
Introduction to Numerical Optimization

Problem Sets with Solutions

Mathias Berger

June 2022

Contents

I Problem Sets 4

1 Introduction to Optimization Modelling 5

2 Linear Programming and the Primal Simplex Method 7

3 The Revised Simplex, LP Duality and the Dual Simplex 9

4 Sensitivity Analysis in Linear Programming 11

5 Convex Models 13

6 Second-Order Cone Programming 16

7 Semidefinite Programming 18

8 Unconstrained Optimization and Descent Methods 19

9 Constrained Optimization and Interior Point Methods 20

10 Automatic Differentiation 21

II Solutions 22

11 Introduction to Optimization Modelling 23

12 Linear Programming and the Primal Simplex Method 25

13 The Revised Simplex, LP Duality and the Dual Simplex 34

14 Sensitivity Analysis in Linear Programming 40

15 Convex Models 47

16 Second-Order Cone Programming 57

17 Semidefinite Programming 62

18 Unconstrained Optimization and Descent Methods 68

19 Constrained Optimization and Interior Point Methods 72

20 Automatic Differentiation 73

2

Acknowledgements

Most of these notes were written while serving as a teaching assistant for the Introduction to Numerical
Optimization course taught to first and second-year graduate students by Pr. Quentin Louveaux in the
Department of Electrical Engineering and Computer Science at the University of Liège, Belgium. They
complement the teaching material covering the basic theory underpinning the classes of optimization
models and methods discussed in this course. Appropriate reference to theoretical concepts and reminders
are made in the worked-out solutions, which makes them reasonably self-contained and accessible to
students and practitioners with a college-level grasp of calculus and linear algebra..

I would like to thank Quentin Louveaux for kindly accepting to review these notes and many fruitful
exchanges. I would also like to thank Damien Gérard, who provided draft solutions to several of the
problems treated in this document, and Adrien Bolland, who provided helpful comments on the first few
problem sets. Several attentive students also helped improve the clarity and quality of these notes. All
remaining errors are mine and can be reported at mathias.berger@alumni.duke.edu.

3

mailto:mathias.berger@alumni.duke.edu

Part I

Problem Sets

4

Chapter 1

Introduction to Optimization
Modelling

Problem 1

Your numerical optimization professor sometimes engages in business activities to earn a little extra cash.
He runs a family business that produces and sells dairy products made from the milk of three family
cows and he seeks to maximize his profits.

80 litres of milk are produced every week. The butter-making process requires 7 litres of milk to
produce one kilogram of butter, whereas 3 litres of milk are necessary to produce one litre of ice cream.

Your professor is widely known in the milk business and always sells everything he produces. He sets
the prices of his products to ensure revenues of 2e per litre of ice cream and 7e per kilogram of butter,
and manages to keep all costs fixed.

Your professor owns a huge refrigerator that can store virtually unlimited amounts of butter, but his
freezer can hold at most 20 litres of ice cream.

The family can work at most 6 hours every week to manufacture their delicious products. It takes
one hour to produce 15 litres of ice cream and one hour to produce one kilogram of butter.

Problem 2

One wants to build an antenna relay to serve three villages. On a Cartesian map, the villages have
coordinates (0, 0), (1, 1), (2, 1). One wants to find the antenna location that minimizes the maximum
distance from the antenna to these three villages. Extend this formulation to work with any number of
villages.

Problem 3

We consider a grid-tied micro-grid comprising a number of devices and appliances. More precisely, the
following systems are connected to the microgrid:

1. a number of appliances with total consumption Ct over each time period t, t ∈ T = {1 . . . T}, of
duration ∆T ;

2. photovoltaic panels which deliver PSt watts;

3. a LiFePO4-type battery to store electricity;

4. a hydrogen-based device to store energy, along with an electrolyzer transforming electricity into
hydrogen, and a fuel cell converting hydrogen back into electricity.

The micro-grid is also connected to the distribution grid, such that an amount of electricity P It can be
purchased at any time period t ∈ T . The LiFePO4-type battery is a short-term storage device assumed
to have a power density sufficient to accommodate the instantaneous power (no bound on the maximum

5

6 CHAPTER 1. INTRODUCTION TO OPTIMIZATION MODELLING

flow) and a maximum energy storage capacity SB . Unlike the battery, we consider the hydrogen storage
system to have unlimited energy capacity. However, the input and output power flows are bound by FH2 .

The micro-grid owner wishes to minimize the amount of electricity she must buy from the grid over
the time horizon considered.

Figure 1.1: Schematic representation of the micro-grid.

Chapter 2

Linear Programming and the Primal
Simplex Method

Problem 1

Consider the following linear optimization problem:

max x2

s.t. −x1 + x2 ≤ 2
x1 + x2 ≤ 6
x1 ≤ 4
x1 , x2 ≥ 0

(2.1)

1. Sketch the problem and give its optimal solution.

2. Write the problem in standard form.

3. At the optimal solution, give the value of each variable of the problem in its standard form.

4. Solve the problem with the simplex method.

Problem 2

Consider the polytope
2x1 + 3x2 = 7
x1 − x2 ≤ 0

3x1 + 2x2 ≥ 2
x1 , x2 ≥ 0.

Plot the feasible set, describe each primal feasible basis, along with the corresponding basic feasible
solutions.

Problem 3

Consider the following optimization problem:

max 4x1 + 7x2 + 3x3 + x4 + 5x5

s.t. 2x1 + 3x2 + x3 + 3x5 ≤ 19
x1 − x2 + 2x4 ≥ 0
x1 + 3x2 + x4 + 2x5 ≤ 10
x1 , x2 , x3 , x4 , x5 ≥ 0.

The optimal solution of the problem is x? = (x?1, x
?
2, x

?
3, x

?
4, x

?
5) = (0, 0, 19, 10, 0). Build the optimal

simplex tableau.

7

8 CHAPTER 2. LINEAR PROGRAMMING AND THE PRIMAL SIMPLEX METHOD

Problem 4

Consider the following linear program in standard form:

min − x2

s.t. x1 + x2 − x3 = 1
2x1 − x2 − x4 = 2
2x1 + x2 + x5 = 6
x1 , x2 , x3 , x4 , x5 ≥ 0

1. State the Big M optimization problem.

2. Perform the phase I procedure for finding an initial primal feasible solution. State the phase II
problem.

Chapter 3

The Revised Simplex, LP Duality
and the Dual Simplex

Problem 1

Consider the following linear program:

min x1 − x2 + x3

s.t. x1 − x3 ≤ 1,
2x1 + x2 + x5 ≤ 2,
x1 + x2 − x3 − x4 ≤ 3,

x4 + x5 ≤ 4,
x3 + 2x4 + 2x5 ≤ 5,

x1 , x2 , x3 , x4 , x5 ≥ 0.

We will apply one iteration of the revised simplex algorithm. For the sake of illustration, we will use the
inverse basis matrix, keeping in mind that the LU factorization of the basis matrix is used in modern
implementations instead. We denote by s1, s2, s3, s4, s5 the slack variables of all five constraints.
We consider that x1, x2, s3, s4, s5 are the current basic variables. The corresponding inverse basis matrix
is given by

A−1
B =

1
−2 1
1 −1 1

1
1

1. Compute the value of the basic variables at the vertex represented by the current basis.

2. Compute the reduced costs of all nonbasic variables. Which variable can enter the basis?

3. Consider the variable that enters the basis. Compute its column in the simplex tableau. Which
variable should leave the basis?

4. Compute the new inverse matrix and the new value of the vertex after a pivot.

Problem 2

Write the dual of the following problem

min x1 − x2

s.t. 2x1 + 3x2 − x3 + x4 ≤ 0

3x1 + x2 + 4x3 − 2x4 ≥ 3

9

10 CHAPTER 3. THE REVISED SIMPLEX, LP DUALITY AND THE DUAL SIMPLEX

−x1 − x2 + 2x3 + x4 = 6

x1 ≤ 0

x2, x3 ≥ 0

Problem 3

Consider the following linear program:

min 2x1 + x2

s.t. −2x1 + x2 ≤ −1

x1 − 3x2 ≤ −2

x1 + x2 ≤ 5

Prove, without solving the problem, that the solution x∗ = (1, 1) is optimal.

Problem 4

Solve the problem

min 2x1 + x2

s.t. −x1 − 2x2 ≤ −3

−x1 − x2 ≤ −2

−x1 + x2 ≤ 1

with the dual simplex.

Chapter 4

Sensitivity Analysis in Linear
Programming

Problem 1

Given the linear problem

max 2x1 + 5x2 + x3

s.t. x1 + x3 ≥ 1
− x2 + 2x3 ≥ 0

3x1 + x3 ≤ 5
x1 , x2 , x3 ≥ 0

whose optimal tableau is

x1 x2 x3 s1 s2 s3 b
31 0 0 0 5 11
3 0 1 0 0 1 5
6 1 0 0 1 2 10
2 0 0 1 0 1 4

1. How does the optimal solution evolve if we replace the right-hand side coefficient of the second
inequality by 2? Does the basis remain unchanged?

2. Determine for which x3 cost values the optimal basis remains unchanged.

3. The constraint x1 − x2 ≥ 5 is added to the initial problem. Compute the new optimal solution.

Problem 2

A PCB foundry can produce 4 types of processors with different architectures, namely Arrandale (i3),
Clarkdale (i5), Penryn (Core 2M) and Bloomfield (i7). To manufacture these processors, silicon wafers
are subject to photolithography, etching and doping processes. Two different procedures can be employed
to produce Penryn processors, but technical constraints imply that they must be run in parallel.

Resource requirements and available quantities are shown below, along with the expected revenue
from the sale of each type of processor.

Ressource A C P1 P2 B Total Max.

Silicon (kg) 10 15 10 10 20 130
Photolithography (hours) 1 2 2 1 1 13
Etching (hours) 3 1 6 6 3 45
Doping (hours) 2 4 2 5 3 23
Revenue 51 102 66 66 89 /

11

12 CHAPTER 4. SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING

Then, the revenue maximization problem of the manufacturer is given below. Decision variables
represent the quantities of processors of Arrandale (A), Clarkdale (C), Penryn method 1 (P1), Penryn
method 2 (P2) and Bloomfield (B) types that should be manufactured, respectively. Though in a practical
context, we would expect these variables to take integer values, for the sake of simplicity, real variables
are considered in this problem.

max 51A + 102C + 66P1 + 66 P2 + 89B
s.t. 10A + 15C + 10P1 + 10P2 + 20B ≤ 130

A + 2C + 2P1 + P2 + B ≤ 13
3A + C + 6P1 + 6P2 + 3B ≤ 45
2A + 4C + 2P1 + 5P2 + 3B ≤ 23

P1 - P2 = 0
A, C, P1, P2, B, ≥ 0.

The solution of the primal and dual problems, respectively, and the sensitivity analysis report are
shown below:

Optimal Reduced Objective Allowed Allowed
value cost coefficient increase decrease

A 0 -3.571 51 3.571 ∞
C 2 0 102 16.667 12.5
P1 0 0 66 37.571 ∞
P2 0 -37.571 66 37.571 ∞
B 5 0 89 47 12.5

Table 1. Optimal solution of the primal problem and its sensitivity to a change in objective function
coefficients. The last two columns give the changes in the objective function coefficients allowing to

keep the optimal basis unchanged.

Slack Dual b Allowed Allowed
variable variable increase decrease

Silicon 0 1.429 130 23.33 43.75
Photol. 4 0 13 ∞ 4
Etching 28 0 45 ∞ 28
Doping 0 20.143 23 5.60 3.50
P1 = P2 0 11.429 0 3.50 0

Table 2. Optimal solution of the dual problem and its sensitivity. The second column gives the optimal
value of the slack variable of each primal constraint. The last two columns give the changes in primal

right-hand side coefficients allowing to keep the same solution to the dual problem.

Answer the following questions using these tables:

1. What is the optimal quantity of each processor type and what is the total revenue?

2. Give an economic interpretation of the optimal dual variables.

3. Should the manufacturer buy an additional 20 kilograms of silicon at 1.1 $/kg?

4. Suppose that the number of available hours in the etching room decreases by 30. What can be said
about the decrease in revenue?

BONUS: In this model, the quantities of Penryn method 1 and Penryn method 2 must be equal. Consider
an updated model in which this constraint is replaced by the constraint P1 − P2 ≥ 0. In this
reformulated problem, is the quantity of produced Penryn method 1 positive?

Chapter 5

Convex Models

Problem 1

a. Let g : Rn 7→ R+ be a norm. Show that g is a convex function.

b. Show that the intersection of two convex sets is a convex set.

c. Show that the intersection of two cones is a cone.

d. Let g : R 7→ R be a strictly increasing function, that is, g(y) < g(z) if y < z, and let h1 : Rn 7→ R
and h2 : Rn 7→ R be arbitrary functions. In addition, let Sh = {x ∈ Rn| h1(x) ≤ h2(x)} and
Sg = {x ∈ Rn| g(h1(x)) ≤ g(h2(x))}. Show that Sh = Sg.

e. Let f : Rn 7→ R and let epi(f) = {(x, t) ∈ Rn+1| f(x) ≤ t} be the epigraph of f . In addition, let
F ⊂ Rn. Show that min{t | (x, t) ∈ epi(f), x ∈ F} and min{f(x) | x ∈ F} are equivalent.

f. Let g : R 7→ R be a strictly increasing function, let h : Rn 7→ R be an arbitrary function, and let
F ⊂ Rn. In addition, let Sh = arg max{h(x)| x ∈ F} and let Sg = arg max{g(h(x))| x ∈ F}. Show
that Sh = Sg.

g. Let f : R 7→ R be a strictly decreasing function, i.e., f(x) < f(y) if x > y, and let h : R 7→ R be an
arbitrary function. In addition, let F = {x ∈ Rn+| Ax ≤ b}, let Sf = arg max{f(h(x))| x ∈ F} and
let Sh = arg min{h(x)| x ∈ F}. Show that Sf = Sh.

Problem 2

Show that the following optimisation problems are convex (or not). Where possible, propose a convex
reformulation with the same optimal solution set.

(a)

min |x1 − 3x2|
s.t. x1 + 2x2 ≤ 3

− 2x1 + 3x2 ≤ 0

x1 ≥ 2, x2 ≥ 0

(b)

max |x1 + 2x2|
s.t. Ax = b

x ∈ Rn+

(c)

max |x1 − 2x2|
s.t. Ax = b

x ∈ Rn+

13

14 CHAPTER 5. CONVEX MODELS

(d)
min

√
x2

1 + x2
2

s.t. x1 + x2 =
1

2

(e)
min x1 + 2x2

s.t. x2
1 + 9x2

2 + x2
3 ≤ 4

(f)

min 2x1 − x2

s.t. (x1 − 3x2)3 ≤ (2x1 + x2)3

x ∈ R2

(g)

max x1x2

s.t. Ax = b

x ∈ Rn+

(h)

min 1

s.t.
||Ax+ b||2
cTx+ d

≤ t

cTx+ d > 0

(i)

max
1

cTx
s.t. Ax ≤ b

x ∈ Rn

(j)

min log(cTx)

s.t. Ax ≤ b
x ∈ Rn+

(k)

min λmax(X)

AX = B

X = XT

X ∈ Rn×n

(l)

min λmax(X) + x2
11

AX = B

X = XT

X ∈ Rn×n

(m)

min max{λmax(X), x2
11}

AX = B

X = XT

X ∈ Rn×n

15

Problem 3

Let Q ∈ Rn×n be a positive definite matrix, i.e., Q = QT and λi(Q) > 0, i = 1, . . . , n. Transform the
following optimisation problem into a conic program

min xTQx
s.t. ||x||2 ≤ γ

Chapter 6

Second-Order Cone Programming

Problem 1

One wants to build an antenna relay to serve three villages. The Cartesian coordinates of the villages are
(0, 0), (1, 1) and (2, 1), respectively. One wants to find the location that minimises the maximum distance
from the antenna to these three villages. Formulate this problem as a conic program.

Problem 2

The goal of James Bond’s latest mission is to defuse a bomb planted on a boat by his worst enemy. Bond
(A) is on the beach, 50 metres away from the shore, while the boat (B) is in the water, 50 metres away
from the shore. In addition, the boat is 100 metres to the right of Bond, as shown in Figure 6.1. Bond,
who runs at 5 m/s and swims at 2.778 m/s, is trying to figure out the fastest path to the boat.

50 meters

50 meters

B

100 meters

A

Water

Beach

Figure 6.1: Schematic of Bond’s mission.

a. Formulate the problem as a conic programming problem.

b. Write the dual formulation.

Problem 3

Let c ∈ Rn be a cost vector and bi ∈ R, i = 1, . . . , N , be a set of (deterministic) scalar parameters.
Let ai ∈ Rn, i = 1, . . . , N, be independent Gaussian random vectors with mean āi ∈ Rn, i = 1, . . . , N,
and covariance matrix Σi ∈ Rn×n, i = 1, . . . , N . In addition, let P be a probability measure and let

16

17

η ∈ [0.5, 1] denote a confidence level. Show that the linear program with probabilistic constraints,

min cTx

s.t. P(aTi x ≤ bi) ≥ η, i = 1, . . . , N

x ∈ Rn,

which is also known as a chance constrained linear program, can be cast as a second-order cone program.

Problem 4

Let X = {x1, . . . , xN} and Y = {y1, . . . , yM} be two sets of points in Rn. We seek an affine function
f : Rn 7→ R, f(z) = wT z− b, that linearly separates X and Y , that is, such that f(xi) ≥ 1, i = 1, . . . , N ,
and f(yj) ≤ −1, j = 1, . . . ,M . Put differently, we seek w ∈ Rn and b ∈ R such that X and Y are
separated by the two hyperplanes wT z − b = 1 and wT z − b = −1. Since perfect linear separation is not
always possible, we allow these constraints to be violated, but we would like the amount by which they
are violated to be as small as possible. Moreover, to produce a robust classifier, we want the distance
between hyperplanes to be as large as possible. In other words, we seek to balance classifier accuracy
and robustness.

a. For each point in X and Y , express the penalty resulting from a classification error in terms of the
max function, and suggest a criterion that will increase classifier robustness.

b. Formulate the resulting optimisation problem.

c. Show that the problem at hand can be cast as a second-order cone program.

Chapter 7

Semidefinite Programming

Problem 1

Solve the problem
min 2p1 + p4

s.t.

 p1 p2 p3

p2 p4 − 1 0
p3 0 p4

 < 0.

Problem 2

Let p : R 7→ R be the polynomial

p(x) = 2x4 − 2x3 + 4x2 − 2x+ 2.

1. Formulate a semidefinite program to check whether p is a nonnegative polynomial.

2. Write the dual problem of the SDP found above.

3. Formulate a second-order cone program to check whether p is a nonnegative polynomial.

4. Formulate a linear program to check whether p is a nonnegative polynomial.

18

Chapter 8

Unconstrained Optimization and
Descent Methods

Problem 1

Let g : R2 7→ R be a function such that g(x, y) = sin(x + y) + x2

6 + y2

2 , which has local minima
(−0.9393,−0.3131) and (2.6965, 0.8988). Let (x0, y0) = (0, 0) and compute

a. the gradient descent direction at (x0, y0).

b. the Newton direction at (x0, y0).

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Problem 2

Let g : R2 7→ R be a continuously differentiable function such that

g(z) = g(z1, z2) =
(z1 + z2 − 2)2

2
+ (z1 − z2 + 2)2,

and consider the unconstrained minimisation problem

min
z∈R2

g(z).

Sketch an alternating minimisation scheme which does not require the computation of the full gradient
at each iteration.

Problem 3

Consider the unconstrained minimisation problem

min
x,y∈R

(y − x2)2 + (1− x)2,

and perform one step of the gradient descent algorithm using the Wolfe conditions to identify the step
size.

19

Chapter 9

Constrained Optimization and
Interior Point Methods

Problem 1

1. Determine the central path of the following optimization problem :

min x1 − 2x2

s.t. x1 + 2x2 = 1

x1, x2 ≥ 0.

2. What is the optimal solution ?

3. What is the analytical center of the polyhedron ?

4. Write the dual of the problem.

5. Show that the primal-dual central path satisfies the modified KKT conditions.

20

Chapter 10

Automatic Differentiation

Problem 1

Let f : R2 7→ R be the mapping f(x, y) = x2 + sin(xy)
x . Compute the gradient of f using

(a) the forward accumulation automatic differentiation algorithm ;

(b) the reverse accumulation automatic differentiation algorithm.

21

Part II

Solutions

22

Chapter 11

Introduction to Optimization
Modelling

Solution to Problem 1

We need two optimization variables representing the amount of butter and ice cream produced, respec-
tively. Let x1 ∈ R+ denote the amount of butter produced and let x2 ∈ R+ be the amount of ice cream
produced. From the problem statement, we deduce that three constraints should be considered. The
first constraint pertains to the amount of milk available to produce butter and ice cream every week.
Obviously, the family cannot use more milk than what it has at its disposal, hence

7x1 + 3x2 ≤ 80.

The second constraint expresses the fact that the amount of ice cream that may be produced is limited
by the freezer capacity,

x2 ≤ 20.

The third constraint enforces that the family cannot spend more than 6 hours producing butter and ice
cream every week,

x1 +
1

15
x2 ≤ 6.

The goal of the family is to maximise its revenue. Since costs remain fixed, they do not have any impact
on the amount of butter and ice cream that should be produced (although they will influence the profits
made by the family). The revenue of the family can thus written as

7x1 + 2x2,

such that the full problem reads

max
x1,x2

7x1 + 2x2

s.t. 7x1 + 3x2 ≤ 80
x2 ≤ 20

x1 + 1
15x2 ≤ 6

x1 , x2 ≥ 0

As will be seen later, this particular problem is an instance of a linear program.

Solution to Problem 2

We work in the general setting directly. Let us assume that there are n villages with coordinates x̄j =(
x̄j1 x̄j2

)
, j = 1, . . . , n, and let x ∈ R2 denote the coordinates of the antenna. The Euclidean distance

dj : R2 → R+ between the antenna and village j can be written as

dj(x) =

√√√√ 2∑
i=1

(
xi − x̄ji

)2
.

23

24 CHAPTER 11. INTRODUCTION TO OPTIMIZATION MODELLING

We then seek to identify the location of the antenna x so as to minimise the maximum distance between
the antenna and any village, that is,

min
x

max{dj(x)|j = 1, . . . , n}.

Note that minimising the maximum distance is equivalent to minimising an auxiliary (scalar) variable
that bounds all distances from above. The problem can thus be re-formulated as

min
x,d

d

s.t. dj(x) ≤ d, j = 1, . . . , n,

x ∈ R2, d ∈ R.

As will be seen later in the course, this problem is an instance of a second-order cone program.

Solution to Problem 3

Let P It ∈ R+ denote the amount electricity imported from the grid at time t. Let PSt ∈ R+ be the
electricity producer by solar panels at time t. The maximum amount of electricity that solar panels may
produce at time t is given by κSt . Curtailment is assumed to be allowed so that κSt bounds PSt from
above,

PSt ≤ κSt ,∀t ∈ T .
Let EBt ∈ R+ be the energy stored in the battery at time t and let PBt ∈ R be the power charged/discharged
from the battery at time t. The state-of-charge dynamics of the battery can be expressed as

EBt+1 = EBt − PBt ,∀t ∈ T \ {|T |},
where by convention PBt > 0 indicates that the battery is being discharged. The amount of energy stored
in the battery is bounded from above by SB , thus

EBt ≤ SB ,∀t ∈ T .
Now, let EH2

t ∈ R+ be the energy stored in the hydrogen storage system at time t and let PH2
t ∈ R be

the power charged/discharged from it at time t. Assuming that the storage and conversion is lossless,
the storage dynamics can be expressed in a fashion similar to that of the battery storage system,

EH2
t+1 = EH2

t − PH2
t ,∀t ∈ T \ {|T |}.

The amount of energy that can be withdrawn from the hydrogen storage system at time t is limited by
FH2 , such that

−FH2 ≤ PH2
t ≤ FH2 ,∀t ∈ T .

Finally, the electricity available in the microgrid at any point in time should be equal to the electricity
consumption of all appliances and devices,

PSt + P It + PBt + PH2
t = Ct,∀t ∈ T .

Since the owner of the microgrid seeks to minimise the amount of electricity imported from the grid, the
full problem reads

min
∑
t∈T

P It

s.t. PSt + P It + PBt + PH2
t = Ct,∀t ∈ T ,

PSt ≤ κSt ,∀t ∈ T ,
EBt+1 = EBt − PBt ,∀t ∈ T \ {|T |},
EBt ≤ SB ,∀t ∈ T ,
EH2
t+1 = EH2

t − PH2
t ,∀t ∈ T \ {|T |},

− FH2 ≤ PH2
t ≤ FH2 ,∀t ∈ T ,

PSt ∈ R+, E
B
t ∈ R+, E

H2
t ∈ R+,

P It ∈ R+, P
B
t ∈ R, PH2

t ∈ R.

Chapter 12

Linear Programming and the Primal
Simplex Method

Solution to Problem 1

1. A schematic of the problem at hand is shown in Figure 12.1. In Figure 12.1, the black lines represent
the sets of points satisfying inequality constraints in (2.1) with equality, i.e., aTi x = bi, i = 1, 2, 3, with,
e.g., a1 = (−1, 1)T and b1 = 2. The lines corresponding to nonnegativity constraints coincide with the
horizontal and vertical axes. In addition, the blue arrows, which are proportional to the ai’s, represent
vectors normal to the aforementioned hyperplanes and point in the direction of the feasible half-space
defined by each inequality constraint. Thus, the feasible region of this optimization problem corresponds
to the intersection of all feasible half-spaces and is shown in grey. Finally, the red arrow indicates the
direction in which the objective function increases. Hence, it is clear that the optimal solution is unique
and corresponds to the C vertex, which has coordinates C = (x?1, x

?
2) = (2, 4).

2. A linear optimization problem is said to be in standard form if it satisfies three conditions, namely,

1. It is a minimization problem.

2. All constraints except variable ranges are equality constraints.

3. All variables are nonnegative.

Clearly, problem (2.1) is not in standard form. To be expressed in standard form, it must undergo a
series of transformations. First, it can be turned into a minimization problem by observing that

maxx2 = −min−x2.

Then, each constraint aTi x ≤ bi, i = 1, 2, 3, can be turned into an equality constraint by introducing
a nonnegative slack variable si ∈ R+, such that aTi x + si = bi, i = 1, 2, 3. A slack variable essentially
expresses the difference between the terms on the right and left-hand sides of the corresponding constraint,
and will take a nonzero value if this constraint is not tight. Combining these observations allows us to
write problem (2.1) in standard form as

−min −x2

s.t. −x1 + x2 + s1 = 2
x1 + x2 + s2 = 6
x1 + s3 = 4
x1 , x2 , s1 , s2 , s3 ≥ 0

(12.1)

3. Since (x?1, x
?
2) = (2, 4), it is straightforward to obtain the optimal values of the slack variables. Indeed,

considering the first constraint directly yields

−2 + 4 + s?1 = 2⇒ s?1 = 0.

25

26 CHAPTER 12. LINEAR PROGRAMMING AND THE PRIMAL SIMPLEX METHOD

x1

x2

−2

−2

−1

−1

1

1

2

2

3

3

4

4

5

5

6

6

C

B

A

Figure 12.1: Schematic of problem (2.1). The feasible region is shown in grey, while the red arrow
indicates the direction of increase of the objective function. The C vertex is optimal.

Likewise, for the other constraints,

2 + 4 + s?2 = 6⇒ s?2 = 0,

and

2 + s?3 = 4⇒ s?3 = 2,

respectively. Hence, the optimal solution of the problem in standard form is (x?1, x
?
2, s

?
1, s

?
2, s

?
3) = (2, 4, 0, 0, 2).

At this stage, two comments are in order. Firstly, it is worth noticing that the first two constraints are
tight at optimality. As a result, the corresponding slack variables are equal to 0, which is consistent with
the claim made when introducing them (see 2.). Secondly, the number of variables taking a nonzero value
at optimality is equal to the number of equality constraints. Unless the problem is degenerate, this will
always be the case. This property of solutions will become more salient in 4., where the primal simplex
method is employed to solve (12.1).

4. Roughly speaking, the primal simplex algorithm is an iterative method visiting a sequence of vertices
in order to identify an optimal solution or show that the problem is unbounded. The method relies
crucially on the concept of a basis, which characterises vertices (though two bases may correspond to
the same vertex), and a so-called simplex tableau, which offers a handy representation of bases and their
properties. Starting from an initial tableau, the latter is progressively updated until optimality conditions
are satisfied, as described in the following. In this case, the initial tableau reads as

x1 x2 s1 s2 s3

0 -1 0 0 0
-1 1 1 0 0 2
1 1 0 1 0 6
1 0 0 0 1 4

The very first row of the tableau lists all variables, whereas the second row contains the (reduced) costs.
Each of the other rows corresponds to a constraint, and the columns forming a permutation matrix,

27

that is, a matrix obtained by permuting rows or columns of the identity matrix, correspond to variables
forming the current basis, provided that their reduced costs are also equal to 0. Hence, in this case, the
basis is formed by {s1, s2, s3}, which are referred to as basic variables, while the remaining variables are
called nonbasic variables. The very last column of the tableau shows the values of basic variables. This
basis is said to be primal feasible, as all basic variables have nonnegative values, and therefore defines
a basic feasible solution, which is equivalent to a vertex. By contrast, the nonbasic variables, namely
{x1, x2}, all take on zero values. From a geometric perspective, this solution corresponds to point A in
Figure 12.1. Then, from this tableau, the method seeks to update the basis, i.e., replace a basic variable
by a nonbasic variable, so as to improve the objective function value. This operation is sometimes referred
to as a pivot. In essence, selecting a new basic variable consists in identifying a stepping direction that
yields an updated solution satisfying all equality constraints and improving the value of the objective
function. Such a direction is referred to as a basic direction. In particular, if no basic direction can
be found and the basis is primal feasible, then it is also optimal and the problem is solved. However,
if such a direction is found and the step size can be set to an arbitrarily large value while keeping all
variables nonnegative, this direction corresponds to an extreme ray of the polyhedron represented by the
constraints, and the problem is unbounded. By contrast, if a basic direction is found and progressively
increasing the step size causes some variables to become negative, a pivot must be performed. More
precisely, the nonbasic variable corresponding to this direction should enter the basis and the first basic
variable whose nonnegativity constraint becomes tight when stepping in this direction should exit the
basis, defining the step size in the process. It is worth noting that, by construction, this procedure will
always produce basic feasible solutions. More formally, let

AB1 =

1 0 0
0 1 0
0 0 1

 and AN1 =
(
Ax1 Ax2

)
=

−1 1
1 1
1 0

 ,

be the initial basic and nonbasic matrices, respectively, such that the coefficient matrix can be expressed
as A =

(
AN1 AB1

)
. In this case, since the basic matrix is the identity matrix, AB1 and AN1 also store

the coefficients of basic and nonbasic variables in the simplex tableau, respectively. Let

cB1 =
(
0 0 0

)T
and cN1 =

(
cx1

cx2

)T
=
(
0 −1

)T
be the objective coefficients of basic and nonbasic variables, respectively. Finally, let

b1 =
(
2 6 4

)T
and x1 =

(
0 0 2 6 4

)T
denote the vector of right-hand side coefficients and the current solution, respectively. Since there are
two nonbasic variables, two basic directions are possible, namely

dx1
=
(
1 0 dTB,x1

)T
and dx2

=
(
0 1 dTB,x2

)T
.

As suggested earlier, for any step size θ > 0, the updated solution must satisfy all equality constraints,
hence A(x1 + θdx1

) = b1 and A(x1 + θdx2
) = b1, which imply that

dB,x1
= −A−1

B1Ax1
and dB,x2

= −A−1
B1Ax2

.

The basic directions therefore are

dx1
=

 1
0

−A−1
B1Ax1

 =

1
0
1
−1
−1

 and dx2
=

 0
1

−A−1
B1Ax2

 =

0
1
−1
−1
0

 .

By stepping in these directions, the changes in objective values are

∆cx1
= cT (θdx1

) = θ(cx1
− cTB1A

−1
B1Ax1

) = θcx1
= 0,

and
∆cx2 = cT (θdx2) = θ(cx2 − cTB1A

−1
B1Ax2) = θcx2 = −θ,

28 CHAPTER 12. LINEAR PROGRAMMING AND THE PRIMAL SIMPLEX METHOD

respectively. In general, since θ > 0, the objective value will decrease if

c̄x1 = cx1 − cTB1A
−1
B1Ax1

< 0 or c̄x2
= cx2

− cTB1A
−1
B1Ax2

< 0,

where {c̄x1 , c̄x2} are the reduced costs of nonbasic variables {x1, x2}, which can be stacked in a vector

c̄1 =
(
c̄x1 c̄x2

)T
. The reduced cost of a nonbasic variable therefore quantifies the rate of change in

objective value when stepping in the basic direction corresponding to this variable. As a result, if a basis
is primal feasible and the reduced costs of all nonbasic variables are nonnegative, the basis is optimal. In
the case at hand, the only option allowing us to reduce the objective value is thus to bring x2 into the
basis. The chosen basic direction is therefore d1 = dx1

and the basic variable exiting the basis can be
identified by inspecting the entries of

x2 = x1 + θ1d1 =

0
0
2
6
4

+ θ1

0
1
−1
−1
0

 =

0
θ1

2− θ1

6− θ1

4

 ≥

0
0
0
0
0

 ,

from which it is clear that θ1 = 2 is the maximum allowable step size, and s1 is the first variable whose
nonnegativity constraint becomes tight. Hence, it exits the basis. The updated basis is {x2, s2, s3}, which
corresponds to point B in Figure 12.1, as can be seen from the updated solution

x2 =
(
0 2 0 4 4

)T
.

In fact, these developments allow us to formulate a systematic criterion to identify the variable which
should leave the basis. Indeed, it is worth remarking that dx1

= −A−1
B1Ax1

= −Ax1
and dx2

=
−A−1

B1Ax2 = −Ax2 . In other words, the entries of dx1 and dx2 are the opposite of the entries form-
ing the columns of nonbasic variables in the simplex tableau. This is no fluke. In general, if a basis with
basic matrix AB is selected and the simplex tableau is brought to a form where the columns of basic
variables form a permutation matrix, the columns of nonbasic variables will be obtained as A−1

B AN , with
AN the nonbasic matrix. Hence, the simplex tableau stores all of the necessary information to identify
the variable that should exit the basis at any given time. Indeed, if the column corresponding to the
nonbasic variable that should enter the basis has only negative entries, the problem is unbounded, since
the objective value can be decreased without ever violating nonnegativity constraints. However, if this
column has positive entries, the first basic variable for which the nonnegativity constraint will become
tight will be the one for which the ratio between its value, which is shown in the last column of the tableau,
and its coefficient in the tableau is smallest. Let I ⊂ N and J ⊂ N be two sets indexing constraints and
variables, respectively. Then, for a nonbasic variable indexed by j ∈ J that should enter the basis, the
corresponding column in the tableau has entries āij , i ∈ I. In addition, let b̄i, i ∈ I, denote the value
of basic variables, as given by the last column in the simplex tableau. Then, the criterion specifying the
(index of the) variable which should exit the basis can be expressed as

iN = arg min

{
b̄i
āij

∣∣∣∣i ∈ I, āij > 0

}
.

In this case, it is clear that s1 should leave the basis rather than s2, as 2/1 < 6/1. This observation
confirms the result obtained earlier, namely that the new basis should be {x2, s2, s3}. Now, the simplex
tableau must be updated accordingly. More precisely, the coefficients of all variables, their reduced costs
and the values of basic variables must be updated. First, the updated basic matrix AB2 can be formed,
along with its inverse A−1

B2,

AB2 =

1 0 0
1 1 0
0 0 1

 and A−1
B2 =

 1 0 0
−1 1 0
0 0 1

 .

Multiplying the columns of the previous tableau by the inverse of the basic matrix produces the updated
columns. Indeed, by doing so, columns corresponding to the updated basic variables form a permutation
matrix, while nonbasic columns are obtained via the multiplication of the nonbasic matrix AN2 by A−1

B2,

AN2 =

−1 1
1 0
1 0

 and A−1
B2AN2 =

−1 1
1 0
1 0

 =

−1 1
2 −1
1 0

 .

29

Then, the cost vectors can be updated as cB2 =
(
−1 0 0

)T
and cN2 =

(
0 0

)T
, such that the updated

reduced costs of nonbasic variables become

c̄TN2 = cTN2 − cTB2A
−1
B2AN2 =

(
−1 1

)
.

Finally, the values of the new basic variables are

xB2 = A−1
B2b1 =

(
2 4 4

)T
,

and the corresponding solution is

x2 =
(
0 2 0 4 4

)T
,

which confirms the developments made earlier. The resulting tableau therefore is

x1 x2 s1 s2 s3

-1 0 1 0 0
-1 1 1 0 0 2
2 0 -1 1 0 4
1 0 0 0 1 4

from which it is clear that the only nonbasic variable with a negative reduced cost is x1, which implies
that it should enter the basis. Applying the criterion formulated earlier suggests that s2 should leave
the basis, as 4/2 < 4/1. Thus, the new basis is {x2, x1, s3}, while the nonbasic variables are {s1, s2}.
Geometrically speaking, this basis corresponds to point C in Figure 12.1. Now, the simplex tableau should
be updated accordingly. Previously, matrix operations were used to do so. A different, yet equivalent,
approach to update the tableau consists in performing elementary row operations directly in the tableau,
with the aim of i) setting the reduced cost of the new basic variable to 0 ii) ensuring that the columns of
basic variables form a permutation matrix. In the case at hand, these row operations are i) r0 ← r0 + 1

2r2

ii) r1 ← r1 + 1
2r2 iii) r2 ← 1

2r2 iv) r3 ← r3 − 1
2r2, and the resulting tableau is

x1 x2 s1 s2 s3

0 0 1/2 1/2 0
0 1 1/2 1/2 0 4
1 0 -1/2 1/2 0 2
0 0 1/2 -1/2 1 2

The corresponding solution is x3 =
(
2 4 0 0 2

)T
, which is clearly primal feasible. In addition,

the reduced costs of nonbasic variables are all nonnegative. Hence, the optimality conditions alluded to
earlier are satisfied, and the problem is solved. Comparing the coordinates of C in Figure 12.1 with the
values of x1 and x2 in x3 confirms that the latter indeed is the optimal solution.

Solution to Problem 2

Figure 12.2 displays a schematic of the problem at hand. In Figure 12.2, black lines represent the sets of
points satisfying inequality constraints with equality, while blue arrows indicate the feasible half-space for
each inequality constraint. The blue line corresponds to the only equality constraint, while the feasible
set is shown in grey. In order to identify bases and their corresponding basic feasible solutions, the
constraints should be expressed in standard form,

2x1 + 3x2 = 7
x1 − x2 + s1 = 0

3x1 + 2x2 − s2 = 2
x1 , x2 , s1 , s2 ≥ 0.

There are therefore 3 equality constraints and 4 variables. Recall that a basis can be formed by selecting
as many variables as there are constraints, while making sure that the corresponding columns are linearly
independent. These variables are then called basic variables, while all other remaining variables are
referred to as nonbasic variables. When working with problems in standard form, basic variables usually
have nonzero values, while nonbasic variables always have zero values. Intuitively, a basis characterises

30 CHAPTER 12. LINEAR PROGRAMMING AND THE PRIMAL SIMPLEX METHOD

x1

x2

−1

−1

1

1

2

2

3

3

4

4

B

A

D

C

Figure 12.2: Schematic of Problem 2.

a solution to the system of equations formed by the equality constraints, and it may be sketched as a
point in Figure 12.2. In particular, in Figure 12.2, A, B, C and D all correspond to different bases.
From Figure 12.2, it is clear that a basis may be feasible, if the corresponding solution also satisfies
nonnegativity constraints, or not. For instance, A corresponds to a feasible basis. Since x1 = 0 at A, the
basis is formed by {x2, s1, s2}. Likewise, B corresponds to a feasible basis. At B, the second constraint is
tight, i.e., x1−x2 = 0, suggesting that s1 = 0. Hence, the corresponding basis is {x1, x2, s2}. By contrast,
C and D correspond to bases which are not feasible. Indeed, at C, x2 = 0 and the basis is {x1, s1, s2}.
However, x1 > 0, such that x1 − x2 > 0 and the first inequality constraint is violated. Similarly, at D,
the second inequality constraint is tight, such that s2 = 0 and the basis is {x1, x2, s1}. At D, x1 < 0,
which violates the nonnegativity constraint x1 ≥ 0. The basic feasible solutions corresponding to A and
B can be obtained via a simplified simplex tableau. The initial tableau reads

x1 x2 s1 s2

2 3 0 0 7
1 -1 1 0 0
3 2 0 -1 2

For A, the basis is {x2, s1, s2} and performing the following elementary row operations i) r1 ← 1
3r1 ii)

r2 ← r2 + 1
3r1 iii) r3 ← r3 − 2

3r1 iv) r3 ← −r3, yields

x1 x2 s1 s2

2/3 1 0 0 7/3
5/3 0 1 0 7/3
-5/3 0 0 1 8/3

31

Likewise, for B, the basis is {x1, x2, s2}, and the corresponding basic matrix AB , along with its inverse
A−1
B are

AB =

2 3 0
1 −1 0
3 2 −1

 and A−1
B =

1/5 3/5 0
1/5 −2/5 0
1 1 −1

 .

Applying the latter to the columns of the initial tableau leads to

x1 x2 s1 s2

1 0 3/5 0 7/5
0 1 -2/5 0 7/5
0 0 1 1 5

Solution to Problem 3

A simple strategy to build the optimal tableau consists in identifying the optimal basis, whose basic
matrix can be deduced, and then used to transform the initial tableau into the final, optimal tableau.
Thus, the first step is to write the optimization problem in standard form,

− min −4x1 − 7x2 − 3x3 − x4 − 5x5

s.t. 2x1 + 3x2 + x3 + 3x5 + s1 = 19,
x1 − x2 + 2x4 − s2 = 0,
x1 + 3x2 + x4 + 2x5 + s3 = 10,
x1 , x2 , x3 , x4 , x5 , s1 , s2 , s3 ≥ 0.

from which the initial tableau can be constructed

x1 x2 x3 x4 x5 s1 s2 s3

-4 -7 -3 -1 -5 0 0 0
2 3 1 0 3 1 0 0 19
1 -1 0 2 0 0 -1 0 0
1 3 0 1 2 0 0 1 10

Inspecting the optimal solution reveals that x3 and x4 should be in the basis, while x1, x2 and x5 should
be nonbasic. Since there are three equality constraints, one of the three slack variables s1, s2 and s3

should also be in the basis. Substituting the optimal solution in the equality constraints allows us to
identify the values of the slack variables at optimality, from which the missing basic variable can be
identified. Hence,

0 + 0 + 19 + 0 + s1 = 19⇒s1 = 0,

0 + 0 + 2× 10− s2 = 0⇒s2 = 20,

0 + 0 + 10 + 0 + s3 = 10⇒s3 = 0,

from which it can be concluded that the optimal basis is {x3, s2, x4}. The corresponding basic matrix
AB , nonbasic matrix AN and the inverse of the former A−1

B are

AB =

1 0 0
0 −1 2
0 0 1

 , AN =

2 3 3 1 0
1 −1 0 0 0
1 3 2 0 1

 and A−1
B =

1 0 0
0 −1 2
0 0 1

 ,

from which the coefficients of nonbasic variables in the optimal tableau can be obtained as

A−1
B AN =

2 3 3 1 0
1 7 4 0 2
1 3 2 0 1

 .

The basic and nonbasic costs are

cB =
(
−3 0 −1

)T
and cN =

(
−4 −7 −5 0 0

)T
,

32 CHAPTER 12. LINEAR PROGRAMMING AND THE PRIMAL SIMPLEX METHOD

from which the reduced costs of nonbasic variables can be computed

c̄TN = cTN − cTBA
−1
B AN =

(
3 5 6 3 1

)
.

It is worth noticing that all reduced costs are nonnegative, which confirms that the basis is optimal. It
is also straightforward to check that multiplying the last column of the initial tableau by the inverse of
the basic matrix indeed yields the optimal solution. The optimal tableau therefore reads

x1 x2 x3 x4 x5 s1 s2 s3

3 5 0 0 6 3 0 1
2 3 1 0 3 1 0 0 19
1 7 0 0 4 0 1 2 20
1 3 0 1 2 0 0 1 10

This result could have also been reached by performing the following elementary row operations on the
initial tableau, i) r0 ← r0 + 3r1 ii) r0 ← r0 + r3 iii) r2 ← −r2, and iv) r2 ← r2 + 2r3. Indeed, it is worth
remarking that

−cTBA
−1
B =

(
3 0 1

)
encodes operations i) and ii), while the inverse of the basic matrix A−1

B encodes operations iii) and iv).

Solution to Problem 4

1. The problem has three constraints and their right-hand side coefficients are all nonnegative. Hence,
adding three auxiliary variables x6 ∈ R+, x7 ∈ R+, x8 ∈ R+ is therefore sufficient for our purpose. Let M
be the positive constant used to penalise the auxiliary variables. The Big M problem in standard form
therefore reads

min − x2 + Mx6 + Mx7 + Mx8

s.t. x1 + x2 − x3 + x6 = 1
2x1 − x2 − x4 + x7 = 2
2x1 + x2 + x5 + x8 = 6
x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 ≥ 0

2. Based on the previous developments, the phase I linear program reads

min x6 + x7 + x8

s.t. x1 + x2 − x3 + x6 = 1
2x1 − x2 − x4 + x7 = 2
2x1 + x2 + x5 + x8 = 6
x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 ≥ 0

Note that the only difference between the Big M and phase I problems is the objective function used.
Moreover, the latter is simpler and more robust, and it is therefore the preferred method.

In order to solve the phase I problem, a starting basic feasible solution can be constructed by taking
{x6, x7, x8} as basic variables. The associated simplex tableau reads

−5 −1 1 1 −1 0 0 0
1 1 −1 0 0 1 0 0 1
2 −1 0 −1 0 0 1 0 2
2 1 0 0 1 0 0 1 6

where the reduced costs were computed as follows

c̄T =

0
0
0
0
0
1
1
1

T

−
(
1 1 1

)1 0 0
0 1 0
0 0 1

−11 1 −1 0 0 1 0 0
2 −1 0 −1 0 0 1 0
2 1 0 0 1 0 0 1

33

Now, let us assume that x1 enters and x6 leaves the basis, respectively. We perform the following
operations: i) r2 ← r2 + 2r1, ii) r3 ← r3 − 2r1, iii) c← c+ 5r1, such that the updated tableau reads

0 4 −4 1 −1 5 0 0
1 1 −1 0 0 1 0 0 1
0 −3 2 −1 0 −2 1 0 0
0 −1 2 0 1 −2 0 1 4

After several iterations of the primal simplex algorithm, we obtain a solution x∗phase I = {3, 0, 2, 4, 0, 0, 0, 0}.
Clearly, the auxiliary variables are nonbasic in this solution. Hence, we conclude that the original problem
has a non-empty solution set and that the basis {x1, x3, x4} is primal feasible for the original problem.
The phase II problem can then be constructed from the phase I optimal tableau, where reduced costs
must be updated accordingly.

Chapter 13

The Revised Simplex, LP Duality
and the Dual Simplex

Solution to Problem 1

1. Let A ∈ Rm×n denote the coefficient matrix, with m = 5 constraints and n = 10 variables. Recall
that once a basis B has been selected, a partition of the coefficient matrix can be produced, i.e., two
submatrices AB ∈ Rm×m and AN ∈ Rm×(n−m) can be formed such that A =

(
AB AN

)
, possibly after

permuting some columns. Let x ∈ Rn denote the basic feasible solution associated with this basis, with
entries xT =

(
xTB xTN

)
, and let b ∈ Rm be the vector of right-hand side coefficients. The equality

constraints can thus be expressed compactly as

Ax = b⇔
(
AB AN

)(xB
xN

)
= b⇔ ABxB +ANxN = b.

In addition, since nonbasic variables are equal to 0, xN = 0, and

ABxB = b.

By definition of a basis, AB is nonsingular, and the values of variables forming this basis can be readily
obtained as

xB = A−1
B b = b̄.

In the case at hand, let B = {x1, x2, s3, s4, s5} denote the current basis. The inverse of the basis matrix

A−1
B is known, while b =

(
1 2 3 4 5

)T
, thus

xB = b̄ =
(
1 0 2 4 5

)T
,

or x1 = 1, x2 = 0, s3 = 2, s4 = 4 and s5 = 5. It is worth noting that the solution is degenerate, as
x2 = 0, which implies that the associated nonnegativity constraint is tight.

2. Let c ∈ Rn be the cost vector, which can also be partitioned into cT =
(
cTB cTN

)
, with

cTB =
(
1 −1 0 0 0

)
cTN =

(
1 0 0 0 0

)
.

In addition, let p ∈ Rm be such that p = (ATB)−1cB = (A−1
B)T cB =

(
3 −1 0 0 0

)T
. Note that p

can be interpreted as dual variables. Indeed, for an optimal basis B?, strong duality implies

cTB?xB? = cTx? = (p?)T b = (p?)TAx = (p?)TAB?xB? ,

from which the expression of p given above can be recovered. Now, let c̄ ∈ Rn denote the reduced costs
vector, which can be partitioned into c̄T =

(
c̄TB c̄TN

)
. Then, by definition, the reduced costs can be

34

35

obtained as c̄T = cT − pTA. Clearly, c̄TB = cTB − pTAB = cTB − cTBA−1
B AB = 0, while c̄TN = cTN − pTAN ,

which yields

c̄TN =

1
0
0
0
0

T

−
(
3 −1 0 0 0

)

−1 0 0 1 0
0 0 1 0 1
−1 −1 0 0 0
0 1 1 0 0
1 2 2 0 0

 =

4
0
1
−3
1

T

,

In other words, c̄x3
= 4, c̄x4

= 0, c̄x5
= 1, c̄s1 = −3 and c̄s2 = 1, from which it is deduced that s1 should

enter the basis.

3. Recall that nonbasic columns result from elementary row operations performed in the tableau so
as to form a permutation matrix with basic columns. Furthermore, note that the inverse basis matrix

encodes these elementary row operations. In particular, let As1 =
(
1 0 0 0 0

)T
be the column of

s1 in the initial tableau. In the case at hand, the updated basis is {x1, x2, s3, s4, s5}, and the matrix A−1
B

making it possible to move from the initial tableau to the current basis is known. Let Ās1 denote the
column associated with s1 that would appear in the current tableau if it was maintained, which can be
computed as

Ās1 = A−1
B As1 =

(
1 −2 1 0 0

)T
.

In order to identify the variable which should exit the basis, the ratio test can be invoked. Recall that
applying this criterion is equivalent to i) extracting the positive entries in the column corresponding to
the nonbasic variable that will enter the basis ii) extracting the right-hand side coefficients corresponding
to these entries from the last column of the tableau iii) computing the ratio of right-hand side coefficients
to column coefficients iv) keeping the index yielding the minimum ratio value. This index then indicates
the variable which should exit the basis. In this case, either x1 or s3 should exit the basis. As 1/1 < 2/1,
x1 exits the basis.

4. Recall that in the standard primal simplex algorithm studied in Problem Set 2, a simplex tableau was
maintained and updated at each iteration. Moreover, each basis update (or pivot) involved elementary row
operations, or equivalently, multiplying the tableau by the inverse of the basic matrix. Unfortunately,
performing a large number of pivots may destroy the sparsity of the initial tableau that is typical of
carefully formulated linear programs, resulting in a tableau with very few nonzero coefficients. This
phenomenon, which is known as fill-in, leads to less computationally efficient pivots and increased memory
requirements as the number of iterations grows. The revised simplex algorithm takes advantage of the
fact that the inverse basis matrix encodes the elementary row operations needed to perform a pivot and
attempts to alleviate the fill-in problem by storing and working directly on the inverse basis matrix at
each iteration. In this setup, the stored inverse matrix can be viewed as a product (composition) of
inverse matrices from all previous pivots. Alternatively, it can be understood as a product of elementary
matrices implementing all the necessary elementary row operations to move from the initial tableau to
the current one.

In this case, x1 is exiting the basis B and s1 is entering it. Let B′ = {s1, x2, s3, s4, s5} be the new
basis. Since x1 is the first basic variable in B, the elementary row operations implementing this pivot aim
to replace the nonbasic column Ās1 by the first column of an m×m identity matrix. It is straightforward
to see that these operations are i) r2 ← r2 + 2r1 ii) r3 ← r3− r1 iii) ri ← ri, i = 1, 4, 5. These operations
are encoded in the following matrix

A−1
B′ =

1 0 0 0 0
2 1 0 0 0
−1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

36 CHAPTER 13. THE REVISED SIMPLEX, LP DUALITY AND THE DUAL SIMPLEX

It is no coincidence that this matrix is precisely the inverse of the updated basis matrix

AB′ =

1 0 0 0 0
−2 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

Building upon these developments, the matrix P allowing one to move from the initial simplex tableau
to the new one can be written as the product of A−1

B′ and A−1
B

P = A−1
B′A

−1
B =

1 0 0 0 0
2 1 0 0 0
−1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1 0 0 0 0
−2 1 0 0 0
1 −1 1 0 0
0 0 0 1 0
0 0 0 0 1

 =

1 0 0 0 0
0 1 0 0 0
0 −1 1 0 0
0 0 0 1 0
0 0 0 0 1

Applying the aforementioned elementary row operations on A−1

B would have yielded the same result. The
values of basic variables can be simply updated as

xB′ = A−1
B′ b̄ = Pb =

(
1 2 1 4 5

)T
,

and the associated objective value is cTB′xB′ = 0− 2 + 0 = −2 ≤ cTBxB = 1 + 0 + 0 = 1.
More generally, for a sequence of pivots represented by matrices Pk ∈ Rm×m, k = 1, . . . ,K, the

transformation allowing one to move from the initial tableau to the current tableau would be written
as P = PKPK−1...P2P1. Note that each matrix Pk, k = 1, . . .K, has at most 2m − 1 nonzero entries,
and is therefore sparse. Hence, storing the factors of P can be more efficient than storing P itself
as it may become fairly dense after a large number of pivots. However, some overhead comes from
the need to recompute P from its factors at each iteration. Finally, it is worth mentioning that in
modern implementations of the primal simplex algorithm, the LU factorisation of the basis matrix is
kept in memory and updated at each pivot, instead of working on an inverse basis matrix or a sequence
of inverse basis matrices. Some of the most common LU update rules include the Bartels-Golub, the
Forrest-Tomlin, the Suhl-Suhl, the Fletcher-Matthews and Schur complement-based rules.

Solution to Problem 2

Solution 1

Let p1 ∈ R−, p2 ∈ R+ and p3 ∈ R be dual variables associated with the first, second and third constraints
of the primal problem, respectively,

min x1 − x2

s.t. 2x1 + 3x2 − x3 + x4 ≤ 0 : p1,

3x1 + x2 + 4x3 − 2x4 ≥ 3 : p2,

− x1 − x2 + 2x3 + x4 = 6 : p3,

x1 ∈ R−, x2 ∈ R+, x3 ∈ R+, x4 ∈ R.

Dualising these constraints yields the following problem

d(p1, p2, p3) = min x1 − x2 + p1(−2x1 − 3x2 + x3 − x4) + p2(3− 3x1 − x2 − 4x3 + 2x4)+

p3(6 + x1 + x2 − 2x3 − x4)

s.t. x1 ∈ R−, x2 ∈ R+, x3 ∈ R+, x4 ∈ R.

Note that the range of the dual variables was selected to guarantee that d(p1, p2, p3) provides a lower
bound on the primal objective while promoting primal feasibility. Then, after rearranging terms in the
objective function, the problem becomes

d(p1, p2, p3) = min (1− 2p1 − 3p2 + p3)x1 + (−1− 3p1 − p2 + p3)x2 + (p1 − 4p2 − 2p3)x3+

37

(−p1 + 2p2 − p3)x4 + 3p2 + 6p3

s.t. x1 ∈ R−, x2 ∈ R+, x3 ∈ R+, x4 ∈ R.

Inspecting the first four terms reveals that the following conditions must be satisfied to guarantee that
the relaxed problem above is bounded,

1− 2p1 − 3p2 + p3 ≤ 0

−1− 3p1 − p2 + p3 ≥ 0

p1 − 4p2 − 2p3 ≥ 0

−p1 + 2p2 − p3 = 0,

in which case d(p1, p2, p3) = 3p2 +6p3. Seeking the tightest lower bound on the primal objective therefore
leads to the dual problem

max 3p2 + 6p3

s.t. 1− 2p1 − 3p2 + p3 ≤ 0

− 1− 3p1 − p2 + p3 ≥ 0

p1 − 4p2 − 2p3 ≥ 0

− p1 + 2p2 − p3 = 0

p1 ∈ R−, p2 ∈ R+, p3 ∈ R,

or, equivalently,

max 3p2 + 6p3

s.t. 2p1 + 3p2 − p3 ≥ 1 : x1

3p1 + p2 − p3 ≤ −1 : x2

− p1 + 4p2 + 2p3 ≤ 0 : x3

p1 − 2p2 + p3 = 0 : x4

p1 ∈ R−, p2 ∈ R+, p3 ∈ R.

Now, let x =
(
x1 x2 x3 x4

)T
, p =

(
p1 p2 p3

)T
,

c =
(
c1 c2 c3 c4

)T
=
(
1 −1 0 0

)T
, b =

(
b1 b2 b3

)T
=
(
0 3 6

)T
,

and

A =

aT1aT2
aT3

 =

 2 3 −1 1
3 1 4 −2
−1 −1 2 1

 =
(
A1 A2 A3 A4

)
.

Then, the primal problem can be expressed in matrix form

min cTx

s.t. aT1 x ≤ b1 : p1

aT2 x ≥ b2 : p2

aT3 x = b3 : p3

x ∈ R− × R2
+ × R,

and the dual problem reads

max bT p

s.t. AT1 p ≥ c1 : x1

AT2 p ≤ c2 : x2

AT3 p ≤ c3 : x3

AT4 p = c4 : x4

p ∈ R− × R+ × R.

38 CHAPTER 13. THE REVISED SIMPLEX, LP DUALITY AND THE DUAL SIMPLEX

Solution 2

In the particular case of linear programming, a lower bound on the primal objective can be readily con-
structed by taking a linear combination of primal constraints. The coefficients of this linear combination,
which correspond to dual variables, can then optimised to tighten the bound, yielding the dual problem.

More formally, let p1, p2 and p3 be the dual variables. Their range will be discussed shortly. Linearly
combining the terms on the left-hand side of the primal constraints yields

(2x1 + 3x2 − x3 + x4)p1 + (3x1 + x2 + 4x3 − 2x4)p2 + (−x1 − x2 + 2x3 + x4)p3, (13.1)

while the linear combination of terms on the right-hand side gives

0p1 + 3p2 + 6p3. (13.2)

The key idea is to produce a sequence of inequalities, whereby the primal objective is lower bounded
by the linear combination of left-hand side terms (13.1), which is itself lower bounded by the linear
combination of right-hand side terms (13.2). Indeed, the latter only depends on p1, p2 and p3 and can
easily be maximised to tighten the bounds. In order to make sure that (13.1) indeed provides an upper
bound on (13.2), the range of the dual variables must be carefully selected. In the case at hand, taking
p1 ∈ R+, p2 ∈ R− and p3 ∈ R ensures that

(2x1 + 3x2 − x3 + x4)p1 + (3x1 + x2 + 4x3 − 2x4)p2 + (−x1 − x2 + 2x3 + x4)p3 ≥ 0p1 + 3p2 + 6p3,

for any feasible combination of primal variables. Next, conditions guaranteeing that the primal objective
is lower bounded by (13.1) are sought. One successively finds

x1 − x2 + 0x3 + 0x4 ≥ (2x1 + 3x2 − x3 + x4)p1 + (3x1 + x2 + 4x3 − 2x4)p2 + (−x1 − x2 + 2x3 + x4)p3

= (2p1 + 3p2 − p3)x1 + (3p1 + p2 − p3)x2 + (−p1 + 4p2 + 2p3)x3 + (p1 − 2p2 + p3)x4.

Given the range of the primal variables x1 ∈ R−, x2 ∈ R+, x3 ∈ R+ x4 ∈ R, inspecting the coefficients
of primal variables on both sides of the inequality reveals that it holds if

2p1 + 3p2 − p3 ≥ 1
3p1 + 2p2 − p3 ≤ −1

− p1 + 4p2 + 2p3 ≤ 0
p1 − 2p2 + p3 = 0 .

(13.3)

In order to obtain the tightest lower bound possible, (13.2) is maximized subject to constraints (13.3),
which yields the dual problem

max 3p2 + 6p3

s.t. 2p1 + 3p2 − p3 ≥ 1
3p1 + 2p2 − p3 ≤ −1

− p1 + 4p2 + 2p3 ≤ 0
p1 − 2p2 + p3 = 0

p1 ∈ R+ , p2 ∈ R− , p3 ∈ R

(13.4)

It can be shown that at optimality, the lower bound is tight in the sense that the dual objective and the
primal objective have the same value. Formally, let x?i , i = 1, . . . , n, and p?j , j = 1, . . . ,m, denote optimal
primal and dual variables, respectively. It follows that

x?1 − x?2 = 3p?2 + 6p?3. (13.5)

This property is called the strong duality of linear programs.

Solution to Problem 3

We start by checking that x? is primal feasible,

− 2x?1 + x?2 = −2 + 1 = −1 ≤ −1

39

x?1 − 3x?2 = 1− 3 = −2 ≤ −2

x?1 + x?2 = 1 + 1 = 2 ≤ 5,

and all three inequality constraints are indeed satisfied. Note that the first two constraints are tight, i.e.,
they are satisfied with equality. Now, let

A =

aT1aT2
aT3

 =

−2 1
1 −3
1 1

 =
(
A1 A2

)
, c =

(
c1
c2

)
=

(
2
1

)
, b =

b1b2
b3

 =

−1
−2
5

 .

In addition, let p? =
(
p?1 p?2 p?3

)T
denote the set of (candidate) optimal dual variables, with p?i ∈

R−, i = 1, . . . , 3. Recall that, at optimality, the complementary slackness conditions of the primal
problem should be satisfied, that is,

p?i (a
T
i x

? − bi) = 0, i = 1, . . . , 3.

Likewise, for the dual problem, the complementary slackness conditions should be verified at optimality,
such that

x?j (cj −ATj p?) = 0, j = 1, 2.

Since the third constraint is not tight, aT3 x
? − b3 = 2− 5 = −3 and p?3 = 0 to satisfy the complementary

slackness conditions of the primal problem. Then, writing the dual complementary slackness conditions
in full and substituting p?3 = 0 yields the following linear equations,

1×
(

2− (−2p?1 + 1p?2)
)

= 0

1×
(

1− (1p?1 − 3p?2)
)

= 0.

This system of linear equations can be rewritten as(
−2 1
1 −3

)(
p?1
p?2

)
=

(
2
1

)
,

whose unique solution is p?1 = −7/5 and p?2 = −4/5. Finally, recall that the strong duality property of
linear programs implies that

cTx? = bT p?,

for the optimal primal-dual pair (x?, p?). In the case at hand, cTx? = 3 and bT p? = (−1) × (−7/5) +
(−2) × (−4/5) + 5 × 0 = 15/5 = 3, such that cTx? = bT p? and x? is indeed an optimal solution to the
primal problem.

Chapter 14

Sensitivity Analysis in Linear
Programming

Solution to Problem 1

1. Since the final simplex tableau is given, the optimal basis can be readily identified. In the case at
hand, the corresponding basic variables are x3, x2 and s1, respectively. In order to retrieve the associated
basic matrix, it is helpful to write the initial simplex tableau

x1 x2 x3 s1 s2 s3 b
-2 -5 -1 0 0 0
1 0 1 -1 0 0 1
0 -1 2 0 -1 0 0
3 0 1 0 0 1 5

where it is worth noticing that i) the costs are negative, since the original problem is a maximization
problem which has been expressed in standard form ii) the coefficients associated with the slack variables
of the first two constraints are negative because these are ≥ inequality constraints. From the initial
tableau, it is clear that the basic matrix is

AB =

1 0 −1
2 −1 0
1 0 0

 ,

and it can be verified that its inverse is

A−1
B =

 0 0 1
0 −1 2
−1 0 1

 .

Although only a factorization of A−1
B is maintained and updated in the revised simplex algorithm, recall

that this matrix encodes the elementary row operations that must be performed in the initial simplex
tableau to obtain the final simplex tableau. The values of the basic variables can thus be computed as
xB = A−1

B b, with

b =

1
0
5

 and xB =

 5
10
4

 .

It is worth noticing that xB also stores the entries of the last column of the final simplex tableau. Now,
changing the right-hand side coefficient of the second inequality constraint is equivalent to introducing
an updated right-hand side coefficients vector

b′ =

1
2
5

 .

40

41

x1

x2

−2

−2

−1

−1

1

1

2

2

3

3

4

4

5

5

6

6

S

(a) Original Problem

x1

x2

−2

−2

−1

−1

1

1

2

2

3

3

4

4

5

5

6

6

S

S′

(b) Updated Problem

Figure 14.1: Schematic of right-hand side coefficient update and its impact on the optimal solution.

Provided that this update does not lead to a different optimal basis, applying the inverse basic matrix to
the updated right-hand side coefficients vector will directly yield the updated values of the basic variables,
that is,

x′B = A−1
B b′ =

5
8
4

 .

Since x′B ≥ 0 and the reduced costs are not affected by a change in right-hand side coefficients, the basis
remains optimal. A schematic of the situation is illustrated in Figure 14.1 for a simple problem. Figure
14.1a shows the original problem and its solution S, whereas Figure 14.1b displays the updated problem
and the new optimal solution S′. The basis is unchanged, as the set of active constraints remains the
same. By contrast, introducing

b′′ =

 1
0
−3

 ,

leads to

x′′B = A−1
B b′′ =

−3
−6
−4

 ,

which is clearly primal infeasible, as x′′B < 0. In such a case, dual simplex iterations should be performed
to try and recover a new optimal basis or show that the resulting problem is infeasible.

2. Recall that the reduced costs of basic variables are always equal to 0, whereas the reduced costs of
non-basic variables can be computed as c̄TN = cTN−cTBA−1

B AN , with cN and cB the coefficients of non-basic
and basic variables in the objective function, respectively, and AN the coefficients of non-basic variables
in the initial simplex tableau. It is worth remarking that A−1

B AN also corresponds to the coefficients of
non-basic variables in the final simplex tableau. Since x3 is the first basic variable, updating the value of
its coefficient in the objective function amounts to changing the first entry of cTB =

(
−1 −5 0

)
. Let δ

denote this new coefficient value, such that the updated cost vector c′TB =
(
δ −5 0

)
is formed. This

update will also lead to updated reduced costs values, which correspond to the entries of the reduced cost
vector c̄′TN = cTN − c′TB A−1

B AN . For the optimal basis to remain unchanged, the updated reduced costs
should remain nonnegative, that is, c̄′N ≥ 0. Hence, one inequality can be extracted for each entry of c̄′N

42 CHAPTER 14. SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING

in order to identify the maximum value δ for which the basis remains unchanged. Since

cTN =
(
−2 0 0

)
and A−1

B AN =

3 0 1
6 1 2
2 0 1

 ,

the updated reduced costs vector is c̄′TN =
(
−3δ + 28 5 −δ + 10

)
. The nonnegativity conditions imply

that δ ≤ 28/3 and δ ≤ 10, from which it is clear that δ = 28/3 is the largest value leaving the basis
unchanged.

3. The initial tableau must be updated to include the new constraint and reads

x1 x2 x3 s1 s2 s3 s4 b
-2 -5 -1 0 0 0 0
1 0 1 -1 0 0 0 1
0 -1 2 0 -1 0 0 0
3 0 1 0 0 1 0 5
1 -1 0 0 0 0 -1 5

Given the previously optimal basis, a new basis B′ can be formed for the updated problem by adding s4

to this basis. The tableau must then be updated in order to check whether the new basis is also optimal
for the updated problem. To this end, the new inverse matrix can be computed using the previous inverse
basis matrix and the coefficients of the new constraint. Indeed, adding an inequality constraint with a
surplus variable (negative slack variable) and coefficients aTm+1 for the other variables is equivalent to
considering a standard form linear program with updated coefficient matrix

A′ =

(
A 0

aTm+1 −1

)
and updated right-hand side coefficients

b′ =

(
b

bm+1

)
.

Since s4 is the additional basic variable, the updated basic matrix reads

A′B′ =

(
AB 0
aTB −1

)
,

where aTB = aTm+1,B for simplicity. Then, it is straightforward to check that the inverse of the updated
basic matrix is

A′−1
B′ =

(
A−1
B 0

aTBA
−1
B −1

)
,

such that the coefficients of the updated tableau are obtained as

Ā′ = A′−1
B′ A

′ =

(
A−1
B A 0

aTBA
−1
B A− aTm+1 1

)
,

while the updated right-hand side coefficients can be expressed as

b̄′ = A′−1
B′ b

′ =

(
A−1
B b

aTBA
−1
B b− bm+1

)
.

Clearly, all tableau rows and columns are the same as in the previous final tableau, except for the last
row and column, which is are new and correspond to the surplus variable s4 and the new constraint,
respectively. Since the new column is trivially obtained, only the new row in the updated tableau must
be computed, which can be achieved using the previous basic matrix and the coefficients of the new
constraint. It is also worth mentioning that since the s4 variable has a zero coefficient in the objective
function, the reduced costs in the updated tableau are the same as those in the final tableau used
previously. In addition, since s4 belongs to the basis, its reduced cost remains equal to 0. The updated
tableau therefore reads

43

x1 x2 x3 s1 s2 s3 s4 b
31 0 0 0 5 11 0
3 0 1 0 0 1 0 5
6 1 0 0 1 2 0 10
2 0 0 1 0 1 0 4
-7 0 0 0 -1 -2 1 -15

Unfortunately, it is clear from the last column that this basis is primal infeasible. Indeed, the s4 variable
has a negative value and therefore violates nonnegativity constraints. Nevertheless, this basis is dual
feasible, as all reduced costs are nonnegative. Hence, performing an iteration of the dual simplex algorithm
may yield a new basis with more favourable properties. The variable that will replace s4 in the basis
must be identified next. Let I ⊂ N be a set indexing all variables. Recall that the condition to identify
(the index of) the variable entering the basis can be expressed as

I = arg min

{
c̄′i
|ā′ri|

∣∣∣∣i ∈ I, ā′ri < 0

}
,

where r is the index of the row associated with the variable violating the nonnegativity constraint, c̄′i
denotes the ith entry of the updated reduced cost vector, and ā′ri is the entry in row r and column i of
Ā′. In this case, r = 4 and I = 1, since 31/7 < 5 < 11/2, such that x1 replaces s4 in the basis. For the
sake of clarity, pivots are directly performed in the tableau. A set of elementary row operations must be
performed in order to form a new permutation matrix (whose columns are the same as that of the identity
matrix) with columns corresponding to basic variables and update the reduced costs. These operations
are summarised as i) r0 ← r0 + 31

7 r4 ii) r1 ← r1 + 3
7r4 iii) r2 ← r2 + 6

7r4 iv) r3 ← r3− 2
7r4 v) r4 ← − 1

7r4,
such that the following tableau is obtained

x1 x2 x3 s1 s2 s3 s4 b
0 0 0 0 4/7 15/7 31/7
0 0 1 0 -3/7 1/7 3/7 -10/7
0 1 0 0 1/7 2/7 6/7 -20/7
0 0 0 1 2/7 11/7 -2/7 58/7
1 0 0 0 1/7 2/7 -1/7 15/7

It is clear from the reduced costs that this new basis is still dual feasible. Nevertheless, inspecting the last
column of the tableau reveals that the basis is also primal infeasible. Indeed, two of the basic variables
have negative values. Moreover, the coefficients of non-basic variables in the second row are all positive.
This implies that the dual problem is in fact unbounded. As a result, the primal problem is infeasible.
The geometric interpretation of this result is depicted in Figure 14.2c for a simplified problem.

Solution to Problem 2

1. It is clear from the first (data) column of the second table that 2 batches of C-type processors and 5
batches of B-type processors are manufactured. Bearing this in mind, and using the objective coefficients
stored in the third column of the second table, the profit resulting from the sale of these processors can
be readily computed as f? = 102C? + 89B? = 102× 2 + 89× 5 = 649.

2. In order to devise an economic interpretation of dual variables, it is worth recalling some of the
properties of linear programs. For the sake of conciseness, the linear program at hand is first expressed
in a more abstract form. Let c ∈ Rn denote the primal cost vector, let b ∈ Rm denote the vector of
right-hand side coefficients and let x ∈ Rn be the set of primal variables. The primal problem then writes
as

max cTx
s.t. Ax ≤ b

x ≥ 0.

Note that an equality constraint can be expressed via two inequality constraints, hence the revenue
maximization problem can always be formulated in this way. Let p ∈ Rm denote the set of dual variables,

44 CHAPTER 14. SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING

x1

x2

−2

−2

−1

−1

1

1

2

2

3

3

4

4

5

5

6

6

(a) Unique optimum and redundant constraint

x1

x2

−2

−2

−1

−1

1

1

2

2

3

3

4

4

5

5

6

6

(b) Multiple optima (dual degenerate solution)

x1

x2

−2

−2

−1

−1

1

1

2

2

3

3

4

4

5

5

6

6

(c) Infeasible Problem

Figure 14.2: Impact of constraint addition on problem solution and feasibility.

such that the resulting dual problem is

min pT b
s.t. AT p ≥ c

p ≥ 0.

In addition, let x? and p? be optimal solutions to the primal and dual problems, respectively. The strong
duality property of linear programs implies that

cTx? = (p?)T b,

that is, the primal and dual objectives have the same value at optimality. Now, let b′i = b + ∆biei, i =
1, . . . ,m, be an updated right-hand side coefficients vector such that the (primal) optimal basis remains
unchanged, with ei a vector whose ith entry is 1 and all others are 0. Replacing b by b′i in the primal
problem will lead to a new primal solution x?i . Note that updating the right-hand side vector has no

45

impact on the dual solution, since b′i only appears in the dual objective and the primal basis is unchanged.
Hence, re-writing the strong duality property for the updated primal problem leads to

cTx?i = (p?)T b′i = (p?)T b+ ∆bip
?
i = cTx? + ∆bip

?
i .

Note that in this case, b′i and x?i are vectors while p?i denotes the ith entry of the optimal dual variable
vector p?. Now, let ∆ci = cTx?− cTx?i be the change in primal objective value resulting from the update
of b. From the previous developments, it is clear that

p?i =
∆ci
∆bi

.

In other words, provided that the optimal basis remains the same, a dual variable quantifies the extent to
which the primal objective can be expected to change as the right-hand side coefficient of the associated
constraint is updated. In the case at hand, the primal objective has a clear economic interpretation, as it
represents the profits that are expected from the sale of different processor types. Thus, the dual variable
of a given constraint can be interpreted as the marginal amount of money which may be gained or lost
as the right-hand side coefficient is updated, e.g. as more silicon is made available (in $/kg) or as the
number of hours in the etching room is decreased (in $/hr).

3. In order to evaluate whether it is worth investing in 20 additional kilograms of silicon, it suffices
to compute the difference between the potential gain and the expenses resulting from the purchase of
additional silicon. The latter can be readily obtained as 20×1.1 = $22. Following the developments in 2.,
the potential gain can be readily assessed from the third table. Indeed, at optimality, the dual variable
of the constraint expressing the silicon budget has value p?1 = 1.429, while it is proposed to increase
the budget by 20 kilograms, i.e., ∆b1 = 20. The fourth column indicates that the maximum increase in
silicon budget that will leave the basis unchanged is 23.33 kilograms, and since ∆b1 < 23.33, the change
in primal objective value can be obtained via ∆c1 = p?1∆b1 = 1.429 × 20 ≈ 28.5$. Thus, the potential
gain is greater than the cost of investing in silicon, and it is worth doing so.

4. Reducing the number of hours in the doping room corresponds to decreasing the right-hand side
coefficient of the fourth constraint by 4, i.e. ∆b4 = −4. As can be seen from the third table, ∆b4 < −3.5,
and this decrease in coefficient value leads to a different optimal basis. Hence, the reasoning developed
in 2. and 3. no longer applies. To gain a better understanding of the situation, let g : R 7→ R∪ {−∞} be
a function such that

g(∆b4) = max cTx
s.t. Ax ≤ b+ ∆b4e4

x ≥ 0.

By convention, g(∆b4) = −∞ if the optimization problem is infeasible. In other words, for any per-
turbation ∆b4 of the right-hand side coefficient b4 of the doping constraint, g returns the corresponding
revenue. It can be shown that g is in fact a piecewise affine, concave function, as depicted (schematically)
in Figure 14.3, in which g is shown in blue. In Figure 14.3, each of the affine segments corresponds to
an optimal basis. Let us assume that the purple segment corresponds to the optimal basis corresponding
to the data shown in the tables. In particular, it is worth noticing that g(0) = 649 and g(−23) = 0.
Hence, if the right-hand side coefficient of the doping constraint is changed by an amount b4 such that
−3.5 ≤ ∆b4 ≤ 5.6, the basis remains unchanged. However, if ∆b4 < −3.5, the segment corresponding to
the new optimal basis is the one to the left of the purple segment. From a geometric standpoint, following
the approach of 2. and 3. consists in staying on the line supporting the purple segment even though the
basis has changed. Hence, doing so can at best provide an upper bound on the actual objective change.
Indeed, g(0) + p?4∆b4 = 649 − 20.143 × 4 = 568.428 > 563.6, where the latter value was obtained by
solving the optimization problem numerically for ∆b4 = −4.

46 CHAPTER 14. SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING

∆b4

g(∆b4)

−23

649

O

Figure 14.3: Schematic representation of changes in revenue as a result of changes in right-hand side
coefficient of doping constraint. The problem becomes infeasible when ∆b4 < −23, and the revenue
cannot increase any further beyond a certain value of ∆b4, as other constraints become active.

Chapter 15

Convex Models

Solution to Problem 1

a. Recall that norms have three key properties, namely

1. Triangle Inequality (subadditivity): g(x+ y) ≤ g(x) + g(y), ∀x, y ∈ Rn.

2. Absolute Homogeneity: g(αx) = |α|g(x), ∀α ∈ R, x ∈ Rn.

3. Positivity: g(x) ≥ 0, ∀x ∈ Rn, and g(x) = 0⇒ x = 0.

In addition, recall that a function f : Rn 7→ R is convex if f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y),
∀x, y ∈ Rn, ∀λ ∈ [0, 1]. Successively invoking the subadditivity and absolute homogeneity of g yields

g(λx+(1−λ)y) ≤ g(λx)+g((1−λ)y) = |λ|g(x)+|1−λ|g(y) = λg(x)+(1−λ)g(y), ∀x, y ∈ Rn, ∀λ ∈ [0, 1].

In other words, any function g having the properties of a norm is convex. In particular, the 1-norm,
||x||1 = |x1| + . . . + |xn|, and the 2-norm, ||x||2 =

√
x2

1 + . . .+ x2
n, with xi, i = 1, . . . n, the entries of x,

are convex. It is also worth noting that the 1-norm reduces to a simple absolute value function in 1D.

b. Let C1, C2 ⊂ Rn be two convex sets and let C = C1∩C2. Recall that C is convex if λy+(1−λ)z ∈ C,
∀y, z ∈ C and ∀λ ∈ [0, 1]. Note that C = ∅ is trivially convex. Now, let y, z ∈ C 6= ∅. By definition of C,
y, z ∈ C1 and y, z ∈ C2. Thus, since C1 and C2 are convex, λy + (1− λ)z ∈ C1 and λy + (1− λ)z ∈ C2,
∀λ ∈ [0, 1], respectively. Hence, λy+ (1− λ)z ∈ C, ∀λ ∈ [0, 1], and C is convex. This result can be easily
extended to the intersection of N ∈ N convex sets.

c. Let K1,K2 ⊂ Rn be two cones such that K = K1 ∩ K2 6= ∅. Recall that K is a cone if αx ∈ K,
∀x ∈ K, ∀α ∈ R+. Let x ∈ K. By definition of K, x ∈ K1 and x ∈ K2. In addition, since K1 is a
cone, αx ∈ K1, ∀α ∈ R+. Likewise, αx ∈ K2, ∀α ∈ R+. Hence, αx ∈ K, ∀α ∈ R+, and K is a cone. In
particular, if K1 and K2 are convex cones, K is a convex cone as well. It is also worth noticing that if K
is a singleton, then K = {0}. This result extends trivially to the intersection of N ∈ N cones.

d. The basic idea is to show that Sh ⊆ Sg and Sh ⊇ Sg, which implies that Sh = Sg. We start by
showing that Sh ⊆ Sg. Let y ∈ Sh, such that h1(y) ≤ h2(y). Since g is strictly increasing, it follows that
g(h1(y)) ≤ g(h2(y)), that is, y ∈ Sg. We now show that Sh ⊇ Sg. Let z ∈ Sg, that is, g(h1(z)) ≤ g(h2(z)).
Since g is strictly increasing, this inequality implies that h1(z) ≤ h2(z), and z ∈ Sh. In other words,
Sh = Sg.

e. Let So = arg min{f(x) | x ∈ F} 6= ∅ and Se = arg min{t | (x, t) ∈ epi(f), x ∈ F} 6= ∅. We first
show that x? ∈ So ⇒ (x?, f(x?)) ∈ Se. Let us assume that x? ∈ So and (x?, f(x?)) /∈ Se. This implies
that ∃(y, s) ∈ epi(f) with y ∈ F , such that s < f(x?). In particular, the smallest possible value of s is
f(y), which is equivalent to stating that ∃y ∈ F, f(y) < f(x?). This leads to a contradiction, as it implies
that x? /∈ So. We next show that (x?, f(x?)) ∈ Se ⇒ x? ∈ So. Let us assume that (x?, f(x?)) ∈ Se and
x? /∈ So. It follows that ∃z ∈ F such that f(z) < f(x?). This again leads to a contradiction, as it implies

47

48 CHAPTER 15. CONVEX MODELS

that (x?, f(x?)) /∈ Se. Hence, x? ∈ So ⇔ (x?, f(x?)) ∈ Se. For maximisation problems, the counterpart
of the epigraph is the hypograph, hypo(f) = {(x, t) ∈ Rn+1| t ≤ f(x)}. A similar result holds, namely
that x? ∈ arg max{f(x) | x ∈ F} ⇔ (x?, f(x?)) ∈ arg max{t | (x, t) ∈ hypo(f), x ∈ F}. The result
above was obtained without assuming that f is convex. However, it is worth noting that a function f is
convex if and only if its epigraph is convex.

f. We start by showing that Sh ⊆ Sg. Let x? ∈ Sh, such that h(x?) ≥ h(x), ∀x ∈ F . Since g is strictly
increasing, g(h(x?)) ≥ g(h(x)), ∀x ∈ F , that is, x? ∈ Sg. We now show that Sh ⊇ Sg. Let x? ∈ Sg,
such that g(h(x?)) ≥ g(h(x)), ∀x ∈ F . Again, since g is strictly increasing, this inequality implies that
h(x?) ≥ h(x), ∀x ∈ F . In other words, x? ∈ Sh and Sh = Sg.

g. We start by showing that Sf ⊆ Sh. Let x ∈ Sf , such that f(h(x)) ≥ f(h(y)), ∀y ∈ F . Since f is
strictly decreasing, it follows that h(x) ≤ h(y), ∀y ∈ F , hence x ∈ Sh. We now show that Sf ⊇ Sh.
Let z ∈ Sh, such that h(z) ≤ h(y), ∀y ∈ F . Since f is strictly decreasing, the following inequality holds
f(h(z)) ≥ f(h(y)), thus z ∈ Sf and Sf = Sh.

Problem 2

Show that the following optimisation problems are convex (or not). Where possible, propose a convex
reformulation with the same optimal solution set.

(a)

min |x1 − 3x2|
s.t. x1 + 2x2 ≤ 3

− 2x1 + 3x2 ≤ 0

x1 ≥ 2, x2 ≥ 0

(b)

max |x1 + 2x2|
s.t. Ax = b

x ∈ Rn+

(c)

max |x1 − 2x2|
s.t. Ax = b

x ∈ Rn+

(d)
min

√
x2

1 + x2
2

s.t. x1 + x2 =
1

2

(e)
min x1 + 2x2

s.t. x2
1 + 9x2

2 + x2
3 ≤ 4

(f)

min 2x1 − x2

s.t. (x1 − 3x2)3 ≤ (2x1 + x2)3

x ∈ R2

(g)

max x1x2

s.t. Ax = b

x ∈ Rn+

49

(h)

min 1

s.t.
||Ax+ b||2
cTx+ d

≤ t

cTx+ d > 0

(i)

max
1

cTx
s.t. Ax ≤ b

x ∈ Rn

(j)

min log(cTx)

s.t. Ax ≤ b
x ∈ Rn+

(k)

min λmax(X)

AX = B

X = XT

X ∈ Rn×n

(l)

min λmax(X) + x2
11

AX = B

X = XT

X ∈ Rn×n

(m)

min max{λmax(X), x2
11}

AX = B

X = XT

X ∈ Rn×n

Solution to Problem 2

a. Notice that the objective function is convex, and the feasible set is convex, and recall that minimising
a convex function over a convex set is a convex problem. However, the objective function is nonlinear
and non-differentiable at (0, 0). An equivalent formulation with more desirable properties is therefore
sought. Casting the problem in epigraph form yields

min t

s.t. |x1 − 3x2| ≤ t
x1 + 2x2 ≤ 3

− 2x1 + 3x2 ≤ 0

x1 ≥ 2, x2 ≥ 0.

If x1−3x2 > 0, the first inequality becomes x1−3x2 ≤ t. By contrast, if x1−3x2 < 0, the first inequality
becomes −x1 + 3x2 ≤ t, or −t ≤ x1 − 3x2. Hence, the first inequality, whose left-hand side is nonlinear,

50 CHAPTER 15. CONVEX MODELS

can be replaced by two linear inequalities. The resulting linear programming problem therefore writes as

min t

s.t. x1 − 3x2 ≤ t
− t ≤ x1 − 3x2

x1 + 2x2 ≤ 3

− 2x1 + 3x2 ≤ 0

x1 ≥ 2, x2 ≥ 0.

b. Notice that |x1 + 2x2| = x1 + 2x2 for x1, x2 ≥ 0. In other words, the problem is equivalent to the
following linear program

max x1 + 2x2

s.t. Ax = b

x ∈ Rn+.

c. The objective function of the problem at hand is convex. However, in contrast to a., the present
problem is a maximization problem. Put in hypograph form, the problem reads

max t

s.t. t ≤ |x1 − 2x2|
Ax = b

x ∈ Rn+.

The objective function is linear, but it is worth checking whether the feasible set is convex. Let g(x1, x2) =
|x1− 2x2|. In fact, hypo(g) can be shown to be nonconvex. Indeed, for instance, (x1, x2, t) = (0,−1, 2) ∈
hypo(g) and (x1, x2, t) = (0, 1, 2) ∈ hypo(g). However, 0.5(0,−1, 2) + 0.5(0, 1, 2) = (0, 0, 2) /∈ hypo(g), as
2 > 0. Hence, the problem is nonconvex. In fact, at the notable exception of affine objective functions,
maximising a convex function over a convex set will yield a nonconvex problem. By contrast, it is simple
to show that maximising a concave function over a convex set is a convex optimisation problem. Indeed,
the opposite of a concave function is always a convex function, and a maximisation problem can always be
transformed into a minimisation problem. If f(x) denotes a concave function, max f(x) = −min−f(x),
with −f(x) convex. Provided that the feasible set is convex, the resulting problem will also be convex.

d. Notice that the objective function is the 2-norm in 2D and that the feasible set is a line. The problem
is therefore convex. Nevertheless, the objective function is nonlinear and non-differentiable at (0, 0). An
equivalent representation with better properties is thus sought. Writing the problem in epigraph form
yields

min t

s.t.
√
x2

1 + x2
2 ≤ t

x1 + x2 =
1

2
,

This is a conic program, as the objective function is linear, the first constraint defines a quadratic cone,
while the second constraint defines an affine hyperplane. The quadratic cone is also sometimes referred
to as the ice cream cone or the second-order cone. Let Qn = {x ∈ Rn| x1 ≥

√
x2

2 + . . .+ x2
n} be the

quadratic cone of dimension n. To emphasise the fact that the first constraint represents a quadratic
cone, the problem may be re-written as

min t

s.t. (t, x1, x2) ∈ Q3

x1 + x2 =
1

2
.

51

e. This minimisation problem is convex, as both the objective function and the feasible set are convex.
Indeed, notice that the left-hand side of the inequality constraint can be understood as a modified 2-
norm, such that the feasible set is a so-called norm ball. Its convexity can be directly shown using the
arguments developed in 1.a. With this in mind, it is clear that the modified norm ball can be expressed
as the intersection of an affine hyperplane and a quadratic cone. Indeed, introducing additional variables
y, z ∈ R allows us to express the optimisation problem at hand as a conic program

min x1 + 2x2

s.t. x2
1 + y2 + x2

3 ≤ z2

y = 3x2

z = 2.

Then, by virtue of 1.d, the problem may be equivalently written as

min x1 + 2x2

s.t. (z, x1, y, x3) ∈ Q4

y = 3x2

z = 2.

f. Let g : R 7→ R be such that g(x) = x3. Clearly, g is a strictly increasing function of its argument.
Hence, by virtue of 1.d, the inequality g(x1 − 3x2) ≤ g(2x1 + x2) can be transformed into x1 − 3x2 ≤
2x1 + x2 without altering the feasible set. In other words, the original problem can be cast as a linear
program

min 2x1 − x2

s.t. x1 − 3x2 ≤ 2x1 + x2

x ∈ R2.

g. We start by rewriting the optimisation problem in a more general form. Let Q ∈ Rn×n, Q = QT ,
and let g : Rn 7→ R be the quadratic form q(x) = xTQx. The problem at hand is a particular instance of
quadratic programs of the form

max xTQx

s.t. Ax = b

x ∈ Rn+.

In the particular case of negative semidefinite matrices, that is, if Q � 0, the problem is concave, as Q
is the Hessian of the objective function. By contrast, for indefinite matrices, q is indefinite and neither
concave nor convex over its full domain. In the case at hand,

Q =

 0 1/2 0Tn−2

1/2 0 0
0n−2 0 0(n−2)×(n−2)

 ,

which is indefinite. Indeed, it is simple to check that it has only two nonzero eigenvalues, which are of
opposite sign. We therefore seek a formulation with the same solution set and better properties. Notice
that, in this particular case, i) q(x) reduces to the bilinear function x1x2 ii) q(x) ≥ 0, ∀x ∈ Rn+. In fact,

x1x2 bears some resemblance to the geometric mean g(x) = (Πn
i=1xi)

1/n, with xi the entries of x ∈ Rn+,
which is known to be concave and reduces to

√
x1x2 in 2D. More precisely, forming the composition of

q and the square root function, which is strictly increasing, yields g. Hence, following the arguments of
1.f, maximising x1x2 and

√
x1x2 is in fact equivalent. Thus, the convex problem

max
√
x1x2

s.t. Ax = b

x ∈ Rn+

52 CHAPTER 15. CONVEX MODELS

has the same solution set as the original problem. Casting it in hypograph form yields

max t

s.t. t ≤ √x1x2

Ax = b

x ∈ Rn+.

By virtue of 1.d, taking the square of the left-hand and right-hand sides of the first inequality produces
an equivalent problem, which reads

max t

s.t. t2 ≤ x1x2

Ax = b

x ∈ Rn+.

Introducing the change of variables x1 = y + z and x2 = y − z allows us to transform the first inequality
into a constraint defining a quadratic cone. Substituting the expressions of x1 and x2 into the right-hand
side of the first inequality constraint yields x1x2 = y2 − z2, such that the problem at hand becomes

max t

s.t. t2 + z2 ≤ y2

x1 = y + z

x2 = y − z
Ax = b

x ∈ Rn+.

The objective function is linear, the first constraint defines a quadratic cone, while all other constraints
define affine hyperplanes. Hence, this is a conic program. Note that the optimal objective value of
this equivalent problem must be squared to obtain the optimal objective value of the original problem.
Alternatively, we could have introduced variables u = x1 + x2 and v = x1− x2 such that u2− v2 = x1x2,
leading to the conic program

max t

s.t. t2 + v2 ≤ u2

u = x1 + x2

v = x1 − x2

Ax = b

x ∈ Rn+.

h. Notice that the objective function of the problem at hand is constant. Such problems are called
feasibility problems, since solving them essentially amounts to finding a feasible solution. Now, let u =
1
2 (cTx+ d) > 0 and v = Ax+ b. The problem becomes

min 1

s.t.
||v||22
2u
≤ t

v = Ax+ b

u =
1

2
(cTx+ d)

u > 0.

53

Multiplying both sides of the first inequality by 2u then yields,

min 1

s.t. ||v||22 ≤ 2ut

v = Ax+ b

u =
1

2
(cTx+ d)

u > 0.

where the first inequality now defines a rotated quadratic cone. A rotated quadratic cone can be trans-
formed into a quadratic cone by introducing the change of variables u = 1√

2
(y + z) and t = 1√

2
(y − z).

This change of variables can in fact be interpreted as an orthogonal transformation of the coordinate
system expressing a rotation of π/4 in the (u, t) plane, and leads to

min 1

s.t. ||v||22 + z2 ≤ y2

v = Ax+ b

u =
1

2
(cTx+ d)

u =
1√
2

(y + z)

t =
1√
2

(y − z)

u > 0.

In any case, both formulations of the problem above are conic programs. As in 2.g, an alternative change
of variables could have been introduced to obtain an equivalent conic program.

i. Let f : R 7→ R ∪ {−∞,+∞} be a mapping such that f(z) = 1/z, and let h : Rn 7→ R be a mapping
such that h(x) = cTx for some parameter c ∈ Rn. The objective function can be obtained as the
composition of f and h. Considering the discontinuity at 0 and the sign of f on each side of it, i.e.,
limz→0− f(z) = −∞ and limz→0+ f(z) = +∞, it is clear that the function is nonconvex. As a result,
the problem is nonconvex. However, the restriction of f to either side of 0 has nicer properties, which
suggests trying to decompose the original problem into two simpler problems. Note that if ∃x such that
Ax ≤ b and cTx = 0, the original problem is ill-posed. In what follows, the original problem is assumed
well-posed, such that it can be readily decomposed into

max
1

cTx
s.t. Ax ≤ b

cTx ≥ 0

x ∈ Rn+

and

max
1

cTx
s.t. Ax ≤ b

cTx ≤ 0

x ∈ Rn+.

In each subproblem, the objective function is the composition of a strictly decreasing function and an
affine one. Thus, by virtue of 1.g, the two subproblems can be transformed into

min cTx

s.t. Ax ≤ b
cTx ≥ 0

x ∈ Rn+

and

min cTx

s.t. Ax ≤ b
cTx ≤ 0

x ∈ Rn+,

which are linear programs. The best solution of these two programs can then be retained as the solution
to the original problem.

54 CHAPTER 15. CONVEX MODELS

j. Note that the domain of the log function is R+\{0}. Thus, in this case, it is only defined if cTx > 0 in
the polyhedron Ax ≤ b. In the following, it is assumed that this condition is satisfied. The log function is
obviously nonconvex. Indeed, log(0.5×1+0.5×2) = log(1.5) ≈ 0.585 > 0.5log(1)+0.5log(2) = 0.5, and the
problem is nonconvex. However, the log function is strictly increasing over its domain. Hence, invoking
the same arguments as the ones developed in 2.g suffices to show that arg min{cTx| Ax ≤ b, x ∈ Rn+}
and arg min{log(cTx)| Ax ≤ b, x ∈ Rn+} are the same. In other words, a convex optimisation problem
with the same solution set as the original problem can be readily formulated. This equivalent problem is
the linear program

min cTx

s.t. Ax ≤ b
x ∈ Rn+.

It is worth noting that if the solution to this problem is nonpositive, the original problem is ill-posed.

k. Let F = {X ∈ Rn×n| AX = B, X = XT } 6= ∅ be the feasible set of the original problem, which
is assumed non-empty. The matrix equation AX = B is equivalent to a collection of systems of linear
equations. From a geometric perspective, the solution to each system is an affine subspace, such that
the matrix equation describes the intersection of a collection of affine subspaces. Now, recall that the
eigenvalues of a square matrix X ∈ Rn×n are the roots of the characteristic polynomial, i.e., they are
obtained by solving det(X−λI) = 0, with det the determinant operator and I the n×n identity matrix.
Hence, λmax(X) = arg max{λ ∈ R | det(X − λI) = 0}. The objective function of the problem at hand is
particularly cumbersome. However, the problem can be reformulated in order to obtain a more tractable
model. Indeed, writing it in epigraph form yields

min t

s.t. λmax(X) ≤ t
AX = B

X = XT

X ∈ Rn×n.

The inequality constraint can be readily rewritten as λmax(X)−t ≤ 0. For a given X, let λM = λmax(X).
Notice that λM − t is an eigenvalue of X − tI. Indeed, let vM denote the eigenvector of X corresponding
to λM . Then, (X − tI)vM = XvM − tIvM = (λM − t)vM . All other eigenvalues of X − tI can be
obtained in similar fashion. Now, let us assume that these eigenvalues have been ordered and let I
denote the set indexing them. By definition of λM , λM − t ≥ λi − t, ∀i ∈ I and ∀t ∈ R. In other words,
λM − t = λmax(X − tI). The inequality constraint therefore becomes λmax(X − tI) ≤ 0, which implies
that the largest eigenvalue of the X − tI matrix must be nonpositive. This condition is equivalent to
stating that X − tI is a negative semidefinite matrix, that is, X − tI � 0. Moreover, it can be shown
that this constraint defines a cone. Indeed, an alternative way of expressing the negative semidefinitess
of X − tI consists in stating that zT (X − tI)z ≤ 0,∀z ∈ Rn. It follows that αzT (X − tI)z ≤ 0,∀z ∈ Rn,
∀α ≥ 0. The optimisation problem therefore reduces to the conic program

min t

s.t. −X + tI � 0

AX = B

X = XT

X ∈ Rn×n.

55

l. A variant of the epigraph trick can be applied to each term in the objective function, yielding

min t+ s

s.t. λmax(X) ≤ t
x2

11 ≤ s
AX = B

X = XT

X ∈ Rn×n.

Building upon the developments of 2.k, the problem becomes

min t+ s

s.t. −X + tI � 0

x2
11 ≤ s
AX = B

X = XT

X ∈ Rn×n,

which is a conic program.

m. Minimising the maximum of two functions is equivalent to minimising a variable bounding both of
them. Hence, the problem can be rewritten as

min t

s.t. λmax(X) ≤ t
x2

11 ≤ t
AX = B

X = XT

X ∈ Rn×n,

or, equivalently,
min t

s.t. −X + tI � 0

x2
11 ≤ t
AX = B

X = XT

X ∈ Rn×n,
which is again a conic program.

Solution to Problem 3

Let t ∈ R+ be a new optimisation variable, and let f : Rn 7→ R+ denote the quadratic form f(x) = xTQx.
Recall that the epigraph of f is the set epi(f) = {(x, t) ∈ Rn+1|f(x) ≤ t}. With this in mind, the
optimisation problem can be equivalently written as

min t
s.t. xTQx ≤ t

||x||2 ≤ γ.

Then, since Q � 0, its Cholesky factorization is unique and can be expressed as Q = LLT , with L ∈ Rn×n
a lower triangular matrix. The first constraint therefore becomes

xTQx ≤ t⇔ xTLLTx ≤ t⇔ ||LTx||22 ≤ t.

56 CHAPTER 15. CONVEX MODELS

Now, let S1 = {(t, x) ∈ Rn+1| ||LTx||22 ≤ t}, and let K1 = {(s, t, x) ∈ Rn+2| ||LTx||22 ≤ 2st}. It is
straightforward to verify that ∀z ∈ K1 and ∀α > 0, αz ∈ K1, i.e., K1 is a cone. More precisely, K1 is a
rotated quadratic cone. It is now clear that S1 can be expressed as the intersection of a rotated quadratic
cone and an affine hyperplane, that is, S1 = {(s, t, x) ∈ Rn+2| (s, t, x) ∈ K1, s = 1/2}. Likewise, let
S2 = {x ∈ Rn| ||x||2 ≤ γ} and K2 = {(u, x) ∈ Rn+1| ||x||2 ≤ u}. K2 is a quadratic cone, and S2 can
be expressed as the intersection of this cone and an affine hyperplane, i.e., S2 = {(u, x) ∈ Rn+1| (u, x) ∈
K2, u =

√
γ}. Finally, let H = {(s, u) ∈ R2| s = 1/2, u =

√
γ}, which represents an affine hyperplane.

The optimisation problem therefore writes as

min t
s.t. (s, t, x) ∈ K1

(u, x) ∈ K2

(s, u) ∈ H,

which is a conic program, as the objective function is linear and the feasible set is formed by the inter-
section of two cones and an affine hyperplane.

Chapter 16

Second-Order Cone Programming

Solution to Problem 1

Let A = (0, 0), B = (1, 1) and C = (2, 1), respectively. The problem then reduces to that of finding a
point P = (x, y) ∈ R2 such that the maximum distance between P and A, B and C is minimum. The

distances between these points can be expressed as dA(x, y) =
√
x2 + y2, dB(x, y) =

√
(x− 1)2 + (y − 1)2

and dC(x, y) =
√

(x− 2)2 + (y − 1)2, respectively. The optimisation problem therefore reads

min max{dA(x, y), dB(x, y), dC(x, y)}
s.t. x ∈ R, y ∈ R.

It is easy to see that minimising the max of three functions is equivalent to minimising a variable bounding
all three functions simultaneously. Let t ∈ R be this variable, such that the problem can be rewritten as

min t

s.t. dA(x, y) ≤ t
dB(x, y) ≤ t
dC(x, y) ≤ t
x ∈ R, y ∈ R, t ∈ R,

or, equivalently,
min t

s.t.
√
x2 + y2 ≤ t√
(x− 1)2 + (y − 1)2 ≤ t√
(x− 2)2 + (y − 1)2 ≤ t

x ∈ R, y ∈ R, t ∈ R,
which is a second-order cone program.

Solution to Problem 2

a. Since Bond is 50 metres away from the shore and the boat is also 50 metres away from the shore, the
main problem is to identify the entry point of Bond into the sea. Let z ∈ R denote the lateral distance
Bond should cover on land before entering the sea. In addition, let x ∈ R+ and y ∈ R+ denote the distance
covered on land and in the sea, respectively. Clearly, x =

√
z2 + 502 and y =

√
(100− z)2 + 502. In

addition, the total time to reach the boat can be computed as x/5 + y/2.778. Thus, the problem Bond
is trying to solve is

min
x

5
+

y

2.778

s.t. x =
√
z2 + 502

y =
√

(100− z)2 + 502

x, y ∈ R+, z ∈ R.

57

58 CHAPTER 16. SECOND-ORDER CONE PROGRAMMING

Since equality constraints are nonlinear, the problem is nonconvex. A simple way to produce an equivalent
convex problem is to relax the equality constraints. The problem then becomes

min
x

5
+

y

2.778

s.t. x ≥
√
z2 + 502

y ≥
√

(100− z)2 + 502

x, y ∈ R+, z ∈ R.

This updated problem is equivalent to the original problem since x and y both have positive coefficients
in the objective function which is minimised. Hence, the relaxed constraints will in fact be satisfied with
equality. Furthermore, each inequality constraint now defines a quadratic cone, such that the problem at
hand is a second-order cone program.

b. Recall that for a generic conic program

min cTw

s.t. (Aiw − bi) ∈ Ki, i = 1, . . . , N

w ∈ Rn,

with Ki ⊂ Rm, i = 1, . . . , N, a (convex) cone, the dual problem reads

max

N∑
i=1

bTi pi

s.t. c =

N∑
i=1

ATi pi

pi ∈ Ki
∗, i = 1, . . . , N.

Note that some cones are self-dual, that is, K = K∗. In the case at hand, we are dealing with two
quadratic cones, which can be shown to be self-dual. The primal problem can now be rewritten as

min
x

5
+

y

2.778

s.t. (x, z, 50) ∈ L2

(y, 100− z, 50) ∈ L2

x, y ∈ R+, z ∈ R,

or, equivalently,
min cTw

s.t. (A1w − b1) ∈ L2

(A2w − b2) ∈ L2

w ∈ R2
+ × R,

with

w =

xy
z

 , c =

 1/5
1/2.77

0

 , A1 =

1 0 0
0 0 1
0 0 0

 , A2 =

0 1 0
0 0 −1
0 0 0

 , b1 =

 0
0
−50

 and b2 =

 0
−100
−50

 .

The dual problem is immediately retrieved and reads

max bT1 p1 + bT2 p2

s.t. AT1 p1 +AT2 p2 = c

p1 ∈ L2, p2 ∈ L2.

59

Let p1 = (r1, s1, t1)T and p2 = (r2, s2, t2)T . Then, the dual problem can be equivalently expressed as

max − 50t1 − 100s2 − 50t2

s.t. r1 + s2 = 1/5

t1 − t2 = 1/2.77

(r1, s1, t1) ∈ L2, (r2, s2, t2) ∈ L2.

Solution to Problem 3

For the sake of clarity, we focus on a single chance constraint P(aTi x ≤ bi) ≥ η, bearing in mind that the
developments carried out in the following can be readily applied to each one of them. For a given x ∈ Rn,
let ui = aTi x. Notice that ui ∈ R is a (scalar) random variable. More precisely, ui is obtained as the sum
of Gaussian random variables, and it is therefore Gaussian, with mean ūi = āTi x and variance σ = xTΣix.
Hence, in plain language, the chance constraint P(aTi x ≤ bi) ≥ η expresses that the probability of ui being
smaller than bi must be greater than or equal to the confidence level η. Recall that such probabilities can
be computed via cumulative distribution functions (CDFs). In the case of Gaussian variables, tabulated
probability values are typically available for variables with zero mean and unit variance. We therefore
seek to rearrange the chance constraint to feature a random variable with these properties. This can be
simply achieved by introducing the random variable ui−ūi√

σi
and writing

P(ui ≤ bi) ≥ η ⇔ P
(
ui − ūi√

σi
≤ bi − ūi√

σi

)
≥ η.

Note that the covariance matrix Σi is positive semidefinite (and symmetric) by definition, such that
√
σi

is well-defined. For now, let us assume that x has been selected such that
√
σi 6= 0. Let Φ : R 7→ [0, 1]

denote the CDF of a scalar Gaussian variable with zero mean and unit variance. Then, clearly,

P
(
ui − ūi√

σi
≤ bi − ūi√

σi

)
= Φ

(
bi − ūi√

σi

)
.

In other words, the chance constraint can be expressed as

Φ

(
bi − ūi√

σi

)
≥ η.

Now, let Φ−1 : [0, 1] 7→ R be the inverse of Φ. Although no closed-form expression is available for Φ−1,
it is known to be strictly increasing over its domain. Thus, forming the composition of Φ−1 and the
functions on both sides of the chance constraint yields

Φ

(
bi − ūi√

σi

)
≥ η ⇔ Φ−1

(
Φ

(
bi − ūi√

σi

))
≥ Φ−1(η)⇔ bi − ūi√

σi
≥ Φ−1(η),

as the composition of a function with its inverse is the identity map. Multiplying both sides of the
inequality by

√
σi then leads to

bi − ūi ≥ Φ−1(η)
√
σi.

The right-hand side of this inequality is an affine function of x, as bi − ūi = bi − āTi x. Inspecting the
left-hand side of the inequality reveals that it can be expressed in terms of the 2-norm of some linear
function of x. Indeed,

√
σi =

√
xTΣix =

√
xTΣ

1
2
i Σ

1
2
i x = ||Σ

1
2
i x||2.

Note that the positive square root Σ
1
2
i of the covariance matrix is well-defined and symmetric because

the latter is positive semidefinite and symmetric. Hence, the original problem can be recast as

min cTx

s.t. bi − āTi x ≥ Φ−1(η)||Σ
1
2
i x||2, i = 1, . . . , N

x ∈ Rn.

In the case at hand, η ≥ 0.5, such that Φ−1(η) ≥ 0, and each chance constraint defines a second-order
cone. Thus, the original chance constrained linear program has been recast as a second-order cone

program. Note that this formulation also works for x ∈ Rn such that
√
σi = ||Σ

1
2
i x||2 = 0.

60 CHAPTER 16. SECOND-ORDER CONE PROGRAMMING

Solution to Problem 4

a. Ideally, we would like f(x) ≥ 1, ∀x ∈ X, which is equivalent to stating that 1 − f(x) = 1 −
wTx + b ≤ 0, ∀x ∈ X. If this condition is satisfied for a given x, no penalty should be incurred. By
contrast, 1 − wTx + b ≥ 0 implies that f(xi) ≤ 1 and the separation constraint is violated. Thus, such
outcomes should be penalised. Using the max function, ∀x ∈ X, a simple penalty can be expressed
via lX(x) = max {1 − wTx + b, 0}. In addition, we would like f(y) ≤ −1, ∀y ∈ Y . For a given y,
this condition is equivalent to 1 + wT y − b ≤ 0. Conversely, 1 + wT y − b ≥ 0 indicates that f(y) ≥
−1, such that the separation constraint is violated. Hence, this outcome should be penalised, e.g., via
lY (y) = max {1 + wT y − b, 0}. Thus, for given w ∈ Rn and b ∈ R, the total penalty will be obtained as∑N
i=1 lX(xi) +

∑M
j=1 lY (yj). Roughly speaking, minimising this function of w and b will yield a classifier

f(z) = wT z − b with good accuracy on the training data at hand. However, we would also like this
classifier to remain reasonably accurate even if small perturbations arise in the data, that is, we want it
to be robust. From a geometric perspective, we know that wT z = b defines a hyperplane in Rn. Recall
that wT z = b + ε is also a hyperplane, which can be obtained from the original one by translating it in
the direction of w by an amount ε/||w||22 ∈ R. Indeed, ∀z ∈ Rn such that wT z = b,

wT (z +
ε

||w||22
w) = wT z + ε

wTw

||w||22
= b+ ε.

In other words, for any b1, b2 ∈ R, the sets of points in Rn satisfying wT z = b1 and wT z = b2 correspond
to two parallel hyperplanes separated by a distance |b2 − b1|/||w||22. In order to maximise the distance
between these two hyperplanes, ||w||22 should therefore be as small as possible. In the case at hand, to
increase classifier robustness, we would like to maximise the distance between hyperplanes f(z) = 1 and
f(z) = −1, which can be achieved by selecting a vector w ∈ Rn whose 2-norm is small. The robustness
criterion will therefore be expressed as the minimisation of r(w) = ||w||22.

b. Recall that we are trying to balance classifier accuracy and robustness, that is, a trade-off between
these two properties must be found. We therefore introduce a hyperparameter µ ∈ R+ which will either
favour robustness or accuracy. With this in mind, the classifier can be constructed by solving the following
optimisation problem

min
w∈Rn,b∈R

r(w) + µ

(N∑
i=1

lX(xi) +

M∑
j=1

lY (yj)

)
,

or, equivalently,

min
w∈Rn,b∈R

||w||22 + µ

(N∑
i=1

max {1− wTxi + b, 0}+

M∑
j=1

max {1 + wT yj − b, 0}
)
.

c. The problem at hand can be readily recast as a second-order cone program. Indeed, let t, s ∈ R,
and let ui ∈ R, i = 1, . . . , N, and vj ∈ R, j = 1, . . . ,M . Notice that minimising ||w||22 is equivalent
to minimising t subject to ||w||22 ≤ st and s = 1. In addition, recall that minimising the max of two
functions is equivalent to minimising a variable bounding these two functions simultaneously. In other

61

words, the optimisation problem can be rewritten as

min t+ µ

(N∑
i=1

ui +

M∑
j=1

vj

)
s.t. ||w||22 ≤ st

s = 1

1− wTxi + b ≤ ui, i = 1, . . . , N

0 ≤ ui, i = 1, . . . , N

1 + wT yj − b ≤ vj , j = 1, . . . ,M

0 ≤ vj , j = 1, . . . ,M

w ∈ Rn, b ∈ R
ui ∈ R, i = 1, . . . , N

vj ∈ R, j = 1, . . .M.

Note that the first inequality constraint defines a rotated quadratic cone, while all other constraints are
linear inequalities. Since the objective function is linear, the problem at hand is indeed an instance of a
second-order cone program.

Chapter 17

Semidefinite Programming

Solution to Problem 1

We seek a (tight) bound on the optimum via the dual problem. We start by rewriting the primal problem
as

min 2p1 + p4

s.t. A1p1 +A2p2 +A3p3 +A4p4 −B � 0,

with

A1 =

1 0 0
0 0 0
0 0 0

 , A2 =

0 1 0
1 0 0
0 0 0

 , A3 =

0 0 1
0 0 0
1 0 0

 , A4 =

0 0 0
0 1 0
0 0 1

 and B =

0 0 0
0 1 0
0 0 0

 .

The positive semidefiniteness constraint is now expressed as a linear matrix inequality (LMI). Let

b =
(
2 0 0 1

)T
and p =

(
p1 p2 p3 p4

)T
.

In addition, let tr be a function associating the sum of its diagonal entries to any square matrix. Note
that tr is a linear function. Indeed, for square matrices C and D of appropriate dimensions, tr(C +D) =
tr(C) + tr(D), and tr(αC) = αtr(C), ∀α ∈ R. The trace also has other useful properties, such as

tr(CTD) = tr(CDT) = tr(DTC) = tr(DCT).

Using this function, we define the inner product tr(UTV) =
∑
i,j UijVij for matrices U and V of appro-

priate dimensions. We formulate the dual problem next. Since the cone of positive semidefinite matrices
is self-dual, the dual variables can be viewed as the entries of a (symmetric) positive semidefinite matrix
X ∈ R3×3. Now, let L : R4 × R3×3 7→ R be the Lagrangian function

L(p,X) = bT p− tr

(
XT

(4∑
i=1

Aipi −B
))

,

For any primal feasible p, the Lagrangian provides a lower bound on the primal objective, as

tr(ZY) = tr(ZY
1
2Y

1
2) = tr(Y

1
2ZY

1
2) ≥ 0,

for any (symmetric) positive semidefinite matrices Z and Y of appropriate dimensions. The Lagrangian
can also be successively re-expressed as

L(p,X) = bT p− tr

(
XT

(4∑
i=1

Aipi −B
))

=

4∑
i=1

bipi −
4∑
i=1

tr
(
XTAipi

)
− tr

(
−XTB

)
62

63

=

4∑
i=1

(
bi − tr

(
XTAi

))
pi + tr

(
XTB

)
.

Now, let d : R3×3 7→ R be the dual function

d(X) = inf
p∈R4

L(p,X),

which obviously provides a lower bound on the primal objective. Since we seek finite lower bounds, we
enforce bi − tr(XTAi) = 0, i = 1, . . . , 4. The dual function therefore becomes d(X) = tr(XTB), and the
dual problem reads

max tr(XTB)
s.t. tr(XTAi) = bi, i = 1, . . . , 4

X � 0.

In the case at hand, substituting the expressions for Ai, i = 1, . . . , 4, and bi, i = 1, . . . , 4, yields

max x22

s.t. x11 = 2
x12 + x21 = 0
x13 + x31 = 0
x22 + x33 = 1
X � 0,

with xij the entries of X. Since X is symmetric, xij = xji, i 6= j. Hence, the second and third constraints
imply that

x12 = x21 = x13 = x31 = 0.

In other words, the dual problem becomes

max x22

s.t. x22 + x33 = 12 0 0
0 x22 x23

0 x32 x33

 � 0.

We then seek an algebraic criterion to express the positive semidefiniteness of X. Sylvester’s criterion
provides a necessary and sufficient condition to determine whether Hermitian or orthogonal matrices are
positive definite. More precisely, positive definiteness can be asserted by checking that all leading principal
minors are positive. To guarantee positive semidefiniteness, however, a stronger condition is required.
Indeed, a sufficient condition for positive semidefiniteness is that all principal minors are nonnegative.
Hence, applying this criterion to X yields

2 ≥ 0, x22 ≥ 0, x33 ≥ 0,

∣∣∣∣ 2 0
0 x22

∣∣∣∣ ≥ 0,

∣∣∣∣ x22 x23

x32 x33

∣∣∣∣ ≥ 0,

∣∣∣∣ 2 0
0 x33

∣∣∣∣ ≥ 0,

∣∣∣∣∣∣
2 0 0
0 x22 x23

0 x32 x33

∣∣∣∣∣∣ ≥ 0.

Since X is symmetric, x23 = x32, and the dual problem now reads

max x22

s.t. x22 + x33 = 1
x22x33 − x2

23 ≥ 0
x22 ≥ 0, x33 ≥ 0,

which is a conic program, as the second constraint defines a rotated quadratic cone. Since there exists
a strictly feasible solution to this convex problem, e.g.,

(
x22 x33 x23

)
=
(
0.5 0.5 0

)
is a feasible

solution such that the nonlinear inequality is strictly satisfied, Slater’s condition is verified and strong
duality holds. Thus, at optimality, the primal and dual objectives are equal. In the case at hand, it is
clear that the optimum is reached for x22 = 1, thus 2p1 + p4 = 1. By virtue of the criterion for positive
semidefiniteness, all diagonal entries of the matrix in the primal problem must be nonnegative. Hence,
p4 − 1 ≥ 0, such that p1 = 0 and p4 = 1. It then follows that p2 = p3 = 0.

64 CHAPTER 17. SEMIDEFINITE PROGRAMMING

Solution to Problem 2

a. The problem of showing that a univariate polynomial p is nonnegative can be tackled by solving

p? = min
x∈R

p(x)

and checking that p? ≥ 0. Alternatively, solving the equivalent maximisation problem

ρ? = max
ρ∈R

ρ

s.t. p(x)− ρ ≥ 0, ∀x ∈ R,

and checking that ρ? ≥ 0 will also provide a certificate of nonnegativity. Note that in this equivalent
problem, x is no longer a variable. Instead, the largest lower bound on p is sought. This problem therefore
has a single variable, a linear objective as well as an (uncountably) infinite number of linear inequality
constraints. Such problems are called semi-infinite programs. Although the problem at hand is linear, the
infinite number of constraints makes it very challenging to solve. One way to overcome this issue consists
in reformulating the constraints p(x) − ρ ≥ 0, ∀x ∈ R, so as to obtain a tractable convex problem. To
this end, a popular approach consists in seeking to decompose the left-hand side expression p(x)− ρ into
a sum of squares. More precisely, let 2d denote the degree of p. Observe that p can only be of even
degree, as odd degree polynomials cannot be nonnegative. In addition, let z : R 7→ Rd+1, with z(x) the

vector of monomials z(x) =
(
1 x . . . xd

)T
. Then, trying to express p(x) − ρ as a sum of squares is

equivalent to seeking Q ∈ R(d+1)×(d+1), Q � 0, such that p(x) − ρ = z(x)TQz(x), ∀x ∈ R. Clearly, if
such a Q exists, p(x)− ρ ≥ 0, ∀x ∈ R. Thus, the equivalent problem becomes

max
ρ,Q

ρ

s.t. p(x)− ρ = z(x)TQz(x), ∀x ∈ R
Q � 0,

which is linear in the variables ρ and (the entries of) Q. Although the resulting problem might appear
to be another instance of a semi-infinite program, it can be readily turned into a tractable convex
program. Indeed, the constraints p(x)−ρ = z(x)TQz(x), ∀x ∈ R, can be replaced by a finite set of linear
equality constraints enforcing that the coefficients of the monomials on both sides of the original equality

constraints are equal. In the case at hand, z =
(
1 x x2

)T
, such that

z(x)TQz(x) =
(
1 x x2

)q11 q12 q13

q21 q22 q23

q31 q32 q33

 1
x
x2

= q11 + (q21 + q12)x+ (q31 + q22 + q13)x2 + (q23 + q32)x3 + q33x

4.

Enforcing p(x)− ρ = z(x)TQz(x), ∀x ∈ R, therefore yields

q11 = 2− ρ
q12 + q21 = −2

q31 + q22 + q13 = 4

q23 + q32 = −2

q33 = 2,

such that the following semidefinite program is obtained

max 2− q11

s.t. q12 + q21 = −2
q31 + q22 + q13 = 4
q23 + q32 = −2
q33 = 2
Q � 0.

65

Now, let

B =

1 0 0
0 0 0
0 0 0

 , A1 =

0 1 0
1 0 0
0 0 0

 , A2 =

0 0 1
0 1 0
1 0 0

 , A3 =

0 0 0
0 0 1
0 1 0

 , A4 =

0 0 0
0 0 0
0 0 1

 ,

and c =
(
−2 4 −2 2

)T
. The semidefinite program can be expressed more concisely as

max 2− tr(BTQ)
s.t. tr(ATi Q) = ci, i = 1, . . . , 4

Q � 0.

Note that finding a solution to this problem implies that the polynomial p can be decomposed into a
sum of squares, and is therefore nonnegative. In particular, it is worth mentioning that a nonnegative
univariate polynomial of arbitrary (even) degree can always be decomposed into a sum of squares. Thus,
in this case, the approximation is exact. The approximation is also exact for quadratic polynomials
with an arbitrary number of variables, and for polynomials of degree four with two variables. However,
in general, if the problem is infeasible, this only signifies that no such decomposition exists, and no
conclusions can be drawn as to the nonnegativity of p.

b. The dual problem can be formed by introducing dual variables pi ∈ R, i = 1, . . . , 4, constructing the
Lagrangian L : R4 × R3×3 7→ R,

L(p,Q) = 2− tr(BTQ) +

4∑
i=1

pi

(
ci − tr(ATi Q)

)
= −tr

((
B +

4∑
i=1

Aipi

)T
Q
)

+ 2 +

4∑
i=1

pici,

and defining the dual function d : R4 7→ R,

d(p) = max
Q�0

L(p,Q).

Since we are only interested in finite values of the dual function, the condition B +
∑4
i=1Aipi � 0 must

be enforced, such that d(p) = 2 +
∑4
i=1 pici. The dual problem, which seeks to minimise the value of the

dual function, therefore reads

min 2 +
∑4
i=1 pici

s.t.
∑4
i=1Aipi +B � 0

pi ∈ R, i = 1, . . . , 4.

Note that the first constraint is a linear matrix inequality. This dual problem can also be rewritten in a
form similar to that of the primal problem in Problem 1,

min 2− 2p1 + 4p2 − 2p3 + 2p4

s.t.

 1 p1 p2

p1 p2 p3

p2 p3 p4

 � 0.

c. Although in theory solving a semidefinite program is preferable to tackling a semi-infinite program,
only moderately-sized instances of general semidefinite programs can be efficiently solved in practice (as
of 2020). Hence, seeking models with better computational properties is desirable, even if this often comes
at the cost of imposing stricter conditions on the ansatz used to approximate p. In the sum-of-squares
decomposition framework, the basic idea consists in finding algebraic conditions guaranteeing that Q � 0
(without having to explicitly enforce it) and leading to more tractable optimisation problems, e.g., linear
or second-order cone programs. For instance, instead of attempting to decompose p as a (general) sum
of squares, a decomposition of p as a scaled diagonally dominant sum of squares could be sought. In such

66 CHAPTER 17. SEMIDEFINITE PROGRAMMING

a context, the algebraic condition relies on the fact that a symmetric matrix Q ∈ R(d+1)×(d+1) is scaled
diagonally dominant if and only if it can be expressed as

Q =
∑
i<j

M ij ,

for matrices M ij ∈ R(d+1)×(d+1) having only four nonzero entries M ij
ii , M

ij
jj , M

ij
ij , and M ij

ji forming a
symmetric and positive semidefinite 2× 2 submatrix. Note that a scaled diagonally dominant matrix is
positive semidefinite. Indeed, it is easy to check that M ij � 0, i < j, implying that

xTQx = xT
(∑
i<j

M ij

)
x =

∑
i<j

xTM ijx ≥ 0, ∀x ∈ Rd.

Note that the converse, however, is not true. In the case at hand, let

M12 =

m12
11 m12

12 0
m12

21 m12
22 0

0 0 0

 , M13 =

m13
11 0 m13

13

0 0 0
m13

31 0 m13
33

 and M23 =

0 0 0
0 m23

22 m23
23

0 m23
32 m23

33

 .

Hence, making use of the aforementioned algebraic condition leads to the following optimisation problem

max 2− tr(BTQ)
s.t. tr(ATi Q) = ci, i = 1, . . . , 4

Q = M12 +M13 +M23

M12 � 0, M13 � 0, M23 � 0.

Recall that a sufficient condition for a matrix to be positive semidefinite is that its principal minors are
nonnegative. Since matrices M ij are symmetric and only have four nonzero entries, the semidefiniteness
constraints simply reduce to

mij
iim

ij
jj − (mij

ij)
2 ≥ 0, mij

ii ≥ 0, and mij
jj ≥ 0,

and define rotated quadratic cones in mij
ii , m

ij
jj and mij

ij . Hence, the conic program is obtained

max 2− q11

s.t. q12 + q21 = −2
q31 + q22 + q13 = 4
q23 + q32 = −2
q33 = 2
q11 = m12

11 +m13
11

q12 = m12
12

q12 = q21

q13 = m13
13

q13 = q31

q22 = m12
22 +m23

22

q23 = m23
23

q23 = q32

q33 = m13
33 +m23

33

m12
11m

12
22 − (m12

12)2 ≥ 0
m13

11m
13
33 − (m13

13)2 ≥ 0
m23

22m
23
33 − (m23

23)2 ≥ 0
m12

11 ≥ 0, m13
11 ≥ 0

m12
22 ≥ 0, m23

22 ≥ 0
m13

33 ≥ 0, m23
33 ≥ 0,

which can be readily turned into a second-order cone program.

67

d. Recall that a real symmetric matrix Q ∈ R(d+1)×(d+1) with nonnegative diagonal entries is diagonally
dominant if

qii ≥
∑
j 6=i
|qij |, i = 1, . . . , d+ 1.

By virtue of Gershgorin’s circle theorem, real symmetric diagonally dominant matrices with nonnegative
diagonal entries are also positive semidefinite. Indeed, let Λ(Q) = {λ ∈ R| det(λI − Q) = 0} be the
set of eigenvalues of Q. In addition, let Di(Q) = {z ∈ C| |z − qii| ≤

∑
j 6=i |qij |}, i = 1, . . . , d + 1, be

a set of disks in the complex plane whose centres are the diagonal entries qii of Q and whose radii are
Ri =

∑
j 6=i |qij |, i = 1, . . . , d+ 1. Then, Gershgorin’s circle theorem essentially states that

Λ(Q) ⊂
⋃

i∈{1,...,d+1}
Di(Q).

Moreover, for Q diagonally dominant,

|λ− qii| ≤
∑
j 6=i
|qij | ≤ qii, ∀λ ∈ Di(Q), i = 1, . . . , d+ 1.

Since symmetric matrices have real eigenvalues, the inequalities above imply that λ ≥ 0. In other words,
the eigenvalues ofQ are nonnegative and the matrix is therefore positive semidefinite. Hence, the algebraic
conditions above can be used to check whether a polynomial p can be decomposed into a diagonally
dominant sum of squares. For each i = 1, . . . , d+1, introducing variables zij ∈ R, j = 1, . . . , d+1, j 6= i,
allows for the reformulation of the algebraic conditions in terms of linear inequality constraints,

qii ≥
∑
j 6=i

zij

−zij ≤ qij ≤ zij , j = 1, . . . , d+ 1, j 6= i.

Thus, a linear program can be formulated to check whether p can be expressed as a diagonally dominant
sum of squares. In the case at hand, this linear program reads

max 2− q11

s.t. q12 + q21 = −2
q31 + q22 + q13 = 4
q23 + q32 = −2
q33 = 2
q12 = q21

q13 = q31

q23 = q31

q11 ≥ z12 + z13

−z12 ≤ q12 ≤ z12

−z13 ≤ q13 ≤ z13

q22 ≥ z21 + z23

−z21 ≤ q21 ≤ z21

−z23 ≤ q23 ≤ z23

q33 ≥ z31 + z32

−z31 ≤ q31 ≤ z31

−z32 ≤ q32 ≤ z32

q11 ≥ 0, q22 ≥ 0, q33 ≥ 0.

Note that despite the computational advantages of linear and second-order cone programming formula-
tions, stricter conditions have been imposed on the structure of the decomposition of p to derive them.
Let DSOS2d, SDSOS2d and SOS2d denote the sets of (univariate) polynomials of degree 2d that may be
decomposed into a diagonally dominant sum of squares, a scaled diagonally dominant sum of squares
and a (general) sum of squares, respectively. In addition, let PSD2d be the set of nonnegative (univari-
ate) polynomials of degree 2d. Then, in the particular case of univariate polynomials, it can be shown
that DSOS2d ⊆ SDSOS2d ⊆ SOS2d = PSD2d. Note that in general, however, the last relation will be
replaced by ⊆. Hence, nothing can be said as to the nonnegativity of p if the linear and second-order
cone programs happen to be infeasible.

Chapter 18

Unconstrained Optimization and
Descent Methods

Solution to Problem 1

a. Recall that descent methods seek an approximate minimiser of some continuously differentiable func-
tion f : Rn 7→ R by producing a sequence of iterates {zk}k∈N of the form zk+1 = zk + tkdk, with tk > 0
the step size and dk a so-called descent direction, i.e., such that (dk)T∇f(zk) < 0. Note that the gradient
∇f(zk) evaluated at zk points in the direction of steepest local ascent, and any vector dk ∈ Rn satis-
fying the aforementioned condition will therefore point in a direction in which f decreases. Although a
variety of descent directions can be envisaged, the so-called gradient descent direction consists in taking
dk = −∇f(zk). Clearly, (dk)T∇f(zk) = −∇f(zk)T∇f(zk) = −||∇f(zk)||22 < 0, unless zk is a stationary
point of f . This direction is sometimes referred to as the steepest descent direction. In the case at hand,
the gradient of g can be readily computed as

∇f =

(
cos(x+ y) + x

3
cos(x+ y) + y

)
,

and evaluating it at (x0, y0) yields

∇f(x0, y0) =

(
1
1

)
.

The gradient descent direction is immediately obtained as dG = −∇f(x0, y0) =
(
−1 −1

)T
. Note that

the gradient descent method is referred to as a first-order method as it only exploits information about
the first derivatives of f or g.

b. Recall that in the context of unconstrained optimisation problems, Newton’s method seeks a sta-
tionary point of a twice continuously differentiable function f : Rn 7→ R by solving the system of (usually
nonlinear) equations ∇f(z) = 0. The Jacobian of this system is the Hessian matrix H ∈ Rn×n, which has
entries Hij = ∂f/∂zizj . Note that H = HT , as f is assumed twice continuously differentiable. Provided
that H(zk) is not singular, in its simplest form, Newton’s method produces a sequence of iterates

zk+1 = zk −H−1(zk)∇f(zk),

withH−1(zk) the inverse of the Hessian evaluated at zk. This update rule can be obtained from the generic
rule given in a. by taking steps of constant length tk = 1 and following direction dk = −H−1(zk)∇f(zk).
Thus, Newton’s method can be viewed as scaled version of the classical gradient descent method. Observe
that dk is only a valid descent direction if H(zk) is positive definite. Indeed, xTH(zk)x > 0, ∀x ∈ Rn,
implies that 0 < xTH(zk)x = xTH(zk)H−1(zk)H(zk)x = yTH−1(zk)y, ∀y ∈ Rn, thus (dk)T∇f(zk) =
−∇f(zk)H−1(zk)∇f(zk) < 0. In the case at hand, the Hessian can be readily formed as

H(x, y) =

(
− sin(x+ y) + 1

3 − sin(x+ y)
− sin(x+ y) − sin(x+ y) + 1

)
,

68

69

such that

H(x0, y0) =

(
1/3 0
0 1

)
� 0 and H−1(x0, y0) =

(
3 0
0 1

)
� 0.

Then, the Newton direction dN can be computed as

dN = −H−1(x0, y0)∇f(x0, y0) = −
(

3 0
0 1

)(
1
1

)
=

(
−3
−1

)
.

Note that setting t0 = 0.3131 and taking z1 = z0 +t0dN =
(
−0.9393 −0.3131

)T
yields a local minimiser

of g, i.e., Newton’s method converges in one step. The gradient method would have required more than
one step. Finally, it is worth noting that in contrast to the gradient descent method, Newton’s method
makes use of second-order derivatives of f , and is therefore called a second-order method.

Solution to Problem 2

Let f : Rn 7→ R be a continuously differentiable function. Recall that the gradient descent method
consists in constructing a sequence of iterates {zk}k∈N such that zk+1 = zk + tkdk, for some appropriate
step size tk > 0 and descent direction dk = −∇f(zk). Thus, forming dk requires the computation and
evaluation of all first-order derivatives of f at each iteration, which may sometimes prove expensive or
impractical. In fact, most of the time, computing the full gradient at each iteration is not required to
obtain a valid descent direction. Indeed, let ik ∈ {1, . . . , n} be an appropriately selected coordinate index,
let [∇f]ik = ∂f/∂zik denote the ithk entry of the gradient of f evaluated at zk, and let eik ∈ Rn be a
vector whose entries are all equal to 0, except the ithk , which is equal to 1. Then, let dk = −[∇f(zk)]ikeik ,
and observe that (dk)T∇f(zk) = −[∇f(zk)]ike

T
ik
∇f(zk) = −[∇f(zk)]2ik < 0, unless zk is a coordinate-

wise minimiser of f , i.e., f(zk) ≤ f(zk + teik), ∀t ∈ R. In other words, dk is a valid descent direction
most of the time, and it only requires the computation of one partial derivative of f along coordinate
ik. Algorithms resorting to such descent directions are usually referred to as coordinate descent methods.
In their simplest form, a coordinate index ik is selected at each iteration k ∈ N, e.g. by cycling among
coordinates such that ik+1 = [ik mod n] + 1, the associated coordinate descent direction is computed,
and the next iterate is formed with the classical update rule. Such methods therefore select directions
that alternate between coordinates in an attempt to identify a minimiser of f . Note that in such a setup,
the step size tk can often be computed by exact minimisation of f along dk (an exact line search), which
simply reduces to the one dimensional problem

tk = arg min
t≥0

f(zk + tdk) = arg min
t≥0

f(zk − t[∇f(zk)]ikeik).

There is much scope for variation with such methods. In particular, block coordinate descent methods
constitute a straightforward extension of the aforementioned techniques, whereby a subset of indices is
selected at each iteration and the coordinates of the next iterate are updated sequentially. More precisely,
let Ik = {i1, . . . , iM} ⊂ {1, . . . , n} denote the set of (non-repeated) coordinate indices selected at iteration
k, such that 1 ≤ i1 < i2 < . . . < iM ≤ n. Then, the coordinates of the next iterate zk+1 are computed as

zk+1
i1

= zki1 − tki1 [∇f(zk1 , . . . , z
k
n)]i1

zk+1
i2

= zki2 − tki2 [∇f(zk1 , . . . , z
k+1
i1

, . . . , zkn)]i2
...

zk+1
iM

= zkiM − tkiM [∇f(zk1 , . . . , z
k+1
i1

, . . . , zk+1
iM−1

, . . . , zkn)]iM

for appropriately selected step sizes tki > 0, ∀i ∈ Ik, and

zk+1
i = zki , ∀i ∈ {1, . . . , n} \ Ik,

respectively. Block coordinate methods are particularly attractive when the objective function is amenable
to a sum of functions of subsets of coordinates of zk, i.e., when the objective has a separable structure.
Indeed, in such a context, the aforementioned subsets of coordinates define the so-called blocks, and
block coordinate updates can be performed independently and thus parallelised, which may bring about

70 CHAPTER 18. UNCONSTRAINED OPTIMIZATION AND DESCENT METHODS

significant computational benefits. It is also worth mentioning that these methods are directly connected
to stochastic gradient descent methods typically used in machine learning applications.

In the case at hand, g(z1, z2) = (z1+z2−2)2

2 + (z1 − z2 + 2)2, and let z0 = (z0
1 , z

0
2) = (0, 0). The partial

derivatives of g with respect to z1 and z2 write

∂g

∂z1
= (z1 +z2−2)+2(z1−z2 +2) = 3z1−z2 +2 and

∂g

∂z2
= (z1 +z2−2)−2(z1−z2 +2) = −z1 +3z2−6.

In the block coordinate framework using an exact line search, the coordinates of the next iterate are
obtained as

z1
1 = arg min

x
g(x, z0

2)

z1
2 = arg min

y
g(z1

1 , y).

Writing the optimality conditions of the first subproblem allows us to retrieve the value of z1
1 ,

∂g

∂z1

∣∣∣∣
(z11 ,z

0
2)

= 0⇔ 3z1
1 − z0

2 + 2 = 0⇒ z1
1 = −2

3
.

Likewise, expressing the optimality conditions of the second subproblem yields

∂g

∂z2

∣∣∣∣
(z11 ,z

1
2)

= 0⇔ −z1
1 + 3z1

2 − 6 = 0⇒ z1
2 =

16

9
,

such that z1 = (z1
1 , z

1
2)T = (−2/3, 16/9)T . The coordinates of the second iterate can be readily computed

as

3z2
1 − z1

2 + 2 = 0⇒ z2
1 =
−2

27
and − z2

1 + 3z2
2 − 6 = 0⇒ z2

2 = 2 +
2

81
,

and z2 = (z2
1 , z

2
2)T = (−2/27, 2 + 2/81)T . Coding up this procedure shows that a handful of iterations

are required to converge to z? = (z?1 , z
?
2)T = (0, 2)T . It is straightforward to check that z? is a stationary

point corresponding to a (global) minimum of g, as g(z?) = 0 ≤ g(z),∀z ∈ R2. Finally, even though
the coordinate descent method invoked in this problem quickly converged to a stationary point, it is
worth noting that it may not always be the case, even for convex functions. Relatively strong conditions
are typically required, e.g., on the smoothness of the objective (and its derivatives), to guarantee that
coordinate descent methods indeed converge to stationary points.

Solution to Problem 3

Let f : Rn 7→ R be a continuously differentiable function. Recall that the gradient descent algorithm is
an iterative method seeking approximate minimisers of f by taking a step in the steepest (local) descent
direction at each iteration. More formally, the method produces a sequence of iterates {zk}k∈N via the
update rule zk+1 = zk + tkdk, with step size hk > 0 and direction dk = −∇f(zk). There are several ways
of selecting the step size tk at each iteration. For instance, an exact line search could be performed along
dk, that is,

tk = arg min
t≥0

f(zk + tdk).

Although this method of selecting step sizes guarantees that the gradient descent method converges to a
stationary point of f , solving this subproblem at each iteration is computationally expensive. Hence, this
approach usually proves impractical. Instead, inexact line search methods have been proposed. Roughly
speaking, inexact line search methods attempt to cheaply identify step sizes that achieve a sufficiently
large decrease in objective function value at each iteration, while ensuring convergence of the algorithm.
These specifications are usually encoded by algebraic conditions that can be easily checked, and the
candidate step size is updated iteratively until a step size satisfying all conditions is found. An instance
of such algebraic conditions is the Wolfe conditions,

f(zk + tkdk) ≤ f(zk) + β1t
k(dk)T∇f(zk),

71

and
(dk)T∇f(zk + tkdk) ≥ β2(dk)T∇f(zk),

with 0 < β1 < β2 < 1. The parameters β1 and β2 are often selected such that 0 < β1 < 0.5 and
0.5 < β2 < 1. Roughly speaking, the first condition, which is also known as Armijo’s condition, ensures
that the decrease in objective function value is sufficiently big, and implicitly defines an upper bound on
tk. The second condition, which is sometimes referred to as the curvature condition, guarantees that the
step size is not too small.

Now, let tL = 0 and tH = +∞. The inexact line search method developed in the following essentially
seeks a value tk such that tL < tk < tH and the Wolfe conditions are satisfied. This is achieved by
progressively updating tk as well as the bounds tL and tH . Let tk = 1, β1 = 1/4 and β2 = 3/4 and let us
assume that the current iterate is zk = (xk, yk) = (0, 0). In order to evaluate the Wolfe conditions and
form dk, the expression of the gradient of g must be computed,

∇g(x, y) =

(
4x3 − 4xy + 2x− 2

2y − 2x2

)
,

such that dk = −∇f(zk) = −
(
−2 0

)T
=
(
2 0

)T
. The candidate iterate can then be computed as

ẑk+1 = zk + tkdk =

(
0
0

)
+ 1

(
2
0

)
=

(
2
0

)
,

such that f(zk) = 1, f(ẑk+1) = 17 and β1t
k(dk)T∇g(zk) = (1/4) × 1 × (−4) = −1. Armijo’s condition

is violated, as 17 > 1 + (−1) = 0, which implies that the step size is too big. The upper bound is
therefore updated such that tH = 1. In this case, a bisection type update rule is used to compute the
new candidate step size, which becomes tk = (tL + tH)/2 = 1/2. The candidate iterate must also be
updated accordingly

ẑk+1 = zk + tkdk =

(
0
0

)
+

1

2

(
2
0

)
=

(
1
0

)
,

which yields f(ẑk+1) = 1 and β1t
k(dk)T∇g(zk) = (1/4)× (1/2)× (−4) = −1/2. The first Wolfe condition

is again violated, as 1 > 1 + (−1/2) = 1/2. The upper bound thus becomes tH = 1/2, while tk =
(tL + tH)/2 = 1/4. The candidate iterate must be update once more,

ẑk+1 = zk + tkdk =

(
0
0

)
+

1

4

(
2
0

)
=

(
1/2
0

)
,

such that f(ẑk+1) = (1/16) + (1/4) = 5/16 and β1t
k(dk)T∇g(zk) = (1/4) × (1/4)× (−4) = −1/4. This

time, Armijo’s condition is satisfied, as 5/16 ≤ 1 + (−1/4) = 3/4 = 12/16. The second condition must
now be checked. Evaluating the numerator and denominator of the expression appearing on the left-hand
side yields (dk)T∇g(ẑk+1) = −1 and (dk)T∇g(zk) = −4, such that −1 ≥ (3/4) × (−4) = −3 and the
second Wolfe condition is also satisfied. In other words, tk = 1/4 is a valid step size, and taking a gradient

step therefore yields the next iterate zk+1 = ẑk+1 =
(
1/2 0

)T
.

Chapter 19

Constrained Optimization and
Interior Point Methods

Solution to Problem 1

To be added.

72

Chapter 20

Automatic Differentiation

Solution to Problem 1

a. Computing gradients or higher-order derivatives of the objective function is required in a broad
class of optimisation algorithms. To this end, several techniques can be invoked, including symbolic
differentiation or finite differences. In particular, if we have an analytical expression of the objective
function at hand, and provided that it is relatively simple, the expression of the gradient or that of higher-
order derivatives can often be computed by hand or via a software performing symbolic calculations. Once
the expression of the gradient is available, computing its value then requires n function evaluations, with
n the number of optimisation variables. In some cases, however, although an analytical formula may be
available, it may be too cumbersome to resort to symbolic calculations. On the other hand, if no analytical
expression is available or the objective function is only available in the form of computer code, it may
be necessary to employ finite difference schemes, which approximate derivatives numerically. In this
setup, computing a gradient with a classical (first-order) finite difference scheme requires n+ 1 function
evaluations. This technique may unfortunately be inaccurate, mostly as a result of the accumulation
of roundoff errors over time. Worse, it may also prove numerically unstable. None of the techniques
described above are completely satisfactory. An algorithmic solution, named automatic differentiation,
has therefore been proposed to compute derivatives exactly and efficiently in a variety of settings.

Roughly speaking, in the context of automatic differentiation, the function to differentiate is treated
as a composition of simpler functions, down to the level of elementary arithmetic operations and func-
tions, e.g., exponentials, logarithms or sines. The chain rule is then employed to progressively compute
inner derivatives and partial derivatives of the function of interest with respect to optimisation variables
are eventually obtained. Two automatic differentiation strategies exist, namely forward and reverse
accumulation, which are also known as the forward mode and the reverse mode, respectively. Forward ac-
cumulation essentially starts ”from the inside of the chain rule” and makes its way ”towards the outside”,
whereas reverse accumulation does the exact opposite. For example, let F be a function of x obtained as
the composition of functions g, h, and p, that is, F (x) = F (g(h(p(x)))). By the chain rule, the partial
derivative of F with respect to x is

∂F

∂x
=
∂F

∂g

∂g

∂h

∂h

∂p

∂p

∂x
.

The forward accumulation technique starts by computing

∂p

∂x
, and proceeds with

∂h

∂x
=
∂h

∂p

∂p

∂x
, and

∂g

∂x
=
∂g

∂h

∂h

∂x
,

until the partial derivative of F with respect to x is reached. By contrast, the reverse accumulation
technique begins with

∂F

∂g
, then moves on to

∂F

∂h
=
∂F

∂g

∂g

∂h
and

∂F

∂p
=
∂F

∂h

∂h

∂p
,

until the partial derivative of F with respect to x has been computed. Note that the forward accumulation
technique is particularly well-suited for functions with relatively few arguments and many outputs, while
the opposite holds true for reverse accumulation. Indeed, only the innermost partial derivatives will

73

74 CHAPTER 20. AUTOMATIC DIFFERENTIATION

change for functions with few outputs and many arguments. Finally, it is also worth mentioning that
a direct connection exists between the backpropagation algorithm at the heart of deep learning/neural
networks and the reverse accumulation approach.

In the case at hand, the function f must be decomposed into a set of elementary functions. To this end,
a set of symbols representing the arguments of these functions is introduced. In particular, let w0 = x,
w1 = y, w2 = w2

0, w3 = w0w1, w4 = sin(w3), w5 = w4/w0 and w6 = w2 + w5 = f . A crucial device
on which automatic differentiation methods rely is the so-called computation or computational graph.
The computational graph, which is directed and acyclic, essentially encodes the relationships between
the different functions (and their arguments) composing f . More specifically, each edge represents a
function argument, and a node is a function of its incoming edges. Inspecting the structure of the
computational graph greatly simplifies the computation of inner partial derivatives, as discussed below.
The computational graph of the problem at hand is shown in Figure 20.1.

Now, in order to obtain the gradient of f , the partial derivatives of f with respect to both x and y
must be computed. We start with the partial derivative of f with respect to x. Let w′0 = ∂w0/∂x = 1
and w′1 = ∂w1/∂x = 0. In what follows, the prime symbol ′ will be used to denote a partial derivative
with respect to x. Then, following the edges of the computational graph in topological order (from top
to bottom in Figure 20.1) and applying the forward accumulation technique successively yields

w′2 =
∂w2

∂w0

∂w0

∂x
= 2w0w

′
0 = 2w0

w′3 =
∂w3

∂w0

∂w0

∂x
+
∂w3

∂w1

∂w1

∂x
= w1w

′
0 + w0w

′
1 = w1

w′4 =
∂w4

∂w3

∂w3

∂x
=
∂w4

∂w3
w′3 = cos(w3)w1

w′5 =
∂w5

∂w4

∂w4

∂x
+
∂w5

∂w0

∂w0

∂x
=
∂w5

∂w4
w′4 +

∂w5

∂w0
w′0 =

1

w0
cos(w3)w1 −

w4

w2
0

w′6 =
∂w6

∂w2

∂w2

∂x
+
∂w6

∂w5

∂w5

∂x
=
∂w6

∂w2
w′2 +

∂w6

∂w5
w′5 = 2w0 +

w1

w0
cos(w3)− w4

w2
0

=
∂f

∂x
.

The partial derivative of f with respect to y must now be computed. Let ẇ0 = ∂w0/∂y = 0 and
ẇ1 = ∂w1/∂y = 1. In the following, the dot symbol ˙ will be used to indicate a partial derivative with
respect to y. Then, resorting to the forward accumulation strategy leads to

ẇ2 =
∂w2

∂w0

∂w0

∂y
=
∂w2

∂w0
ẇ0 = 0

ẇ3 =
∂w3

∂w0

∂w0

∂y
+
∂w3

∂w1

∂w1

∂y
=
∂w3

∂w0
ẇ0 +

∂w3

∂w1
ẇ1 = 0 + w0 = w0

ẇ4 =
∂w4

∂w3

∂w3

∂y
=
∂w4

∂w3
ẇ3 = cos(w3)w0

ẇ5 =
∂w5

∂w4

∂w4

∂y
+
∂w5

∂w0

∂w0

∂y
=
∂w5

∂w4
ẇ4 +

∂w5

∂w0
ẇ0 =

1

w0
cos(w3)w0 + 0 = cos(w3)

ẇ6 =
∂w6

∂w5

∂w5

∂y
+
∂w6

∂w2

∂w2

∂y
=
∂w6

∂w5
ẇ5 +

∂w6

∂w2
ẇ2 = cos(w3) + 0 = cos(w3) =

∂f

∂y
.

The gradient can now be formed from the partial derivatives of f with respect to x and y. Note that
the number of terms appearing in the computation of inner derivatives is equal to the number of edges
incident to the node whose output represents the relevant function in the computational graph.

b. Let us now apply the reverse accumulation technique. Let f = w6 and w̄6 = ∂f/∂w6 = 1. In the
upcoming developments, the bar symbol¯will be used to denote a partial derivative of f with respect to
the symbol underneath the bar, i.e., w̄i = ∂f/∂wi. Following the edges of the computational graph in
reverse topological order (from bottom to top in Figure 20.1), we successively find

w̄5 =
∂f

∂w6

∂w6

∂w5
= w̄6

∂w6

∂w5
= 1

w̄4 =
∂f

∂w5

∂w5

∂w4
= w̄5

∂w5

∂w4
=

1

w0

75

Figure 20.1: Computational graph of the problem at hand. In nodes, the caret represents the exponent
operator (here a square), the star denotes a product, the sin represents the sine function, the slash stands
for a division, and the plus describes an addition.

w̄3 =
∂f

∂w4

∂w4

∂w3
= w̄4

∂w4

∂w3
=

1

w0
cos(w3)

w̄2 =
∂f

∂w6

∂w6

∂w2
= w̄6

∂w6

∂w2
= 1

w̄1 =
∂f

∂w3

∂w3

∂w1
= w̄3

∂w3

∂w1
=

1

w0
cos(w3)w0 = cos(w3) =

∂f

∂y

w̄0 =
∂f

∂w2

∂w2

∂w0
+

∂f

∂w3

∂w3

∂w0
+

∂f

∂w5

∂w5

∂w0
= w̄2

∂w2

∂w0
+ w̄3

∂w3

∂w0
+ w̄5

∂w5

∂w0
= 2w0 +

w1

w0
cos(w3)− w4

w2
0

=
∂f

∂x
,

and the gradient can be readily computed. Unsurprisingly, the same results as those obtained via forward
accumulation are found. It is also straightforward to verify that symbolic calculations would indeed yield
these results as well.

	I Problem Sets
	Introduction to Optimization Modelling
	Linear Programming and the Primal Simplex Method
	The Revised Simplex, LP Duality and the Dual Simplex
	Sensitivity Analysis in Linear Programming
	Convex Models
	Second-Order Cone Programming
	Semidefinite Programming
	Unconstrained Optimization and Descent Methods
	Constrained Optimization and Interior Point Methods
	Automatic Differentiation

	II Solutions
	Introduction to Optimization Modelling
	Linear Programming and the Primal Simplex Method
	The Revised Simplex, LP Duality and the Dual Simplex
	Sensitivity Analysis in Linear Programming
	Convex Models
	Second-Order Cone Programming
	Semidefinite Programming
	Unconstrained Optimization and Descent Methods
	Constrained Optimization and Interior Point Methods
	Automatic Differentiation

