}_{\psi,q}(\overline{A}).$$

There exists a version for semi-normed spaces.

Let \overline{A} be a couple of Banach spaces such that $\Delta(\overline{A})$ is dense in A_0 and A_1 .

Assume that $1 \le q < \infty$ and $0 < \underline{b}(\phi) \le \overline{b}(\phi) < 1$. Then,

$$K_{\phi,q}(\overline{A})' = K_{1/\phi(1/\cdot),q'}(\overline{A'}),$$

where 1/q + 1/q' = 1.

For the case $q = \infty$, one has $(\overline{A}^0_{\phi,\infty})' = K_{1/\phi(1/\cdot),1}(\overline{A'})$.

Let \overline{A} be a couple of Banach spaces such that $\Delta(\overline{A})$ is dense in A_0 and A_1 .

Assume that $1 \le q < \infty$ and $0 < \underline{b}(\phi) \le \overline{b}(\phi) < 1$. Then,

$$\mathcal{K}_{\phi, \boldsymbol{q}}(\overline{\mathcal{A}})' = \mathcal{K}_{1/\phi(1/\cdot), \boldsymbol{q}'}(\overline{\mathcal{A}'}),$$

where 1/q + 1/q' = 1.

For the case $q = \infty$, one has $(\overline{A}^0_{\phi,\infty})' = K_{1/\phi(1/\cdot),1}(\overline{A'})$.

Let T be a bounded linear operator between a couple of Banach spaces (A_0, A_1) and a Banach space B. If $T : A_0 \to B$ is compact and if E is of class $\mathscr{C}_K(\phi; \overline{A})$ for some $\phi \in \mathcal{B}$ such that $0 < \underline{b}(\phi) \le \overline{b}(\phi) < 1$, then $T : E \to B$ is a compact operator.

Let T be a bounded linear operator between a Banach space B and a couple of Banach spaces (A_0, A_1) . If $T : B \to A_0$ is compact and if E is of class $\mathscr{C}_J(\phi; \overline{A})$ for some $\phi \in \mathcal{B}$ such that $0 < \underline{b}(\phi) \le \overline{b}(\phi) < 1$, then $T : B \to E$ is a compact operator.

Corollary

If A_0 and A_1 are Banach spaces, $A_1 \subset A_0$ compactly and $0 < \underline{b}(\phi_0) \le \overline{b}(\phi_0) < \underline{b}(\phi_1) \le \overline{b}(\phi_1) < 1$, then

$$K_{\phi_1,q_1}(\overline{A}) \subset K_{\phi_0,q_0}(\overline{A}),$$

with compact inclusion.

Suppose that F is an interpolation functor of exponent ϕ , where $0 < \underline{b}(\phi) \le \overline{b}(\phi) < 1$.

Then, for any compatible Banach couple \overline{A} , one has

$$J_{1/\overline{1/\phi},1}(\overline{A}) \subset F(\overline{A}).$$

Moreover, if $\Delta(\overline{A})$ is dense in A_0 and A_1 , then

$$F(\overline{A}) \subset K_{\overline{\phi},\infty}(\overline{A}).$$

$$K_{\phi,q}((A_0^p,A_1^p))^{1/p}=K_{\psi,pq}(A_0,A_1),$$

where $\psi(t) = \phi(t^p)^{1/p}$.

Let $\overline{A} = (A_0, A_1, A_2)$ be a Banach or quasi-Banach triple. We define

 $K(t_1, t_2, a) = \inf\{\|a_0\|_{A_0} + t_1\|a_1\|_{A_1} + t_2\|a_2\|_{A_2} : a = a_0 + a_1 + a_2\}.$

Let $H = \{(\phi, \psi) \in \mathcal{B} \times \mathcal{B} : \underline{b}(\phi) > 0, \underline{b}(\psi) > 0 \text{ and } \overline{b}(\phi) + \overline{b}(\psi) < 1\}.$ Given $(\phi, \psi) \in H$, we define $K_{\phi,\psi,p}(\overline{A})$ as the space of all $a \in \Sigma(\overline{A})$ such that

$$\|a\|_{K_{\phi,\psi,p}(\overline{A})} := \left(\iint_{(0,\infty)^2} \left(\frac{1}{\phi(t_1)} \frac{1}{\psi(t_2)} K(t_1,t_2) \right)^p \frac{dt_1}{t_1} \frac{dt_2}{t_2} \right)^{1/p} < \infty.$$

Let $\overline{A} = (A_0, A_1, A_2)$ be a Banach or quasi-Banach triple. We define

 $K(t_1, t_2, a) = \inf\{\|a_0\|_{A_0} + t_1\|a_1\|_{A_1} + t_2\|a_2\|_{A_2} : a = a_0 + a_1 + a_2\}.$

Let $H = \{(\phi, \psi) \in \mathcal{B} \times \mathcal{B} : \underline{b}(\phi) > 0, \underline{b}(\psi) > 0 \text{ and } \overline{b}(\phi) + \overline{b}(\psi) < 1\}.$ Given $(\phi, \psi) \in H$, we define $K_{\phi,\psi,p}(\overline{A})$ as the space of all $a \in \Sigma(\overline{A})$ such that

$$\|a\|_{K_{\phi,\psi,p}(\overline{A})} := \left(\iint_{(0,\infty)^2} \left(\frac{1}{\phi(t_1)} \frac{1}{\psi(t_2)} K(t_1,t_2) \right)^p \frac{dt_1}{t_1} \frac{dt_2}{t_2} \right)^{1/p} < \infty.$$

60/65

Let $\overline{A} = (A_0, A_1, A_2)$ be a Banach or quasi-Banach triple. We define

 $\mathcal{K}(t_1, t_2, a) = \inf\{\|a_0\|_{A_0} + t_1\|a_1\|_{A_1} + t_2\|a_2\|_{A_2} : a = a_0 + a_1 + a_2\}.$

Let $H = \{(\phi, \psi) \in \mathcal{B} \times \mathcal{B} : \underline{b}(\phi) > 0, \underline{b}(\psi) > 0 \text{ and } \overline{b}(\phi) + \overline{b}(\psi) < 1\}.$ Given $(\phi, \psi) \in H$, we define $K_{\phi,\psi,p}(\overline{A})$ as the space of all $a \in \Sigma(\overline{A})$ such that

$$\|a\|_{K_{\phi,\psi,p}(\overline{A})} := \left(\iint_{(0,\infty)^2} \left(\frac{1}{\phi(t_1)} \frac{1}{\psi(t_2)} K(t_1,t_2) \right)^p \frac{dt_1}{t_1} \frac{dt_2}{t_2} \right)^{1/p} < \infty.$$

60/65

Let $\overline{A} = (A_0, A_1, A_2)$ be a Banach or quasi-Banach triple. We define

 $\mathcal{K}(t_1, t_2, a) = \inf\{\|a_0\|_{A_0} + t_1\|a_1\|_{A_1} + t_2\|a_2\|_{A_2} : a = a_0 + a_1 + a_2\}.$

Let $H = \{(\phi, \psi) \in \mathcal{B} \times \mathcal{B} : \underline{b}(\phi) > 0, \underline{b}(\psi) > 0 \text{ and } \overline{b}(\phi) + \overline{b}(\psi) < 1\}.$ Given $(\phi, \psi) \in H$, we define $K_{\phi,\psi,p}(\overline{A})$ as the space of all $a \in \Sigma(\overline{A})$ such that

$$\|a\|_{K_{\phi,\psi,\rho}(\overline{A})} := \left(\iint_{(0,\infty)^2} \left(\frac{1}{\phi(t_1)} \frac{1}{\psi(t_2)} K(t_1,t_2) \right)^{\rho} \frac{dt_1}{t_1} \frac{dt_2}{t_2} \right)^{1/\rho} < \infty.$$

60/65

- /

Let \overline{A} be a triple of Banach or quasi-Banach function lattices. If $p, p_0, p_1 \in [1, \infty]$ and

$$\frac{1}{p} = \frac{1-\mu}{p_0} + \frac{\mu}{p_1},$$

then

$$K_{\mu,p} (K_{\alpha_0,p_0}(A_0, A_2), K_{\alpha_1,p_1}(A_1, A_2)) = K_{\theta_1,\theta_2,p}(A_0, A_1, A_2),$$

where $\theta_1 = (1 - \alpha_1)\mu$ and $\theta_2 = \alpha_0(1 - \mu) + \alpha_1\mu.$

62/65

Theorem

Let \overline{A} be a triple of Banach or quasi-Banach function lattices. If $p, p_0, p_1 \in [1, \infty]$ and

$$t^{rac{1}{p}}=\left(rac{t}{\phi(t)}
ight)^{rac{1}{p_0}}+\phi(t)^{rac{1}{p_1}}$$

for all t > 0, then

$$\begin{split} & \mathcal{K}_{\phi,p}\left(\mathcal{K}_{\phi_{0},p_{0}}(\mathcal{A}_{0},\mathcal{A}_{2}),\mathcal{K}_{\phi_{1},p_{1}}(\mathcal{A}_{1},\mathcal{A}_{2})\right) = \mathcal{K}_{\psi_{1},\psi_{2},p}(\mathcal{A}_{0},\mathcal{A}_{1},\mathcal{A}_{2}),\\ & \text{where }\psi_{1}(t) = \phi\left(\frac{t}{\phi_{1}(t)}\right) \text{ and }\psi_{2}(t) = \frac{\phi_{0}(t)}{\phi(\phi_{0}(t))}\phi(\phi_{1}(t)). \end{split}$$

$$B_{0} = K_{\phi_{0}, p_{0}}(A_{0}, A_{2})$$

$$K_{\phi, p}(B_{0}, B_{1})$$

$$K_{\phi, p}(B_{0}, B_{1})$$

$$A_{1}$$

Thank you for your attention !