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Abstract—The design of synchronous reluctance machines
involves a multiphysics optimization with a consequent number of
design parameters. To lower the optimization time, it is common
to split the problem into subproblems, i.e., to optimize succes-
sively the flux barriers for the electromagnetic performance, and
then the ribs for the structural integrity of the rotor. This however
leads in general to a suboptimal design, because the cross-
coupling between design parameter subsets (e.g., magnetic and
mechanical) is this way ignored. In this study, different splitting
optimization strategies have been implemented and evaluated by
comparing not only the electromagnetic performance reached by
the optimized designs, but also the computation time. Results
show that the optimization time can indeed be significantly
lowered by performing a magnetic optimization followed by a
mechanical optimization, with little impact on the mean torque
output. Pre-dimensioning analytically the radial ribs within the
magnetic optimization further reduces the optimization time and
improves the performance of the design. Finally, performing an
additional iteration on the approach leads to a mean torque and
torque ripple very close to the ones obtained by carrying the
global optimization, with however half the optimization time.

I. INTRODUCTION

The rotor of synchronous reluctance machines (SynRM)
contains no other elements than ferromagnetic material. This
simple structure reduces the manufacturing costs and improves
their reliability. The absence of permanent magnets allows
higher operating temperature and breaks free of the long-
term availability and volatile costs of rare-earth materials.
Moreover, the synchronous operation limits the rotor losses,
hence leading to an intrinsic high efficiency.

The axially laminated anisotropic (ALA) rotor topology,
proposed by Kostko [1] in 1923, is optimal for torque
generation, but hardly practicable for its construction. The
alternative transversally laminated anisotropic (TLA) rotor
topology brings the construction of such a motor in-line
with the industry standards, where identical laminations are
punched and axially stacked. The structural integrity of the
laminations is ensured by small ribs that link all the flux

guides together. These ribs must be wide enough to withstand
the magneto-mechanical loading the rotor is subjected to, but
narrow enough to limit their negative impact on the magnetic
performance of the machine. Indeed, these ribs act as a q-axis
magnetic short circuit that lowers the d-q axis anisotropy of
the rotor, hence limiting the torque output and the power factor
of the machine.

As a consequence, the design of SynRM must be ad-
dressed considering both the magnetic and mechanical aspects.
Computer-aided optimization is a very powerful tool to that
end, unfortunately the computational cost climbs quickly as
the design space grows. To reduce the optimization time, some
authors propose to simply split the design space into smaller
parts that will be optimized successively. For SynRM, this is
often done by optimizing the flux barriers separately from the
ribs, which are optimized at the end of the design approach to
ensure the structural integrity of the rotor. For instance, in [2],
a permanent magnet assisted SynRM has been designed over a
torque-speed range using computationally inexpensive models.
In [3], the structural reinforcement has been performed by
both a parametric and a topology optimization. It is worth
mentioning that the ribs optimization is often significantly
faster than the flux barriers optimization, due to a very
different evaluation time between the mechanical model and
the magnetic model.

However, carrying successive optimizations naturally de-
grades the quality of the solution because it ignores the
cross-coupling of the optimal parameters. The flux barriers
characteristics do impact the mass distribution of the rotor
and, by consequence, the mechanical load the ribs have to
sustain. Comparably, adding ribs to the design does change
the magnetic field distribution inside the rotor which affects
the magnetic performance of the machine. Hence, the benefits
of carrying successive optimizations on the total optimization
time should be weighed against the impact on the quality of
the solution. This is rarely discussed in the literature because
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Fig. 1. (a) Parametrization used to describe n flux barriers. (b) Parametrization
used to describe the radial and tangential ribs. For a reason of clarity, only
two flux barriers are represented.

of its impracticability. Indeed, it involves the application of
several design approaches that can have high computational
costs.

In this study, several design approaches are applied to
find the optimal parameters that will maximize the mean
torque of the motor under the constraints of keeping the local
mechanical stresses and the torque ripple limited. The total
optimization time and the performance reached by each design
are then compared.

In this paper, section II describes the parametrization of
the geometry, section III the magnetic and mechanical finite
element (FE) models used to assess its performance. The
design approaches to obtain the optimal design are described
in section IV, the optimization procedure in section V, and the
results are finally given in section VI.

II. GEOMETRY AND PARAMETRIZATION

The parametrization of the geometry is an essential step to
perform the optimization. A wide design space is more potent
to bring a better solution than a smaller design space, however
it also introduces a greater computational cost and potential
optimization convergence issues.

We focused the optimization on the rotor of a 4 poles motor,
with 4 flux barriers per pole and a fixed stator. The parameters
to optimize are divided into two categories: those describing
the flux barriers, xmag, and those describing the ribs, xmech.

The flux barriers are parametrized using Joukowski airfoil
potential function, written in cylindrical coordinates (r, θ) [4]:

r(θ) = Rin ·
p

√√√√C +
√
C2 + 4 sin2(pθ)

2 sin(pθ)
, (1)

with Rin the inner radius of the rotor, p the number of pole
pairs, and C a constant depending on the x position of the
curve along the symmetry line of the rotor, at θ = π/2p:

C(x) =

(
x

Rin

)2p
− 1(

x
Rin

)p . (2)

As shown in Fig. 1(a), two Joukowski lines, located at
different x, are needed to entirely describe the inner and
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Fig. 2. Example of meshes used to perform FE simulations. (a) Magnetic
mesh (rotor + stator), that has around 28000 triangular elements. (b) Mechan-
ical mesh (rotor only), that has around 35000 rectangular elements.

outer boundaries of a flux barrier. Despite the limited number
of parameters, studies have shown the excellent magnetic
performance of such shape [5]–[7].

To prevent overlaps between flux barriers, their positions
and thicknesses are determined indirectly with a set of vir-
tual springs that repel constructive points that cannot meet,
Fig. 1(a) [5]. The stiffnesses Ki of these springs are the new
design parameters, which yields a parameter space with no
other internal constraint than the positiveness of the stiffnesses.
The relationship between the position of the ith Joukowski line
xi and the stiffness Ki is:

xi = xi−1 +
Ki

2n∑
k=0

Kk

(x2n+1 − x0). (3)

On the other hand, the structural integrity of the rotor is
ensured by tangential and radial ribs, placed as depicted in
Fig. 1(b). Each rib is parametrized with a thickness t and
circular fillets of radius r to prevent stress concentration, as
shown in Fig. 1(b). Accounting for the ribs adds six parameters
per flux barrier to the design space, i.e., three for the tangential
ribs and three for the radial ribs.

III. MAGNETIC AND MECHANICAL EVALUATIONS

The electromagnetic performance of the machine is evalu-
ated using a 2D quasi-static FE model. The nonlinear B −H
characteristic of the magnetic material is accounted for by
using an iterative Newton-Raphson resolution scheme. The
torque is obtained by the integration of the Maxwell stress
tensor in the airgap. Simulations are carried out at 150 different
rotor positions to properly capture the torque ripple. The phase
of the sinusoidal currents are prescribed in coherence with the
position increments to simulate the synchronous operation of
the motor.

The model profits from the periodicity of the problem to
lower the number of degrees of freedom (DoF). The resolution
time is further reduced by using the moving band method.
With this method, the rotor and stator geometry are meshed
once, and the position increment simply consists in rotating
the rotor mesh. Triangular mesh elements are then inserted



TABLE I
NOMINAL VALUES OF THE MOTOR

Param. Value Description

Nn 1500 rpm Nominal speed
Nmax 4800 rpm Maximum speed
jn 8.5A/mm2 Nominal current density
p 2 Number of pole pairs
n 4 Number of flux barriers (per pole)

TABLE II
DESIGN SPACE BOUNDARIES (i = 0, 1, ..., 2n), (k = 1, 2, ..., n)

Param. Description Lower
bound

Upper
bound Unit

θe Current angle 45 75 ◦

Ki Virtual spring stiffness 1 10 −

r1,k Fillet radius 1 1 10 mm
r2,k Fillet radius 2 1 10 mm
tr,k Radial rib thickness 0 5 mm
r3,k Fillet radius 3 1 10 mm
r4,k Fillet radius 4 1 10 mm
tt,k Tangential rib thickness 0.3 8 mm

in the middle of the airgap to stitch the stator mesh with the
rotor mesh. Because the meaning of each DoF is kept the
same, the result of the previous position can directly be used as
starting point of the new nonlinear resolution. That drastically
lowers the iterations needed in the Newton-Raphson resolution
scheme, which benefits the global resolution time.

The mechanical stresses are obtained by an other 2D FE
model. The linear elasticity equations are solved on the rotor
geometry, which is subjected to a centrifugal load.

Both these models use the mesh generator Gmsh [8] and
the solver GetDP [9]. A fine discretization is used to keep the
results as accurate as possible. An example of the meshes used
during the optimization is shown in Fig. 2.

IV. DESIGN APPROACHES

Each design approach aims at finding the design parameters
that maximize the mean torque T while keeping the relative
torque ripple T̃ below 10%, and the local Von-Mises stress
σVM below 270MPa at the maximum speed. The nominal
values of the motor are given in Table I. With this current
density, the current angle θe that maximizes the torque per
ampere is no longer 45° because of the magnetic saturation
the motor is subjected to. As a consequence, this parameter
will also be optimized.

The full design space of the problem is presented in Table II.
The upper part of this table is linked to the magnetism-related
parameters, i.e., current angle, position and thicknesses of the
flux barriers, and will be referred as xmag. The lower part is
linked to the mechanical-related parameters, i.e., thicknesses
and fillets radii of the ribs, and will be referred as xmech.
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Fig. 3. Principle scheme of the two different design approaches. A single
full optimization can be carried out (F), or it can be split in two successive
optimizations (S). The superscript ∗ is used to define parameters that have
been optimized.
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Fig. 4. Magneto-mechanical optimization variants (F approach).

Formally, the design problem is a multiphysics single ob-
jective two constraints problem, that can be written:

max
xmag,xmech

T (xmag,xmech)

s.t. max(σVM) < 270 MPa

T̃ (xmag,xmech) < 10%.

(4)

Two main approaches are investigated to tackle the opti-
mization problem (4). As depicted in Fig. 3, the first approach
(F) consists in carrying a single optimization on the full
design space. The second approach (S) involves two successive
optimizations, the first one dealing with xmag to maximize the
mean torque under the torque ripple constraint, and the second
one dealing with xmech to ensure the structural integrity of the
rotor. The initial guess is chosen as a rotor having flux barriers
the same thicknesses as the flux guides, and no ribs:

xmag =

{
θe = 45

Ki = 1 (i = 0, 1, ..., 2n)

xmech = 0.

(5)

The choice of the initial guess in the first approach (F) is not
important as it provides parameters that are already included
in the design space, so that there is also no need to iterate.
However, iterating might help the optimization algorithm to
escape local minima.

Contrarily, the choice of the initial guess is primordial
in the second approach (S). Ideally, xmech should come as
close as possible to the optimal value of the mechanical
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Fig. 5. Approaches investigated to perform the magnetic optimization.

parameters x∗
mech, so that the electromagnetic performance of

the design will not be deteriorated too much after performing
the mechanical optimization. Iterating on the approach is
expected to bring the initial guess xmech closer to the optimal
values x∗

mech. In this study, two iterations are performed.
Beyond these two approaches, several variants of each

optimization are considered in this study. They differ by their
objectives and constraints.

The block schemes of the magneto-mechanical optimization
variants are presented in Fig. 4. The variant 1 consists exactly
in the optimization problem (4). The design that will be
obtained using the approach F1 is expected to have the best
performance, at the cost of a longer optimization time. The
variant 2 consists in dropping the torque ripple constraint from
the optimization problem:

max
xmag,xmech

T (xmag,xmech)

s.t. max(σVM) < 270 MPa.
(6)

The design obtained with this variant will most likely violate
the torque ripple constraint, but it gives an estimation on how
much mean torque is sacrificed to lower the torque ripple down
to 10%.

Two magnetic optimization variants of the split approach
(S) are represented in Fig. 5. The optimization problem is the
same for both of them:

max
xmag

T (xmag)
∣∣
xmech

s.t. T̃ (xmag)
∣∣∣
xmech

< 10%.
(7)

However, the radial ribs thicknesses tr,k vary within the
optimization of variant B. The radial ribs are pre-dimensioned
analytically, as suggested in [10], to withstand the centrifugal
loading the rotor is subjected to, which depends on the mass
distribution of the rotor:

tr,k(xmag) =
Mkω

2
mRG,k

σy
· SF, (8)

Inductance
model

Mechanical
model

Mechanical
model

Mechanical
model

Magnetic
model Optimization 

algorithm

Optimization 
algorithm

Optimization 
algorithm

Stop
criterion 

?

II

III

Stop
criterion 

?

Stop
criterion 

?

I

Fig. 6. Approaches investigated to perform the mechanic optimization.

with Mk the mass the kth rib has to withstand, RG,k the
radius of its center of gravity, ωm the rotational speed, σy the
elasticity limit of the material, and SF a safety factor arbitrarily
set to 1.5. The mass supported by the kth rib is simply the
combination of the mass of each flux guide mj located after
the rib:

Mk =

N∑
j=k

mj RG,k =

∑N
j=kmjRG,j∑N

j=kmj

, (9)

with RG,j the center of gravity of the jth flux guide.
The mechanical optimization that follows is expected to find

an optimal value of t∗r,k that is close to tr,k(xmag), so that
performing the mechanical optimization should only have a
moderate impact on the electro-magnetic performance of the
machine.

The different variants of the mechanical optimization are
represented in Fig. 6. The variant I consists in finding the
parameters xmech that maximize the mean torque, with the
constraint of keeping the mechanical stresses below 270MPa
and the torque ripple under 10%:

max
xmech

T (xmech)
∣∣
x∗

mag

s.t. max(σVM) < 270 MPa

T̃ (xmech)
∣∣∣
x∗

mag

< 10%.

(10)

This variant comes as close as possible to the initial optimiza-
tion problem (4). However, it requires the torque evaluation
of the machine through the magnetic model, which drastically
increases the optimization time. One could imagine using a
faster magnetic model to estimate T and T̃ , but the torque
ripple T̃ is so sensitive to the geometry that such a model
would not provide satisfying results.

As an alternative, other objectives and constraints can be
used to avoid the magnetic FE evaluations. The optimization
variant II consists in minimizing the cumulative ribs surface



Sribs, with the constraint of keeping the mechanical stresses
below 270MPa:

min
xmech

Sribs(xmech)|x∗
mag

s.t. max(σVM) < 270 MPa.
(11)

This new optimization comes from the intuitive idea that
minimizing the amount of material added inside the flux
barriers should minimize the impact on the other quantities
and, consequently, T and T̃ .

The optimization variant III consists in minimizing the
q-axis inductance Lq , with the constraint of keeping the
mechanical stresses below 270MPa:

min
xmech

Lq(xmech)|x∗
mag

s.t. max(σVM) < 270 MPa.
(12)

Optimization problem (12) arises after dropping the torque
ripple constraint from (10) and by using the torque equation
of SynRMs [11]:

T =
3

2
p (Ld − Lq) idiq. (13)

Under these conditions, the optimization problem (10) be-
comes:

min
xmech

−
3

2
p
(
Ld(xmech)|x∗

mag
− Lq(xmech)|x∗

mag

)
idiq

s.t. max(σVM) < 270 MPa.
(14)

Removing the independent values with respect to xmech, and
considering that the ribs have a negligible impact on the d-axis
inductance Ld, the optimization problem (14) can be simplified
to the optimization problem (12).

Although magnetism-related, the q-axis inductance Lq can
be quickly estimated by a simple model presenting negligi-
ble computational cost. By assuming flux guides as perfect
magnetic conductors and flux barriers as perfect magnetic
insulators, the q-axis inductance is obtained by solving a
magnetic circuit formed by the ribs. Radial and tangential ribs
are parallel reluctance elements within the same flux barrier,
which are put in series with the elements of the next flux
barrier, as illustrated in Fig. 7. Each rib is approximated by
a rectangular element of length l and cross-section S = L · t,
having a magnetic permeability µ. The reluctance of a rib is
given by:

R =
l

µ · S
. (15)

The permeability is assumed to be identical in all the elements
and independent of the rib dimensions. Under this assumption,
the solution of the optimization problem (12) is independent
of the magnetic permeability µ.

V. OPTIMIZATION

A non-dominated sorting genetic algorithm-II (NSGA-II)
[12] with a population size of 100 is used to solve the
optimization problems. The mutation rate is set to 3%.

q-axis 
reluctance

Fig. 7. Equivalent q-axis reluctance. The flux guides are considered infinitely
permeable, and the ribs are approximated by rectangular elements.

These calculations are carried out using the Intel i9-7940X
CPU (14 cores, 4.3 GHz). Concurrent evaluations of individ-
uals of the same generations are performed to reach a near
100% CPU load. On average, it took 47.25 s for the magnetic
model to evaluate the torque characteristics of the machine,
and 3.15 s for the mechanical model to evaluate the local Von
Mises stresses.

The optimization stops if the relative change in the objective
function over the last 30 generations is less than 0.01%.

VI. RESULTS

To avoid any confusion between the results, the magneto-
mechanical optimization variants are designated using arabic
numbers (Fig. 4), the magnetic optimization variants using
capital letters (Fig. 5), and the mechanical optimization vari-
ants using roman numbers (Fig. 6). So that, for instance, the
approach BII consists in a split design approach in which
the magnetic optimization B is paired with the mechanical
optimization II. An additional iteration on this approach will
be written BII-BII. Naturally, only the approaches that end
with either 1, 2, I, II, or III, lead to realistic designs that can
sustain the mechanical load. Intermediate steps finishing by A
or B are excluded from the presented results.

Moreover, the stochastic nature of the optimization algo-
rithm must not be ignored. This randomness is expected to
have a limited impact on approaches that consist in a single
optimization of the full design space, i.e., approaches 1 & 2.
Indeed, NSGA-II is a global search algorithm so that perform-
ing successive runs of the same optimization is supposed to
bring solutions that are very close in terms of performance,
although the underlying set of parameters [x∗

mag,x
∗
mech] might

differ significantly due to the presence of local minima.
This impact could be more important for design approaches

that consider successive optimizations, because of the cross-
coupling that exists between the set of parameters that are
optimized independently. Indeed, nothing indicates that a me-
chanical optimization on xmech given a set of parameter xmag,1
will lead to the same performance than the same optimization
given a set of parameters xmag,2, regardless of the optimization
algorithm.

To account for the cross-coupling between xmag and xmech
and the stochastic nature of the optimization algorithm, the



TABLE III
RESULTS OF THE SPLIT DESIGN APPROACHES, NORMALIZED P.U. ACCORDINGLY TO TABLE IV. THE QUANTITIES OF INTEREST ARE AVERAGED OVER

THE DIFFERENT RUNS OF THE SAME APPROACHES. ALSO, THE LOWEST AND HIGHEST VALUES ARE REPORTED AS A DISPERSION INDICATOR.

Design
approach

Mean
torque

Torque
ripple

Total
optimization

time

Design
approach

Mean
torque

Torque
ripple

Total
optimization

time

AI 0.91 +0.05
−0.05 1.00 +0.00

−0.00 0.97 +0.35
−0.24 BI 0.92 +0.03

−0.04 1.00 +0.00
−0.00 0.41 +0.01

−0.01

AI-AI 0.93 +0.03
−0.02 0.99 +0.01

−0.01 1.50 +0.45
−0.32 BI-BI 0.94 +0.03

−0.04 0.99 +0.01
−0.01 1.07 +0.07

−0.13

AII 0.96 +0.02
−0.04 1.72 +0.45

−0.27 0.48 +0.23
−0.25 BII 0.97 +0.02

−0.03 1.75 +0.13
−0.15 0.17 +0.01

−0.01

AII-AII 0.90 +0.01
−0.03 1.46 +1.00

−1.11 0.77 +0.28
−0.23 BII-BII 1.00 +0.01

−0.01 1.39 +0.39
−0.73 0.55 +0.21

−0.12

AIII 0.95 +0.03
−0.03 2.30 +0.31

−0.16 0.52 +0.20
−0.25 BIII 0.97 +0.01

−0.02 2.08 +0.32
−0.47 0.18 +0.01

−0.02

AIII-AIII 0.91 +0.01
−0.01 1.19 +0.29

−0.33 0.74 +0.18
−0.28 BIII-BIII 0.97 +0.02

−0.01 1.33 +0.39
−0.44 0.43 +0.01

−0.02

TABLE IV
RESULTS FOR DESIGN APPROACHES 1 & 2.

Design
approach

Mean
torque

Torque
ripple

Total
optimization

time

Nm p.u. % p.u. Hours p.u.

1 1250.1 1 10.00 1 302 1
2 1258.4 1.01 36.60 3.66 151 0.5

approaches that consider successive optimizations are applied
3 times, i.e., approaches AI, AII, AIII, BI, BII, BIII, and
their iterations. The average values of the quantities of interest
are used for comparison purpose, while the dispersion gives
information on how repeatable the design approach is.

The results of design approaches 1 & 2 are reported in
Table IV. The design approach 1 serves as normalization of
all the other results, as it directly implements the optimization
problem (4). Dropping the torque ripple constraint, i.e., ap-
proach 2, does not seem beneficial. It only increases the mean
torque by a negligible amount with a consequent increase of
the torque ripple. The optimization time, however, has been
halved.

The results of the split approaches are presented in Table III.
Only the approaches I explicitly accounts for the torque ripple
during the mechanical optimization, so that the obtained torque
ripple is perfectly mastered. However, the mean torque is sig-
nificantly reduced and the gain on the total optimization time
is either not significant after the first iteration (approaches AI
and BI), or even negative after the second iteration (approaches
AI-AI and BI-BI). As a conclusion, these approaches are less
interesting than approach 1 and should not be considered.

An other observation is that approaches B systematically
lead to a lower total optimization time than approaches A.
To better compare the mean torque and torque ripple of the
remaining approaches, an other visualization of the data is
presented in Fig. 8. In this visualization, the points belonging
to the same approach are linked together to form triangles. The
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Fig. 8. Performance of the design obtained by the different approaches. The
points belonging to independent runs of the same approach have been linked
together for visualization purpose. The centers of gravity of the triangles,
whose coordinates correspond to the averaged mean torque and torque ripple
presented in Table III, are marked with a +.

averaged mean torque and averaged torque ripple correspond
to the x−y coordinates of the center of gravity of the triangle,
whereas the dispersion is directly linked to the size of the
triangle.

The first iteration of approaches AII, BII, AIII, BIII,
corresponding to the dashed triangles, are quite similar in
terms of reached performance. However, this observation is no
longer true for the second iteration, corresponding to the solid
triangles. With this second iteration, approaches B always lead
to better performance than approaches A, which confirms that
pre-dimensioning the ribs during the magnetic optimization
is beneficial for the mechanical optimization that follows.
Furthermore, approaches II dominate approaches III in terms
of averaged values and/or spread of these values. This indicates
that the simpler objective function II, which minimizes the
cumulative rib surface, better captures the impact ribs have on
the torque than the objective function III, which minimizes the
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Fig. 9. Geometries obtained after performing three times the approaches AII,
AII-AII, BII, BII-BII.

q-axis inductance Lq . Although counter-intuitive, this result
arises from a flawed evaluation of Lq by the simplified model
presented in Fig. 7. With this model, the impact of the fillets
is ignored, while approach II considers them through the ribs
surface.

Moreover, design approach BII-BII seems a strong alter-
native to the reference approach 1. In average, the design
obtained by this approach presents an equivalent mean torque
for half the total optimization time. As for all the approaches II
and III, the torque ripple is expected to violate the torque ripple
constraint. Its value, however, is kept bounded to a relatively
low level.

The optimal geometries obtained by approaches AII and
BII, and with their second iteration, are presented in Fig. 9. It
is interesting to observe how different geometries are between
them. This is also true for geometries belonging to different
runs of the same approach, although geometrical similarities
are expected if they output the same torque.

It is possible to explain these results after rewriting the
torque equation (13):

T =
3

2
p ·

Ld

Lq

(
Lq −

L2
q

Ld

)
· idiq (16)

=
3

2
p · ζ

(
Lq −

1

ζ
Lq

)
· idiq (17)
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Fig. 10. (a) Flux barriers to rotor surface ratio and (b) total ribs surface of
the geometries presented in Fig. 9.

=
3

2
p · (ζ − 1) Lq · idiq. (18)

By attributing the saliency ratio ζ to the flux barriers to rotor
surface ratio, and the q-axis inductance to the total ribs surface,
we get a relation between the rotor geometry and the torque
output of the machine.

Plotting these two quantities (Fig. 10) reveals similarities
between geometries belonging to different runs of the same
design approach. Moreover, the second iteration on approach
BII tends to leave the total ribs surface unmodified while
increasing the size of the flux barriers, whereas approach AII-
AII tends to increase both the total ribs surface and the size
of the flux barriers. This joins the observation performed on
Fig. 8, where the second iteration marked a split on the mean
torque output of approaches A and B. Also, the dispersion
of these geometrical quantities are lessened after the second
iteration. That indicates a convergence on the design approach
upon iterating. Once again, this observation can be confirmed
on Fig. 8 by examining the x-axis spread of the considered
design approach before and after the iteration.

Finally, Fig. 11 shows the local Von Mises stress distri-
bution and the instantaneous torque of designs obtained by
approaches 1 and BII-BII. As expected, critical stresses are
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Fig. 12. Instantaneous torque during the synchronous operation of the motor.

localized in the fillets of the ribs and do not exceed 270MPa.
Similarly, the torque, Fig. 12, shows a ripple that does not
exceed 10% of the mean torque.

VII. CONCLUSION

Computer-aided design of SynRMs to ensure high mean
torque, low torque ripple, and limited local stresses, is a time
consuming process. This study shows that this computational
cost can be reduced by relaxing the torque ripple constraint
and by performing successive optimizations on subsets of the
initial design space. A magnetic optimization is performed
on the flux barriers to obtain the best magnetic performance,
and is followed by a mechanical optimization on the ribs
to ensure the structural integrity of the rotor. The objective
function of the mechanical optimization can be as simple
as minimizing the cumulative ribs surface (approaches II).
To further reduce the total optimization time and to improve
the performance of the obtained design, pre-dimensioning the
ribs within the magnetic optimization should be considered

(approaches B). Moreover, performing an additional iteration
brings the electromagnetic performance of the design very
close to the one obtained by considering a single optimization,
for half the total optimization time.
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