Generalized Interpolation: a Functorial Point of View

Thomas Lamby and Samuel Nicolay

WFCA22 - VALLADOLID
June 20, 2022
LIĖGE université

Boyd functions

A function $\phi:(0, \infty) \rightarrow(0, \infty)$ is a Boyd function if it is continuous, $\phi(1)=1$ and

$$
\bar{\phi}(t):=\sup _{s>0} \frac{\phi(s t)}{\phi(s)}<\infty
$$

for all $t \in(0, \infty)$. The lower and upper Boyd indices of a Boyd function ϕ are defined by

Boyd functions

A function $\phi:(0, \infty) \rightarrow(0, \infty)$ is a Boyd function if it is continuous, $\phi(1)=1$ and

$$
\bar{\phi}(t):=\sup _{s>0} \frac{\phi(s t)}{\phi(s)}<\infty
$$

for all $t \in(0, \infty)$. The lower and upper Boyd indices of a Boyd function ϕ are defined by

$$
\underline{b}(\phi):=\sup _{t<1} \frac{\log \bar{\phi}(t)}{\log t}=\lim _{t \rightarrow 0} \frac{\log \bar{\phi}(t)}{\log t}
$$

and

$$
\bar{b}(\phi):=\inf _{t>1} \frac{\log \bar{\phi}(t)}{\log t}=\lim _{t \rightarrow \infty} \frac{\log \bar{\phi}(t)}{\log t}
$$

respectively.

Admissible sequences

A sequence $\sigma=\left(\sigma_{j}\right)_{j \in \mathbb{N}}$ of positive real numbers is admissible if there exists a constant $C>0$ such that $C^{-1} \sigma_{j} \leq \sigma_{j+1} \leq C \sigma_{j}$ for all j. lower and upper Boyd indices of σ are defined by

and

respectively.

Admissible sequences

A sequence $\sigma=\left(\sigma_{j}\right)_{j \in \mathbb{N}}$ of positive real numbers is admissible if there exists a constant $C>0$ such that $C^{-1} \sigma_{j} \leq \sigma_{j+1} \leq C \sigma_{j}$ for all j. Let $\underline{\sigma}_{j}:=\inf _{k \geq 1} \sigma_{j+k} / \sigma_{k}$ and $\bar{\sigma}_{j}:=\sup _{k \geq 1} \sigma_{j+k} / \sigma_{k}$. The lower and upper Boyd indices of σ are defined by

$$
\underline{s}(\sigma):=\sup _{j \in \mathbb{N}} \frac{\log \underline{\sigma}_{j}}{\log 2^{j}}=\lim _{j} \frac{\log \underline{\sigma}_{j}}{\log 2^{j}}
$$

and

$$
\bar{s}(\sigma):=\inf _{j \in \mathbb{N}} \frac{\log \bar{\sigma}_{j}}{\log 2^{j}}=\lim _{j} \frac{\log \bar{\sigma}_{j}}{\log 2^{j}},
$$

respectively.

Classical link

Given an admissible sequence σ, the function

$$
\phi_{\sigma}(t):= \begin{cases}\frac{\sigma_{j+1}-\sigma_{j}}{2^{j}}\left(t-2^{j}\right)+\sigma_{j} & \text { if } t \in\left[2^{j}, 2^{j+1}\right), j \in \mathbb{N}_{0} \\ \sigma_{0} & \text { if } t \in(0,1)\end{cases}
$$

with $\sigma_{0}=1$ is a Boyd function.

Properties of the Boyd functions

- The indices $\underline{b}(\phi)$ and $\bar{b}(\phi)$ are two numbers such that $\underline{b}(\phi) \leq \bar{b}(\phi)$.
- Given $\varepsilon>0$ and $R>0$, there exists $C>0$ such that

- In the same way, we also have
for any $t \geq R$.

Properties of the Boyd functions

- The indices $\underline{b}(\phi)$ and $\bar{b}(\phi)$ are two numbers such that $\underline{b}(\phi) \leq \bar{b}(\phi)$.
- Given $\varepsilon>0$ and $R>0$, there exists $C>0$ such that

$$
C^{-1} t^{\bar{b}(\phi)+\varepsilon} \leq \phi(t) \leq C t^{\underline{b}(\phi)-\varepsilon}
$$

for any $t \leq R$.

- In the same way, we also have

Properties of the Boyd functions

- The indices $\underline{b}(\phi)$ and $\bar{b}(\phi)$ are two numbers such that $\underline{b}(\phi) \leq \bar{b}(\phi)$.
- Given $\varepsilon>0$ and $R>0$, there exists $C>0$ such that

$$
C^{-1} t^{\bar{b}(\phi)+\varepsilon} \leq \phi(t) \leq C t^{\underline{b}(\phi)-\varepsilon},
$$

for any $t \leq R$.

- In the same way, we also have

$$
C^{-1} t^{\underline{b}(\phi)-\varepsilon} \leq \phi(t) \leq C t^{\bar{b}(\phi)+\varepsilon}
$$

for any $t \geq R$.

1 germ versus 2 germs

We will denote by \mathcal{B}^{∞} the set of continuous functions $\phi:[1, \infty) \rightarrow I$ such that $\phi(1)=1$ and

$$
0<\underline{\phi}(t):=\inf _{s \geq 1} \frac{\phi(t s)}{\phi(s)} \leq \bar{\phi}(t):=\sup _{s \geq 1} \frac{\phi(t s)}{\phi(s)}<\infty
$$

for any $t \geq 1$. Given $\phi \in \mathcal{B}$, we denote by ϕ_{∞} the restriction of ϕ to $[1, \infty)$ and by ϕ_{0} the restriction of ϕ to $(0,1]$.

Proposition

The application

$$
\tau: \mathcal{B} \rightarrow \mathcal{B}^{\infty} \times \mathcal{B}^{\infty} \quad \phi \mapsto\left(t \mapsto \frac{1}{\phi_{0}(1 / t)}, \phi_{\infty}\right)
$$

is a bijection.

A representation theorem

Theorem

A function $\phi:[1, \infty) \rightarrow I$ belongs to \mathcal{B}^{∞} if and only if $\phi(1)=1$ and there exist two bounded continuous functions $\eta, \xi:[1, \infty) \rightarrow$ I such that

$$
\phi(t)=e^{\eta(t)+\int_{1}^{t} \xi(s) \frac{d s}{s}} .
$$

Corollary
 A function $\phi: I \rightarrow I$ belongs to \mathcal{B} if and only if $\phi(1)=1$ and there

 exist four bounded continuous functions $\eta_{0}, \xi_{0}:(0,1] \rightarrow I$ and $\eta_{\infty}, \xi_{\infty}:[1, \infty) \rightarrow I$ such that

A representation theorem

Theorem

A function $\phi:[1, \infty) \rightarrow I$ belongs to \mathcal{B}^{∞} if and only if $\phi(1)=1$ and there exist two bounded continuous functions $\eta, \xi:[1, \infty) \rightarrow$ I such that

$$
\phi(t)=e^{\eta(t)+\int_{1}^{t} \xi(s) \frac{d s}{s}} .
$$

Corollary

A function $\phi: I \rightarrow I$ belongs to \mathcal{B} if and only if $\phi(1)=1$ and there exist four bounded continuous functions $\eta_{0}, \xi_{0}:(0,1] \rightarrow I$ and $\eta_{\infty}, \xi_{\infty}:[1, \infty) \rightarrow I$ such that

$$
\phi(t)= \begin{cases}e^{\eta_{0}(t)+\int_{1}^{1 / t} t} \xi_{0}(s) \frac{d s}{s} & \text { if } t \in(0,1] \\ e^{\eta_{\infty}(t)+\int_{1}^{t} \xi_{\infty}(s) \frac{d s}{s}} & \text { if } t \in[1, \infty)\end{cases}
$$

A representation theorem

One has $S V \subset \mathfrak{B}^{\infty} \subset R$.

Corollary
 If σ is an admissible sequence, then there exist two bounded continuous functions $\eta, \xi:[1, \infty) \rightarrow I$ such that

$$
\sigma_{j}=e^{\eta\left(2^{j}\right)+\int_{1}^{2^{j}} \xi(s) \frac{d s}{s}},
$$

for all $j \in \mathbb{N}$.

A representation theorem

One has $S V \subset \mathfrak{B}^{\infty} \subset R$.

Corollary

If σ is an admissible sequence, then there exist two bounded continuous functions $\eta, \xi:[1, \infty) \rightarrow I$ such that

$$
\sigma_{j}=e^{\eta\left(2^{j}\right)+\int_{1}^{2^{j}} \xi(s) \frac{d s}{s}},
$$

for all $j \in \mathbb{N}$.

Properties of the admissible sequences

If σ is an admissible sequence, for any $\varepsilon>0$ there exists a constant $C>0$ such that

$$
C^{-1} 2^{(s(\sigma)-\varepsilon) j} \leq \underline{\sigma}_{j} \leq \frac{\sigma_{j+k}}{\sigma_{k}} \leq \bar{\sigma}_{j} \leq C 2^{(\bar{s}(\sigma)+\varepsilon) j}
$$

for any $j, k \in \mathbb{N}$.

Properties of the admissible sequences

If σ is an admissible sequence, for any $\varepsilon>0$ there exists a constant $C>0$ such that

$$
C^{-1} 2^{(\underline{s}(\sigma)-\varepsilon) j} \leq \underline{\sigma}_{j} \leq \frac{\sigma_{j+k}}{\sigma_{k}} \leq \bar{\sigma}_{j} \leq C 2^{(\bar{s}(\sigma)+\varepsilon) j}
$$

for any $j, k \in \mathbb{N}$.
Remark
The previous inequalities are not necessarily valid for $\varepsilon=0$.

Some instructive examples

Consider the increasing sequence $\left(j_{n}\right)_{n}$ defined by

$$
\left\{\begin{array}{l}
j_{0}=0 \\
j_{1}=1, \\
j_{2 n}=2 j_{2 n-1}-j_{2 n-2} \\
j_{2 n+1}=2^{j_{2 n}}
\end{array}\right.
$$

Then, define the admissible sequence σ by

$$
\sigma_{j}:=\left\{\begin{array}{ll}
2^{j_{2 n}} & \text { if } j_{2 n} \leq j \leq j_{2 n+1} \\
2^{j_{2 n}} 4^{j-j_{2 n+1}} & \text { if } j_{2 n+1} \leq j<j_{2 n+2}
\end{array} .\right.
$$

The sequence oscillates between $(j)_{j}$ and $\left(2^{j}\right)_{j}$ and we have $\underline{s}(\sigma)=0$ and $\bar{s}(\sigma)=1$.

Some instructive examples

Let $\sigma_{0}=1, \alpha>0$ and σ be defined by

$$
\sigma_{j+1}:=\left\{\begin{array}{ll}
\sigma_{j} & \text { if } j_{2 n} \leq j \leq j_{2 n+1} \\
\sigma_{j} 2^{\alpha} & \text { if } j_{2 n+1} \leq j<j_{2 n+2}
\end{array} .\right.
$$

We have $\underline{s}(\sigma)=0, \bar{s}(\sigma)=1$ and for all $\varepsilon>0$, there exists $C>0$ such that $\sigma_{j} \leq C 2^{j \varepsilon}$ for all j.

Relations between Boyd functions and admissible sequences

Proposition

$$
\begin{aligned}
& \text { If } \phi \in \mathcal{B} \text { and } \sigma_{j}=\phi\left(2^{j}\right) \text { or } \sigma_{j}=1 / \phi\left(2^{-j}\right) \text { then we have } \\
& \underline{b}(\phi) \leq \underline{s}(\sigma) \leq \bar{s}(\sigma) \leq \bar{b}(\phi) \text {. }
\end{aligned}
$$

```
Proposition
If }\phi\in\mathcal{B},\mp@subsup{\sigma}{j}{}=\phi(\mp@subsup{2}{}{j})\mathrm{ and }\mp@subsup{0}{j}{}=1/\phi(\mp@subsup{2}{}{-j})\mathrm{ then
```

$\underline{b}(\phi)=\min \{\underline{s}(\sigma), \underline{s}(\theta)\} \quad$ and $\quad \bar{b}(\phi)=\max \{\bar{s}(\sigma), \bar{s}(\theta)\}$

Corollary

If ϕ belongs to \mathcal{B}, then we have $\underline{b}(\phi)=\min \left\{\underline{s}\left(\tau_{1}(\phi)\right), \underline{s}\left(\tau_{2}(\phi)\right)\right\}$
\square

Relations between Boyd functions and admissible sequences

Proposition

If $\phi \in \mathcal{B}$ and $\sigma_{j}=\phi\left(2^{j}\right)$ or $\sigma_{j}=1 / \phi\left(2^{-j}\right)$ then we have $\underline{b}(\phi) \leq \underline{s}(\sigma) \leq \bar{s}(\sigma) \leq \bar{b}(\phi)$.

Proposition

If $\phi \in \mathcal{B}, \sigma_{j}=\phi\left(2^{j}\right)$ and $\theta_{j}=1 / \phi\left(2^{-j}\right)$ then

$$
\underline{b}(\phi)=\min \{\underline{s}(\sigma), \underline{s}(\theta)\} \quad \text { and } \quad \bar{b}(\phi)=\max \{\bar{s}(\sigma), \bar{s}(\theta)\} .
$$

Corollary
 If ϕ belongs to \mathcal{B}, then we have $\underline{b}(\phi)=\min \left\{\underline{s}\left(\tau_{1}(\phi)\right), \underline{s}\left(\tau_{2}(\phi)\right)\right\}$

\square

Relations between Boyd functions and admissible sequences

Proposition

If $\phi \in \mathcal{B}$ and $\sigma_{j}=\phi\left(2^{j}\right)$ or $\sigma_{j}=1 / \phi\left(2^{-j}\right)$ then we have $\underline{b}(\phi) \leq \underline{s}(\sigma) \leq \bar{s}(\sigma) \leq \bar{b}(\phi)$.

Proposition

If $\phi \in \mathcal{B}, \sigma_{j}=\phi\left(2^{j}\right)$ and $\theta_{j}=1 / \phi\left(2^{-j}\right)$ then

$$
\underline{b}(\phi)=\min \{\underline{s}(\sigma), \underline{s}(\theta)\} \quad \text { and } \quad \bar{b}(\phi)=\max \{\bar{s}(\sigma), \bar{s}(\theta)\} .
$$

Corollary

If ϕ belongs to \mathcal{B}, then we have $\underline{b}(\phi)=\min \left\{\underline{s}\left(\tau_{1}(\phi)\right), \underline{s}\left(\tau_{2}(\phi)\right)\right\}$ and $\bar{b}(\phi)=\max \left\{\bar{s}\left(\tau_{1}(\phi)\right), \bar{s}\left(\tau_{2}(\phi)\right)\right\}$.

Boyd function obtained from one admissible sequence

Boyd function obtained from one admissible sequence

Some elementary examples:

$$
\phi_{\sigma}(t)= \begin{cases}\frac{\sigma_{j+1}-\sigma_{j}}{2^{j}}\left(t-2^{j}\right)+\sigma_{j} & \text { if } t \in\left[2^{j}, 2^{j+1}\right) \\ \frac{1 / \sigma_{j}-1 / \sigma_{j+1}}{2^{j}}\left(t-2^{-j-1}\right)+1 / \sigma_{j+1} & \text { if } t \in\left(2^{-j-1}, 2^{-j}\right] .\end{cases}
$$

Boyd function obtained from one admissible sequence

Some elementary examples :

$$
\phi_{\sigma}(t)= \begin{cases}\frac{\sigma_{j+1}-\sigma_{j}}{2^{j}}\left(t-2^{j}\right)+\sigma_{j} & \text { if } t \in\left[2^{j}, 2^{j+1}\right), j \in \mathbb{N}_{0} \\ \frac{1}{\phi(1 / t)} & \text { if } t \in(0,1)\end{cases}
$$

Boyd function obtained from one admissible sequence

Some elementary examples :

$$
\phi_{\sigma}(t)= \begin{cases}\frac{\sigma_{j+1}-\sigma_{j}}{2^{j}}\left(t-2^{j}\right)+\sigma_{j} & \text { if } t \in\left[2^{j}, 2^{j+1}\right), j \in \mathbb{N}_{0} \\ t^{s} & \text { if } t \in(0,1)\end{cases}
$$

where s satisfies $\underline{s}(\sigma) \leq s \leq \bar{s}(\sigma)$.

Constructing a regular Boyd function from an admissible sequence

Let

$$
f(x)=\left\{\begin{array}{cc}
x^{2} & \text { if } x \geq 0 \\
0 & \text { else }
\end{array}\right.
$$

to define

$$
g: x \mapsto \frac{f(x)}{f(x)+f(1-x)}
$$

on $[0,1]$.

Constructing a regular Boyd function from an admissible

 sequence$$
\binom{X}{Y}=\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right)\binom{x}{y}
$$

For $j \in \mathbb{N}$, we set

$$
\left\{\begin{array}{c}
X_{j}=2^{j} \cos \alpha+\sigma_{j} \sin \alpha \\
Y_{j}=-2^{j} \sin \alpha+\sigma_{j} \cos \alpha
\end{array},\right.
$$

and

$$
\tau^{(j)}(X)=Y_{j}+\left(Y_{j+1}-Y_{j}\right) X
$$

to consider the curve

$$
Y=\tau^{(j)}\left(g\left(\xi^{(j)}(X)\right)\right)
$$

on $\left[X_{j}, X_{j+1}\right]$.

Constructing a regular Boyd function from an admissible sequence

It gives rise to

$$
Y(y)=\tau^{(j)}\left(g\left(\xi^{(j)}(X(x))\right)\right)
$$

on the original Euclidean plane.
Let $\eta_{j}^{(\alpha)}$ be the function $x \mapsto y$ on $\left[2^{j}, 2^{j+1}\right]$.
We can construct $\phi \in \mathcal{B}$ by setting

Constructing a regular Boyd function from an admissible sequence

It gives rise to

$$
Y(y)=\tau^{(j)}\left(g\left(\xi^{(j)}(X(x))\right)\right)
$$

on the original Euclidean plane.
Let $\eta_{j}^{(\alpha)}$ be the function $x \mapsto y$ on $\left[2^{j}, 2^{j+1}\right]$.
We can construct $\phi \in \mathcal{B}$ by setting

$$
\phi(t)= \begin{cases}\eta_{j}^{(\alpha)}(t) & \text { if } t \in\left[2^{j}, 2^{j+1}\right), j \in \mathbb{N}_{0} \\ \frac{1}{\phi(1 / t)} & \text { if } t \in(0,1)\end{cases}
$$

Constructing a regular Boyd function from an admissible sequence

For $\alpha=0$, we explicitly get

$$
\eta_{j}^{(0)}(t)=\sigma_{j}+\frac{\sigma_{j+1}-\sigma_{j}}{1+\left(\frac{t-2^{j+1}}{t-2^{j}}\right)^{2}}
$$

Figure: The function $\eta^{(\alpha)}$ (left panel) and its derivative (right panel) for $\alpha=0$ and σ such that $\sigma_{1}=2, \sigma_{2}=4, \sigma_{3}=20$ and $\sigma_{4}=22$.

Constructing a regular Boyd function from an admissible sequence

If $\alpha>0$ is small enough, we get a function $\eta_{j}^{(\alpha)}$ whose explicit form is far more complicated.

Figure: The function $\eta^{(\alpha)}$ (left panel) and its derivative (right panel) for $\alpha=0.1$ and σ such that $\sigma_{1}=2, \sigma_{2}=4, \sigma_{3}=20$ and $\sigma_{4}=22$.

Constructing a regular Boyd function from an admissible sequence

Let \mathcal{B}^{\prime} denote the set of functions $f: I \rightarrow I$ that belong to $C^{1}(I)$ with $f(1)=1$ and satisfy

$$
0<\inf _{t>0} t \frac{\left|f^{\prime}(t)\right|}{f(t)} \leq \sup _{t>0} t \frac{\left|f^{\prime}(t)\right|}{f(t)}<\infty
$$

One can show that \mathcal{B}^{\prime} is a subset of \mathcal{B}. If $\phi \in \mathcal{B}$ with $\underline{b}(\phi)>0$ (resp. $\bar{b}(\phi)<0$), then there exists a non-decreasing bijection (resp. a non-increasing bijection) $\psi \in \mathcal{B}^{\prime}$ such that $\phi \sim \psi$ and $\psi^{-1} \in \mathcal{B}^{\prime}$

Constructing a regular Boyd function from an admissible sequence

Proposition

If σ is an admissible sequence such that either $\underline{s}(\sigma)>0$ or $\bar{s}(\sigma)<0$, then there exists $\xi \in \mathcal{B}^{\prime} \cap C^{\infty}(I)$ such that $\left(\xi\left(2^{j}\right)\right)_{j} \sim \sigma$.

Proposition

If $\phi \in \mathcal{B}$ is such that $\underline{b}(\phi)>0$ or $\bar{b}(\phi)<0$, then there exists

Constructing a regular Boyd function from an admissible sequence

Proposition

If σ is an admissible sequence such that either $\underline{s}(\sigma)>0$ or $\bar{s}(\sigma)<0$, then there exists $\xi \in \mathcal{B}^{\prime} \cap C^{\infty}(I)$ such that $\left(\xi\left(2^{j}\right)\right)_{j} \sim \sigma$.

Proposition

If $\phi \in \mathcal{B}$ is such that $\underline{b}(\phi)>0$ or $\bar{b}(\phi)<0$, then there exists $\xi \in \mathcal{B}^{\prime} \cap C^{\infty}(I)$ such that $\xi \sim \phi$.

An handy way to define generalized spaces

- Let \mathcal{J} be Bessel operator of order s :

$$
\mathcal{J}^{s} f=\mathcal{F}^{-1}\left(\left(1+|\cdot|^{2}\right)^{s / 2} \mathcal{F} f\right),
$$

for $f \in \mathcal{S}^{\prime}$ and $s \in \mathbb{R}$.

- The fractional Sobolev space $H_{p}^{S}(p \in[1, \infty])$ is defined by

An handy way to define generalized spaces

- Let \mathcal{J} be Bessel operator of order s :

$$
\mathcal{J}^{s} f=\mathcal{F}^{-1}\left(\left(1+|\cdot|^{2}\right)^{s / 2} \mathcal{F} f\right),
$$

for $f \in \mathcal{S}^{\prime}$ and $s \in \mathbb{R}$.

- The fractional Sobolev space $H_{p}^{s}(p \in[1, \infty])$ is defined by

$$
H_{p}^{s}=\left\{f \in \mathcal{S}^{\prime}:\left\|\mathcal{J}^{s} f\right\|_{L^{p}}<\infty\right\} .
$$

An handy way to define generalized spaces

- Let $\mathcal{B}^{\prime \prime}$ be the set of functions $\phi \in \mathcal{B}$ that belong to $C^{\infty}([1, \infty))$ and satisfy

$$
x^{m}\left|\phi^{(m)}(x)\right|<C_{m} \phi(x)
$$

for all $m \in \mathbb{N}$ and $x \geq 1$.

An handy way to define generalized spaces

- Let $\mathcal{B}^{\prime \prime}$ be the set of functions $\phi \in \mathcal{B}$ that belong to $C^{\infty}([1, \infty))$ and satisfy

$$
x^{m}\left|\phi^{(m)}(x)\right|<C_{m} \phi(x)
$$

for all $m \in \mathbb{N}$ and $x \geq 1$.

- For example, $\phi(x)=x^{s}(1+|\log x|)^{\gamma}(s, \gamma \in \mathbb{R})$ belongs to $\mathcal{B}^{\prime \prime}$.

An handy way to define generalized spaces

- Given $\phi \in \mathcal{B}^{\prime \prime}$, the generalized Bessel operator \mathcal{J}^{ϕ} is given by

$$
\mathcal{J}^{\phi} f=\mathcal{F}^{-1}\left(\phi\left(\sqrt{1+|\cdot|^{2}}\right) \mathcal{F} f\right)
$$

for $f \in \mathcal{S}^{\prime}$.

An handy way to define generalized spaces

- Given $\phi \in \mathcal{B}^{\prime \prime}$, the generalized Bessel operator \mathcal{J}^{ϕ} is given by

$$
\mathcal{J}^{\phi} f=\mathcal{F}^{-1}\left(\phi\left(\sqrt{1+|\cdot|^{2}}\right) \mathcal{F} f\right)
$$

for $f \in \mathcal{S}^{\prime}$.

- \mathcal{J}^{ϕ} is a linear bijective operator such that $\left(\mathcal{J}^{\phi}\right)^{-1}=\mathcal{J}^{1 / \phi}$ and $\mathcal{J}^{\phi}(\mathcal{S})=\mathcal{S}$.

An handy way to define generalized spaces

- Given $\phi \in \mathcal{B}^{\prime \prime}$ and $p \in[1, \infty]$, the generalized Sobolev space H_{p}^{ϕ} is defined by

$$
H_{p}^{\phi}=\left\{f \in \mathcal{S}^{\prime}:\left\|\mathcal{J}^{\phi} f\right\|_{L^{p}}<\infty\right\} .
$$

- For $\phi(t)=t^{s}(s \in \mathbb{R})$, we have $H_{p}^{\phi}=H_{p}^{s}$.

An handy way to define generalized spaces

- Given $\phi \in \mathcal{B}^{\prime \prime}$ and $p \in[1, \infty]$, the generalized Sobolev space H_{p}^{ϕ} is defined by

$$
H_{p}^{\phi}=\left\{f \in \mathcal{S}^{\prime}:\left\|\mathcal{J}^{\phi} f\right\|_{L^{p}}<\infty\right\}
$$

- For $\phi(t)=t^{s}(s \in \mathbb{R})$, we have $H_{p}^{\phi}=H_{p}^{s}$.

An handy way to define generalized spaces

- Let $q \in[1, \infty]$ and $\phi \in \mathcal{B}$; given a Banach space X, the space $I_{\phi}^{q}(X)$ is the space of sequences $\left(a_{j}\right)_{j}$ of X such that

$$
\left(\phi\left(2^{j}\right)\left\|a_{j}\right\|_{x}\right) \in I^{q} .
$$

We set $I_{\phi}^{q}=I_{\phi}^{q}(\mathbb{C})$.

- This space is equipped with the norm

- If $\phi(t)=t^{s}$, we write $l_{s}^{q}(X)=l_{\phi}^{q}(X)$.

An handy way to define generalized spaces

- Let $q \in[1, \infty]$ and $\phi \in \mathcal{B}$; given a Banach space X, the space $I_{\phi}^{q}(X)$ is the space of sequences $\left(a_{j}\right)_{j}$ of X such that

$$
\left(\phi\left(2^{j}\right)\left\|a_{j}\right\|_{x}\right) \in I^{q} .
$$

We set $I_{\phi}^{q}=I_{\phi}^{q}(\mathbb{C})$.

- This space is equipped with the norm

$$
\left\|\left(a_{j}\right)_{j}\right\|_{I_{\phi}^{q}(X)}=\left\|\phi\left(2^{j}\right)\right\| a_{j}\|x\|_{I q} .
$$

- If $\phi(t)=t^{s}$, we write $I_{s}^{q}(X)=I_{\phi}^{q}(X)$.

An handy way to define generalized spaces

- Let $q \in[1, \infty]$ and $\phi \in \mathcal{B}$; given a Banach space X, the space $I_{\phi}^{q}(X)$ is the space of sequences $\left(a_{j}\right)_{j}$ of X such that

$$
\left(\phi\left(2^{j}\right)\left\|a_{j}\right\|_{x}\right) \in I^{q} .
$$

We set $I_{\phi}^{q}=I_{\phi}^{q}(\mathbb{C})$.

- This space is equipped with the norm

$$
\left\|\left(a_{j}\right)_{j}\right\|_{I_{\phi}^{q}(X)}=\left\|\phi\left(2^{j}\right)\right\| a_{j}\|x\|_{I q} .
$$

- If $\phi(t)=t^{s}$, we write $l_{s}^{q}(X)=l_{\phi}^{q}(X)$.

An handy way to define generalized spaces

- Let $\varphi \in \mathcal{S}$ be a function with support in $\left\{x \in \mathbb{R}^{d}: 1 / 2 \leq|x| \leq 2\right\}$ such that $\varphi(x)>0$ and $\sum_{j \in \mathbb{Z}} \varphi\left(2^{-j} x\right)=1$ for $x \neq 0$.
- Let us define ψ_{0} and $\Phi_{j}(j \in \mathbb{Z})$ such that

$$
\mathcal{F} \Phi_{j}(x)=\varphi\left(2^{-j} x\right)
$$

- We set $\varphi_{0}=\psi_{0}$ and $\varphi_{j}=\Phi_{j}$ for $j \in \mathbb{N}$; these functions are called test functions.

An handy way to define generalized spaces

- Let $\varphi \in \mathcal{S}$ be a function with support in $\left\{x \in \mathbb{R}^{d}: 1 / 2 \leq|x| \leq 2\right\}$ such that $\varphi(x)>0$ and $\sum_{j \in \mathbb{Z}} \varphi\left(2^{-j} x\right)=1$ for $x \neq 0$.
- Let us define ψ_{0} and $\Phi_{j}(j \in \mathbb{Z})$ such that

$$
\mathcal{F} \psi_{0}(x)=1-\sum_{j=1}^{\infty} \varphi\left(2^{-j_{x}}\right)
$$

and

$$
\mathcal{F} \Phi_{j}(x)=\varphi\left(2^{-j} x\right)
$$

- We set $\varphi_{0}=\psi_{0}$ and $\varphi_{j}=\Phi_{j}$ for $j \in \mathbb{N}$; these functions are called test functions.

An handy way to define generalized spaces

- Let $\varphi \in \mathcal{S}$ be a function with support in $\left\{x \in \mathbb{R}^{d}: 1 / 2 \leq|x| \leq 2\right\}$ such that $\varphi(x)>0$ and $\sum_{j \in \mathbb{Z}} \varphi\left(2^{-j} x\right)=1$ for $x \neq 0$.
- Let us define ψ_{0} and $\Phi_{j}(j \in \mathbb{Z})$ such that

$$
\mathcal{F} \psi_{0}(x)=1-\sum_{j=1}^{\infty} \varphi\left(2^{-j} x\right)
$$

and

$$
\mathcal{F} \Phi_{j}(x)=\varphi\left(2^{-j} x\right)
$$

- We set $\varphi_{0}=\psi_{0}$ and $\varphi_{j}=\Phi_{j}$ for $j \in \mathbb{N}$; these functions are called test functions.

An handy way to define generalized spaces

- Let $p, q \in[1, \infty]$ and $\phi \in \mathcal{B}$; the generalized Besov space $B_{p, q}^{\phi}$ is defined by

$$
B_{p, q}^{\phi}=\left\{f \in \mathcal{S}^{\prime}:\left(\varphi_{k} * f\right)_{k} \in I_{\phi}^{q}\left(L^{p}\right)\right\} .
$$

- This space is equipped with the norm

An handy way to define generalized spaces

- Let $p, q \in[1, \infty]$ and $\phi \in \mathcal{B}$; the generalized Besov space $B_{p, q}^{\phi}$ is defined by

$$
B_{p, q}^{\phi}=\left\{f \in \mathcal{S}^{\prime}:\left(\varphi_{k} * f\right)_{k} \in l_{\phi}^{q}\left(L^{p}\right)\right\} .
$$

- This space is equipped with the norm

$$
\|f\|_{B_{p, q}^{\phi}}=\left\|\left(\varphi_{k} * f\right)_{k}\right\|_{l_{\phi}^{q}\left(L^{p}\right)}=\left\|\left(\left\|\varphi_{k} * f\right\|_{L^{p}}\right)_{k}\right\|_{I_{\phi}^{q}} .
$$

An handy way to define generalized spaces

- Let $p, q \in[1, \infty]$ and $\phi \in \mathcal{B}$; the generalized Besov space $B_{p, q}^{\phi}$ is defined by

$$
B_{p, q}^{\phi}=\left\{f \in \mathcal{S}^{\prime}:\left(\varphi_{k} * f\right)_{k} \in l_{\phi}^{q}\left(L^{p}\right)\right\} .
$$

- This space is equipped with the norm

$$
\|f\|_{B_{p, q}^{\phi}}=\left\|\left(\varphi_{k} * f\right)_{k}\right\|_{l_{\phi}^{q}\left(L^{p}\right)}=\left\|\left(\left\|\varphi_{k} * f\right\|_{L^{p}}\right)_{k}\right\|_{I_{\phi}^{q}} .
$$

An handy way to define generalized spaces

- Let $p, q \in[1, \infty]$ and $\phi \in \mathcal{B}$; the generalized Hardy-Sobolev space $F_{p, q}^{\phi}$ is defined by

$$
F_{p, q}^{\phi}=\left\{f \in \mathcal{S}^{\prime}:\left(\varphi_{k} * f\right)_{k} \in L^{p}\left(I_{\phi}^{q}\right)\right\} .
$$

- This space is equipped with the norm

An handy way to define generalized spaces

- Let $p, q \in[1, \infty]$ and $\phi \in \mathcal{B}$; the generalized Hardy-Sobolev space $F_{p, q}^{\phi}$ is defined by

$$
F_{p, q}^{\phi}=\left\{f \in \mathcal{S}^{\prime}:\left(\varphi_{k} * f\right)_{k} \in L^{p}\left(I_{\phi}^{q}\right)\right\} .
$$

- This space is equipped with the norm

$$
\|f\|_{F_{p, q}^{\phi}}=\left\|\left(\varphi_{k} * f\right)_{k}\right\|_{L^{p}\left(q_{\phi}^{q}\right)}=\| \|\left(\varphi_{k} * f\right)_{k}\left\|_{q_{\phi}^{q}}\right\|_{L^{p}}
$$

An handy way to define generalized spaces

- An object B in a given category is a retract of an object A if there exist morphisms $u: B \rightarrow A$ and $v: A \rightarrow B$ in the category such that $v \circ u$ is the identity on B.

An handy way to define generalized spaces

- An object B in a given category is a retract of an object A if there exist morphisms $u: B \rightarrow A$ and $v: A \rightarrow B$ in the category such that $v \circ u$ is the identity on B.
- For $\phi \in \mathcal{B}$,
- $B_{p, q}^{\phi}$ is a retract of $I_{\phi}^{q}\left(L^{p}\right)$ for $p, q \in[1, \infty]$,
- $F_{p, q}^{\phi}$ is a retract of $L^{p}\left(I_{\phi}^{q}\right)$ for $p, q \in(1, \infty]$.

Some conventions

- Two topological vector spaces A_{0} and A_{1} are compatible if there is a Hausdorff topological vector space H such that A_{0} and A_{1} are sub-spaces of H.
- \mathscr{N} denotes the category of all normed vector spaces (a sub-category of all topological vector spaces).
- \mathscr{C} denotes any sub-category of the category \mathscr{N} that is closed under the operations sum and intersection
- \mathscr{C}_{1} denotes the category of all compatible couples $A=\left(A_{0}, A_{1}\right)$ of spaces in \mathscr{C}

Some conventions

- Two topological vector spaces A_{0} and A_{1} are compatible if there is a Hausdorff topological vector space H such that A_{0} and A_{1} are sub-spaces of H.
- \mathscr{N} denotes the category of all normed vector spaces (a sub-category of all topological vector spaces).
- \mathscr{C} denotes any sub-category of the category \mathscr{N} that is closed under the operations sum and intersection
- Col denotes the category of all compatible couples $A=\left(A_{0}, A_{1}\right)$ of spaces in \mathscr{C}

Some conventions

- Two topological vector spaces A_{0} and A_{1} are compatible if there is a Hausdorff topological vector space H such that A_{0} and A_{1} are sub-spaces of H.
- \mathscr{N} denotes the category of all normed vector spaces (a sub-category of all topological vector spaces).
- \mathscr{C} denotes any sub-category of the category \mathscr{N} that is closed under the operations sum and intersection

Some conventions

- Two topological vector spaces A_{0} and A_{1} are compatible if there is a Hausdorff topological vector space H such that A_{0} and A_{1} are sub-spaces of H.
- \mathscr{N} denotes the category of all normed vector spaces (a sub-category of all topological vector spaces).
- \mathscr{C} denotes any sub-category of the category \mathscr{N} that is closed under the operations sum and intersection
- \mathscr{C}_{1} denotes the category of all compatible couples
$\bar{A}=\left(A_{0}, A_{1}\right)$ of spaces in \mathscr{C}.

More conventions

- The morphisms $T:\left(A_{0}, A_{1}\right) \rightarrow\left(B_{0}, B_{1}\right)$ in \mathscr{C}_{1} are all bounded linear mappings from $A_{0}+A_{1}$ to $B_{0}+B_{1}$ such that

$$
T_{A_{0}}: A_{0} \rightarrow B_{0}, \quad T_{A_{1}}: A_{1} \rightarrow B_{1}
$$

are morphisms in \mathscr{C}. In the sequel, T will stand for the restrictions to the various subspaces of $A_{0}+A_{1}$.

$$
\Delta(\bar{A})=A_{0} \cap A_{1},
$$

$$
\Sigma(\bar{A})=A_{0}+A_{1} .
$$

More conventions

- The morphisms $T:\left(A_{0}, A_{1}\right) \rightarrow\left(B_{0}, B_{1}\right)$ in \mathscr{C}_{1} are all bounded linear mappings from $A_{0}+A_{1}$ to $B_{0}+B_{1}$ such that

$$
T_{A_{0}}: A_{0} \rightarrow B_{0}, \quad T_{A_{1}}: A_{1} \rightarrow B_{1}
$$

are morphisms in \mathscr{C}. In the sequel, T will stand for the restrictions to the various subspaces of $A_{0}+A_{1}$.

- Two basic functors from \mathscr{C}_{1} to $\mathscr{C}: \Sigma(T)=\Delta(T)=T$ and

$$
\begin{aligned}
& \Delta(\bar{A})=A_{0} \cap A_{1}, \\
& \Sigma(\bar{A})=A_{0}+A_{1} .
\end{aligned}
$$

Interpolation spaces

- Let $\bar{A}=\left(A_{0}, A_{1}\right)$ be a given couple in \mathscr{C}_{1}. Then a space A in \mathscr{C} will be called an intermediate space between A_{0} and A_{1} (or with respect to \bar{A}) if

$$
\Delta(\bar{A}) \subset A \subset \Sigma(\bar{A})
$$

with continuous inclusions. A_{I} (or with respect to \bar{A}) if in addition

- More generally, let \bar{A} and \bar{B} be two couples in \mathscr{C}_{1}. Then we say that two spaces A and B in \mathscr{C} are interpolation spaces with respect to \bar{A} and \bar{B} if A and B are intermediate spaces with respect to A and B respectively, and if

Interpolation spaces

- Let $\bar{A}=\left(A_{0}, A_{1}\right)$ be a given couple in \mathscr{C}_{1}. Then a space A in \mathscr{C} will be called an intermediate space between A_{0} and A_{1} (or with respect to \bar{A}) if

$$
\Delta(\bar{A}) \subset A \subset \Sigma(\bar{A})
$$

with continuous inclusions.

- The space A is called an interpolation space between A_{0} and A_{I} (or with respect to \bar{A}) if in addition

$$
T: \bar{A} \rightarrow \bar{A} \text { implies } T: A \rightarrow A .
$$

- More generally, let \bar{A} and \bar{B} be two couples in \mathscr{C}_{1}. Then we say that two spaces A and B in \mathscr{C} are interpolation spaces with respect to \bar{A} and \bar{B} if A and B are intermediate spaces with respect to A and B respectively, and if

Interpolation spaces

- Let $\bar{A}=\left(A_{0}, A_{1}\right)$ be a given couple in \mathscr{C}_{1}. Then a space A in \mathscr{C} will be called an intermediate space between A_{0} and A_{1} (or with respect to \bar{A}) if

$$
\Delta(\bar{A}) \subset A \subset \Sigma(\bar{A})
$$

with continuous inclusions.

- The space A is called an interpolation space between A_{0} and A_{I} (or with respect to \bar{A}) if in addition

$$
T: \bar{A} \rightarrow \bar{A} \text { implies } T: A \rightarrow A
$$

- More generally, let \bar{A} and \bar{B} be two couples in \mathscr{C}_{1}. Then we say that two spaces A and B in \mathscr{C} are interpolation spaces with respect to \bar{A} and \bar{B} if A and B are intermediate spaces with respect to A and B respectively, and if

$$
T: \bar{A} \rightarrow \bar{B} \text { implies } T: A \rightarrow B
$$

- Clearly $\Delta(A)$ and $\Delta(B)(\Sigma(A)$ and $\Sigma(B))$ are interpolation spaces with respect to A and B.

Interpolation spaces

- Clearly $\Delta(A)$ and $\Delta(B)(\Sigma(A)$ and $\Sigma(B))$ are interpolation spaces with respect to A and B.
- If $\|T\|_{A, B} \leq \max \left\{\|T\|_{A_{0}, B_{0}},\|T\|_{A_{1}, B_{1}}\right\}$ holds, we shall say that A and B are exact interpolation spaces.
that A and B are uniform interpolation spaces.

Interpolation spaces

- Clearly $\Delta(A)$ and $\Delta(B)(\Sigma(A)$ and $\Sigma(B))$ are interpolation spaces with respect to A and B.
- If $\|T\|_{A, B} \leq \max \left\{\|T\|_{A_{0}, B_{0}},\|T\|_{A_{1}, B_{1}}\right\}$ holds, we shall say that A and B are exact interpolation spaces.
- If $\|T\|_{A, B} \leq C \max \left\{\|T\|_{A_{0}, B_{0}},\|T\|_{A_{1}, B_{1}}\right\}$ holds, we shall say that A and B are uniform interpolation spaces.
- The interpolation spaces A and B are of exponent $\theta \in[0,1]$ if

$$
\|T\|_{A, B} \leq C\|T\|_{A_{0}, B_{0}}^{1-\theta}\|T\|_{A_{1}, B_{1}}^{\theta} .
$$

- If $C=1$, we say that A and B are exact of exponent θ.

Interpolation spaces

- The interpolation spaces A and B are of exponent $\theta \in[0,1]$ if

$$
\|T\|_{A, B} \leq C\|T\|_{A_{0}, B_{0}}^{1-\theta}\|T\|_{A_{1}, B_{1}}^{\theta} .
$$

- If $C=1$, we say that A and B are exact of exponent θ.

Generalized interpolation spaces

- The interpolation spaces A and B are of exponent $\phi \in \mathcal{B}$ if

$$
\|T\|_{A, B} \leq C \bar{\psi}\left(\|T\|_{A_{0}, X_{0}}\right) \bar{\phi}\left(\|T\|_{A_{1}, X_{1}}\right)
$$

where $\psi(t)=t / \phi(t)$ for all $t>0$.

- If $C=1$, we say that A and B are exact of exponent ϕ.

Generalized interpolation spaces

- The interpolation spaces A and B are of exponent $\phi \in \mathcal{B}$ if

$$
\|T\|_{A, B} \leq C \bar{\psi}\left(\|T\|_{A_{0}, X_{0}}\right) \bar{\phi}\left(\|T\|_{A_{1}, X_{1}}\right)
$$

where $\psi(t)=t / \phi(t)$ for all $t>0$.

- If $C=1$, we say that A and B are exact of exponent ϕ.

Interpolation functor

- An interpolation functor on \mathscr{C} is a functor F from \mathscr{C}_{1} into \mathscr{C} such that if \bar{A} and \bar{B} are couples in \mathscr{C}_{1}, then $F(\bar{A})$ and $F(\bar{B})$ are interpolation spaces with respect to \bar{A} and \bar{B} and

$$
F(T)=T \text { for all } T: \bar{A} \rightarrow \bar{B}
$$

Interpolation functor

- An interpolation functor on \mathscr{C} is a functor F from \mathscr{C}_{1} into \mathscr{C} such that if \bar{A} and \bar{B} are couples in \mathscr{C}_{1}, then $F(\bar{A})$ and $F(\bar{B})$ are interpolation spaces with respect to \bar{A} and \bar{B} and

$$
F(T)=T \text { for all } T: \bar{A} \rightarrow \bar{B}
$$

- F is a uniform (exact) interpolation functor if $F(\bar{A})$ and $F(\bar{B})$ are uniform (exact) interpolation spaces with respect to \bar{A} and \bar{B}. Similarly, F is (exact) of exponent $\theta(\phi \in \mathcal{B})$ if $F(\bar{A})$ and $F(\bar{B})$ are (exact) of exponent $\theta(\phi \in \mathcal{B})$.

The K-operator of interpolation is defined for $t>0$ and $a \in \Sigma(\bar{A})$ by

$$
K(t, a)=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}: a=a_{0}+a_{1}\right\}
$$

If $\theta \in(0,1)$ and $q \in[1, \infty]$, then a belongs to the interpolation space $K_{\theta, q}\left(A_{0}, A_{1}\right)$ if $a \in \Sigma(\bar{A})$ and

$$
\left(2^{-\theta j} K\left(2^{j}, a\right)\right)_{j \in \mathbb{Z}} \in I^{q}(\mathbb{Z}) .
$$

This last condition is equivalent to $t \mapsto t^{-\theta} K(t, a) \in L_{*}^{q}$.

The K-operator of interpolation is defined for $t>0$ and $a \in \Sigma(\bar{A})$ by

$$
K(t, a)=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}: a=a_{0}+a_{1}\right\}
$$

If $\theta \in(0,1)$ and $q \in[1, \infty]$, then a belongs to the interpolation space $K_{\theta, q}\left(A_{0}, A_{1}\right)$ if $a \in \Sigma(\bar{A})$ and

$$
\left(2^{-\theta j} K\left(2^{j}, a\right)\right)_{j \in \mathbb{Z}} \in I^{q}(\mathbb{Z}) .
$$

This last condition is equivalent to $t \mapsto t^{-\theta} K(t, a) \in L_{*}^{q}$.
For example, $B_{p, q}^{s}=K_{\alpha, q}\left(H_{p}^{t}, H_{p}^{u}\right)$ for $s=(1-\alpha) t+\alpha u$.

Let $\phi \in \mathcal{B}$ and $q \in[1, \infty]$, we let $K_{\phi, q}(\bar{A})$ denote the space of all $a \in \Sigma(\bar{A})$ such that

$$
\|a\|_{\phi, q, K}:=\int_{0}^{\infty}\left(\frac{1}{\phi(t)} K(t, a)\right)^{q} \frac{d t}{t}<\infty
$$

holds.

$$
\begin{aligned}
& \text { Theorem } \\
& K_{\phi, q} \text { is an exact interpolation functor of exponent } \phi \in \mathcal{B} \text { on the } \\
& \text { category } \mathscr{N} . \text { Moreover, we have }
\end{aligned}
$$

$$
K(t, a) \leq C \phi(t)\|a\|_{\phi, q, K} .
$$

Let $\phi \in \mathcal{B}$ and $q \in[1, \infty]$, we let $K_{\phi, q}(\bar{A})$ denote the space of all $a \in \Sigma(\bar{A})$ such that

$$
\|a\|_{\phi, q, K}:=\int_{0}^{\infty}\left(\frac{1}{\phi(t)} K(t, a)\right)^{q} \frac{d t}{t}<\infty
$$

holds.

Theorem

$K_{\phi, q}$ is an exact interpolation functor of exponent $\phi \in \mathcal{B}$ on the category \mathscr{N}. Moreover, we have

$$
K(t, a) \leq C \phi(t)\|a\|_{\phi, q, K} .
$$

Figure: Differents interpolation spaces where for example $\phi_{1}(t)=t^{\alpha} \log (1 / t), \phi_{2}(t)=t^{\alpha} \chi_{[0,1]}+t^{\beta} \chi_{] 1, \infty[}$ and $\phi_{3}(t)=\left(t^{\alpha} \chi_{[0,1]}+t^{\beta} \chi_{] 1, \infty[}\right) \log (1 / t)$.

Given $\phi, \gamma \in \mathcal{B}$ and $q \in[1, \infty]$, a belongs to the generalized interpolation space $\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}$ if $a \in A_{0}+A_{1}$ and

$$
\|a\|_{\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}}:=\left\|\phi(t)^{-1} K(\gamma(t), a)\right\|_{L_{*}^{q}}<\infty .
$$

Proposition

If $\phi, \gamma \in \mathcal{B}$ and $q \in[1, \infty]$, then a belongs to $\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}$ if and only if $\sum_{j \in \mathbb{Z}}\left(\frac{1}{\phi\left(2^{j}\right)} K\left(\gamma\left(2^{j}\right), a\right)\right)^{q}<\infty$.

Proposition

Let $\phi, \gamma \in \mathcal{B}$ and $q \in[1, \infty]$; if $b(\gamma)>0$, then there exists $\xi \in \mathcal{B}^{\prime}$

Abstract

such that $\xi \sim \gamma$ and

$$
\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}=K_{\phi \circ \xi-1, q}\left(A_{0}, A_{1}\right) .
$$

The K-method

Given $\phi, \gamma \in \mathcal{B}$ and $q \in[1, \infty]$, a belongs to the generalized interpolation space $\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}$ if $a \in A_{0}+A_{1}$ and

$$
\|a\|_{\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}}:=\left\|\phi(t)^{-1} K(\gamma(t), a)\right\|_{L_{*}^{q}}<\infty .
$$

Proposition

If $\phi, \gamma \in \mathcal{B}$ and $q \in[1, \infty]$, then a belongs to $\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}$ if and only if $\sum_{j \in \mathbb{Z}}\left(\frac{1}{\phi\left(2^{j}\right)} K\left(\gamma\left(2^{j}\right), a\right)\right)^{q}<\infty$.

Proposition

Let $\phi, \gamma \in \mathcal{B}$ and $q \in[1, \infty]$; if $\underline{b}(\gamma)>0$, then there exists $\xi \in \mathcal{B}_{+}^{\prime}$ such that $\xi \sim \gamma$ and

$$
\left[A_{0}, A_{1}\right]_{\phi, q}^{\gamma}=K_{\phi \circ \xi^{-1}, q}\left(A_{0}, A_{1}\right) .
$$

Let σ be an admissible sequence and $q \in[1, \infty]$; a belongs to the upper generalized interpolation space $\left[A_{0}, A_{1}\right]_{\sigma, q}^{\wedge}$ if $a \in A_{0}+A_{1}$ and

$$
\|a\|_{\left[A_{0}, A_{1}\right]_{\sigma, q}}:=\sum_{j=1}^{\infty} \frac{1}{\sigma_{j}} K\left(2^{j}, a\right)<\infty .
$$

In the same way, a belongs to the lower generalized interpolation space $\left[A_{0}, A_{1}\right]_{\sigma, q}^{\vee}$ if $a \in A_{0}+A_{1}$ and

$$
\|a\|_{\left[A_{0}, A_{1}\right]_{K, \sigma, q}^{\vee}}:=\sum_{j=1}^{\infty} \sigma_{j} K\left(2^{-j}, a\right)<\infty
$$

Let σ be an admissible sequence and $q \in[1, \infty]$; a belongs to the upper generalized interpolation space $\left[A_{0}, A_{1}\right]_{\sigma, q}^{\wedge}$ if $a \in A_{0}+A_{1}$ and

$$
\|a\|_{\left[A_{0}, A_{1}\right]_{\sigma, q}}:=\sum_{j=1}^{\infty} \frac{1}{\sigma_{j}} K\left(2^{j}, a\right)<\infty .
$$

In the same way, a belongs to the lower generalized interpolation space $\left[A_{0}, A_{1}\right]_{\sigma, q}^{\vee}$ if $a \in A_{0}+A_{1}$ and

$$
\|a\|_{\left[A_{0}, A_{1}\right]_{K, \sigma, q}^{\vee}}^{\vee}:=\sum_{j=1}^{\infty} \sigma_{j} K\left(2^{-j}, a\right)<\infty
$$

Proposition

If $\phi \in \mathcal{B}, \sigma_{j}=\phi\left(2^{j}\right)$ and $\theta_{j}=1 / \phi\left(2^{-j}\right)$ then

$$
K_{\phi, q}\left(A_{0}, A_{1}\right)=\left[A_{0}, A_{1}\right]_{\delta, q}^{\vee} \cap\left[A_{0}, A_{1}\right]_{\sigma, q}^{\wedge} .
$$

Proposition

Let $\phi \in \mathcal{B}, 1 \leq p \leq q \leq+\infty$, one has

$$
K_{\phi, p}(\bar{A}) \subseteq K_{\phi, q}(\bar{A})
$$

with continuous embedding.

Proposition
Let $q, q_{0}, q_{1} \in[1,+\infty]$ and $\phi, \phi_{0}, \phi_{1} \in \mathcal{B}$ such that
$\bar{b}\left(\phi_{0}\right)<\underline{b}(\phi) \leq \bar{b}(\phi)<\underline{b}\left(\phi_{1}\right)$.
Then,

with continuous embedding.

Proposition

Let $\phi \in \mathcal{B}, 1 \leq p \leq q \leq+\infty$, one has

$$
K_{\phi, p}(\bar{A}) \subseteq K_{\phi, q}(\bar{A})
$$

with continuous embedding.

Proposition

Let $q, q_{0}, q_{1} \in[1,+\infty]$ and $\phi, \phi_{0}, \phi_{1} \in \mathcal{B}$ such that

$$
\bar{b}\left(\phi_{0}\right)<\underline{b}(\phi) \leq \bar{b}(\phi)<\underline{b}\left(\phi_{1}\right) .
$$

Then,

$$
K_{\phi_{0}, q_{0}}(\bar{A}) \cap K_{\phi_{1}, q_{1}}(\bar{A}) \subset K_{\phi, q}(\bar{A}),
$$

with continuous embedding.

Proposition

If $A_{1} \subset A_{0}$ and $\bar{b}\left(\phi_{0}\right)<\underline{b}\left(\phi_{1}\right)$, then

$$
K_{\phi_{1}, q}(\bar{A}) \subset K_{\phi_{0}, q}(\bar{A})
$$

Proposition

If A_{0} and A_{1} are complete, then so is $K_{\phi, q}(\bar{A})$.

Proposition

If $A_{1} \subset A_{0}$ and $\bar{b}\left(\phi_{0}\right)<\underline{b}\left(\phi_{1}\right)$, then

$$
K_{\phi_{1}, q}(\bar{A}) \subset K_{\phi_{0}, q}(\bar{A})
$$

Proposition

If A_{0} and A_{1} are complete, then so is $K_{\phi, q}(\bar{A})$.

Let $\phi \in \mathcal{B}, q \in[1, \infty]$, and let $J_{\phi, q}(\bar{A})$ denote the space of all $a \in \Sigma(\bar{A})$ which can be represented by $a=\int_{0}^{\infty} b(t) \frac{d t}{t}$, where $b(t) \in \Delta(\bar{A})$ for all $t>0$ and

$$
t \mapsto \phi(t)^{-1} J(\gamma(t), b(t)) \in L_{\star}^{q} .
$$

This space is equipped with the norm

the infimum being taken on all b such that $a=\int_{0}^{\infty} b(t) \frac{d t}{t}$.

Let $\phi \in \mathcal{B}, q \in[1, \infty]$, and let $J_{\phi, q}(\bar{A})$ denote the space of all $a \in \Sigma(\bar{A})$ which can be represented by $a=\int_{0}^{\infty} b(t) \frac{d t}{t}$, where $b(t) \in \Delta(\bar{A})$ for all $t>0$ and

$$
t \mapsto \phi(t)^{-1} J(\gamma(t), b(t)) \in L_{\star}^{q} .
$$

This space is equipped with the norm

$$
\|a\|_{\phi, q, J}:=\inf _{b} \| \phi(t)^{-1} J\left(\gamma(t, b(t)) \|_{L_{\star}^{q}},\right.
$$

the infimum being taken on all b such that $a=\int_{0}^{\infty} b(t) \frac{d t}{t}$.

Theorem

$J_{\phi, q}$ is an exact interpolation functor of exponent $\phi \in \mathcal{B}$ on the category \mathscr{N}. Moreover, we have

$$
\|a\|_{\phi, q, J} \leq C \frac{1}{\phi(t)} J(t, a)
$$

for $a \in \Delta(\bar{A})$.

Equivalence Theorem

Theorem

Let $\phi \in \mathcal{B}$ such that $0<\underline{b}(\phi) \leq \bar{b}(\phi)<1, q \in[1, \infty]$, then

$$
J_{\phi, q}(\bar{A})=K_{\phi, q}(\bar{A}) .
$$

A density result

Proposition

- If $q<\infty$, then $\Delta(\bar{A})$ is dense in $K_{\phi, q}(\bar{A})$,
- The closure of $\Delta(\bar{A})$ in $K_{\phi, \infty}(\bar{A})$ is the space $\bar{A}_{\phi, \infty}^{0}$ of all a such that

$$
\frac{1}{\phi(t)} K(t, a) \rightarrow 0 \quad \text { as } \quad t \rightarrow 0 \quad \text { or } \quad t \rightarrow \infty
$$

Reiteration theorem

Let \bar{A} be a given couple of normed vector spaces and $\phi \in \mathcal{B}$ and suppose that X is an intermediate space with respect to \bar{A}. Then,

- X is of class $\mathscr{C}_{K}(\phi ; \bar{A})$ if $K(t, a) \leq C \phi(t)\|a\|_{X}$ for all $a \in X$;
- X is of class $\mathscr{C}_{J}(\phi ; \bar{A})$ if $\|a\|_{X} \leq C \frac{1}{\phi(t)} J(t, a)$ for all $a \in \Delta(\bar{A})$.

Furthermore, X is of class $\mathscr{C}(\phi ; \bar{A})$ if X is of class $\mathscr{C}_{K}(\phi ; \bar{A})$ and $\mathscr{C}_{J}(\phi ; \bar{A})$.

Reiteration theorem

Let \bar{A} be a given couple of normed vector spaces and $\phi \in \mathcal{B}$ and suppose that X is an intermediate space with respect to \bar{A}.
Then,

- X is of class $\mathscr{C}_{K}(\phi ; \bar{A})$ if $K(t, a) \leq C \phi(t)\|a\|_{X}$ for all $a \in X$;
- X is of class $\mathscr{C}_{J}(\phi ; \bar{A})$ if $\|a\|_{X} \leq C \frac{1}{\phi(t)} J(t, a)$ for all $a \in \Delta(\bar{A})$.

Furthermore, X is of class $\mathscr{C}(\phi ; \bar{A})$ if X is of class $\mathscr{C}_{K}(\phi ; \bar{A})$ and $\mathscr{C}_{J}(\phi ; \bar{A})$.
$K_{\phi, q}(\bar{A})$ is of class $\mathscr{C}(\phi ; \bar{A})$.

Reiteration theorem

Theorem

If $0<\underline{b}(\phi) \leq \bar{b}(\phi)<1$, then

- X is of class $\mathscr{C}_{K}(\phi ; \bar{A})$ iif

$$
\Delta(\bar{A}) \subset X \subset K_{\phi, \infty}(\bar{A})
$$

- a Banach space X is of class $\mathscr{C}_{J}(\phi ; \bar{A})$ iif

$$
K_{\phi, 1}(\bar{A}) \subset X \subset \Sigma(\bar{A})
$$

Reiteration theorem

Theorem

For $j \in\{0,1\}$, assume that X_{j} are complete and of class $\mathscr{C}\left(\phi_{j} ; \bar{A}\right)$, where $0 \leq \underline{b}\left(\phi_{j}\right) \leq \bar{b}\left(\phi_{j}\right) \leq 1$.
Let $\phi \in \mathcal{B}$ such that $0<\underline{b}(\phi) \leq \bar{b}(\phi)<1$ and set $f=\phi_{1} / \phi_{0}$ and $\psi=\phi_{0} \cdot(\phi \circ f)$.
If $\underline{b}(f)>0$ or $\bar{b}(f)<0$, then

$$
K_{\phi, q}(\bar{X})=K_{\psi, q}(\bar{A}) .
$$

In particular, if $0<\underline{b}\left(\phi_{j}\right) \leq \bar{b}\left(\phi_{j}\right)<1$ and $K_{\phi_{j}, q_{j}}(\bar{A})$ are complete, then

$$
K_{\phi, q}\left(\left(K_{\phi_{0}, q_{0}}(\bar{A}), K_{\phi_{1}, q_{1}}(\bar{A})\right)\right)=K_{\psi, q}(\bar{A})
$$

[^0]
Reiteration theorem

Theorem

For $j \in\{0,1\}$, assume that X_{j} are complete and of class $\mathscr{C}\left(\phi_{j} ; \bar{A}\right)$, where $0 \leq \underline{b}\left(\phi_{j}\right) \leq \bar{b}\left(\phi_{j}\right) \leq 1$.
Let $\phi \in \mathcal{B}$ such that $0<\underline{b}(\phi) \leq \bar{b}(\phi)<1$ and set $f=\phi_{1} / \phi_{0}$ and $\psi=\phi_{0} \cdot(\phi \circ f)$.
If $\underline{b}(f)>0$ or $\bar{b}(f)<0$, then

$$
K_{\phi, q}(\bar{X})=K_{\psi, q}(\bar{A}) .
$$

In particular, if $0<\underline{b}\left(\phi_{j}\right) \leq \bar{b}\left(\phi_{j}\right)<1$ and $K_{\phi_{j}, q_{j}}(\bar{A})$ are complete, then

$$
K_{\phi, q}\left(\left(K_{\phi_{0}, q_{0}}(\bar{A}), K_{\phi_{1}, q_{1}}(\bar{A})\right)\right)=K_{\psi, q}(\bar{A})
$$

There exists a version for semi-normed spaces.

The duality theorem

Theorem

Let \bar{A} be a couple of Banach spaces such that $\Delta(\bar{A})$ is dense in A_{0} and A_{1}.
Assume that $1 \leq q<\infty$ and $0<\underline{b}(\phi) \leq \bar{b}(\phi)<1$.
Then,

$$
K_{\phi, q}(\bar{A})^{\prime}=K_{1 / \phi(1 / \cdot), q^{\prime}}\left(\overline{A^{\prime}}\right),
$$

where $1 / q+1 / q^{\prime}=1$.
For the case $q=\infty$, one has $\left(\bar{A}_{\phi, \infty}\right)^{\prime}=K_{1 / \phi(1 / \cdot), 1}\left(\overline{A^{\prime}}\right)$.

The duality theorem

Theorem

Let \bar{A} be a couple of Banach spaces such that $\Delta(\bar{A})$ is dense in A_{0} and A_{1}.
Assume that $1 \leq q<\infty$ and $0<\underline{b}(\phi) \leq \bar{b}(\phi)<1$.
Then,

$$
K_{\phi, q}(\bar{A})^{\prime}=K_{1 / \phi(1 / \cdot), q^{\prime}}\left(\overline{A^{\prime}}\right)
$$

where $1 / q+1 / q^{\prime}=1$.
For the case $q=\infty$, one has $\left(\bar{A}_{\phi, \infty}^{0}\right)^{\prime}=K_{1 / \phi(1 / \cdot), 1}\left(\overline{A^{\prime}}\right)$.

Theorem

Let T be a bounded linear operator between a couple of Banach spaces $\left(A_{0}, A_{1}\right)$ and a Banach space B.
If $T: A_{0} \rightarrow B$ is compact and if E is of class $\mathscr{C}_{K}(\phi ; \bar{A})$ for some
$\phi \in \mathcal{B}$ such that $0<\underline{b}(\phi) \leq \bar{b}(\phi)<1$,
then $T: E \rightarrow B$ is a compact operator.

Second compactness theorem

Theorem

Let T be a bounded linear operator between a Banach space B and a couple of Banach spaces $\left(A_{0}, A_{1}\right)$.
If $T: B \rightarrow A_{0}$ is compact and if E is of class $\mathscr{C}_{J}(\phi ; \bar{A})$ for some
$\phi \in \mathcal{B}$ such that $0<\underline{b}(\phi) \leq \bar{b}(\phi)<1$,
then $T: B \rightarrow E$ is a compact operator.

Compactness theorems

Corollary

If A_{0} and A_{1} are Banach spaces, $A_{1} \subset A_{0}$ compactly and $0<\underline{b}\left(\phi_{0}\right) \leq \bar{b}\left(\phi_{0}\right)<\underline{b}\left(\phi_{1}\right) \leq \bar{b}\left(\phi_{1}\right)<1$, then

$$
K_{\phi_{1}, q_{1}}(\bar{A}) \subset K_{\phi_{0}, q_{0}}(\bar{A})
$$

with compact inclusion.

An extremal property

Theorem

Suppose that F is an interpolation functor of exponent ϕ, where $0<\underline{b}(\phi) \leq \bar{b}(\phi)<1$.
Then, for any compatible Banach couple \bar{A}, one has

$$
J_{1 / \overline{1 / \phi}, 1}(\bar{A}) \subset F(\bar{A}) .
$$

Moreover, if $\Delta(\bar{A})$ is dense in A_{0} and A_{1}, then

$$
F(\bar{A}) \subset K_{\bar{\phi}, \infty}(\bar{A})
$$

Theorem

$$
K_{\phi, q}\left(\left(A_{0}^{p}, A_{1}^{p}\right)\right)^{1 / p}=K_{\psi, p q}\left(A_{0}, A_{1}\right)
$$

where $\psi(t)=\phi\left(t^{p}\right)^{1 / p}$.

Generalized interpolation for triples

Let $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ be a Banach or quasi-Banach triple. We define
 such that

Generalized interpolation for triples

Let $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ be a Banach or quasi-Banach triple.
We define

$$
K\left(t_{1}, t_{2}, a\right)=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t_{1}\left\|a_{1}\right\|_{A_{1}}+t_{2}\left\|a_{2}\right\|_{A_{2}}: a=a_{0}+a_{1}+a_{2}\right\} .
$$

Generalized interpolation for triples

Let $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ be a Banach or quasi-Banach triple.
We define
$K\left(t_{1}, t_{2}, a\right)=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t_{1}\left\|a_{1}\right\|_{A_{1}}+t_{2}\left\|a_{2}\right\|_{A_{2}}: a=a_{0}+a_{1}+a_{2}\right\}$.

Let $H=\{(\phi, \psi) \in \mathcal{B} \times \mathcal{B}: \underline{b}(\phi)>0, \underline{b}(\psi)>0$ and $\bar{b}(\phi)+\bar{b}(\psi)<1\}$.
Given $(\phi, \psi) \in H$, we define $K_{\phi, \psi, p}(A)$ as the space of all $a \in \Sigma(A)$ such that

Generalized interpolation for triples

Let $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ be a Banach or quasi-Banach triple.
We define
$K\left(t_{1}, t_{2}, a\right)=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t_{1}\left\|a_{1}\right\|_{A_{1}}+t_{2}\left\|a_{2}\right\|_{A_{2}}: a=a_{0}+a_{1}+a_{2}\right\}$.

Let $H=\{(\phi, \psi) \in \mathcal{B} \times \mathcal{B}: \underline{b}(\phi)>0, \underline{b}(\psi)>0$ and $\bar{b}(\phi)+\bar{b}(\psi)<1\}$. Given $(\phi, \psi) \in H$, we define $K_{\phi, \psi, p}(\bar{A})$ as the space of all $a \in \Sigma(\bar{A})$ such that

$$
\|a\|_{K_{\phi, \psi, p}(\bar{A})}:=\left(\iint_{(0, \infty)^{2}}\left(\frac{1}{\phi\left(t_{1}\right)} \frac{1}{\psi\left(t_{2}\right)} K\left(t_{1}, t_{2}\right)\right)^{p} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{t_{2}}\right)^{1 / p}<\infty
$$

Reiteration formula

Theorem

Let \bar{A} be a triple of Banach or quasi-Banach function lattices. If $p, p_{0}, p_{1} \in[1, \infty]$ and

$$
\frac{1}{p}=\frac{1-\mu}{p_{0}}+\frac{\mu}{p_{1}}
$$

then

$$
K_{\mu, p}\left(K_{\alpha_{0}, p_{0}}\left(A_{0}, A_{2}\right), K_{\alpha_{1}, p_{1}}\left(A_{1}, A_{2}\right)\right)=K_{\theta_{1}, \theta_{2}, p}\left(A_{0}, A_{1}, A_{2}\right),
$$

where $\theta_{1}=\left(1-\alpha_{1}\right) \mu$ and $\theta_{2}=\alpha_{0}(1-\mu)+\alpha_{1} \mu$.

Generalized Reiteration formula

Theorem

Let \bar{A} be a triple of Banach or quasi-Banach function lattices. If $p, p_{0}, p_{1} \in[1, \infty]$ and

$$
t^{\frac{1}{p}}=\left(\frac{t}{\phi(t)}\right)^{\frac{1}{\rho_{0}}}+\phi(t)^{\frac{1}{\rho_{1}}}
$$

for all $t>0$, then

$$
K_{\phi, p}\left(K_{\phi_{0}, p_{0}}\left(A_{0}, A_{2}\right), K_{\phi_{1}, p_{1}}\left(A_{1}, A_{2}\right)\right)=K_{\psi_{1}, \psi_{2}, p}\left(A_{0}, A_{1}, A_{2}\right)
$$

where $\psi_{1}(t)=\phi\left(\frac{t}{\phi_{1}(t)}\right)$ and $\psi_{2}(t)=\frac{\phi_{0}(t)}{\phi\left(\phi_{0}(t)\right)} \phi\left(\phi_{1}(t)\right)$.

Thank you for your attention!

[^0]: There exists a version for semi-normed spaces.

