
1

Building Fast Stochastic Surrogate Models for Extracting RL
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In this work, fast stochastic surrogate models are derived for extracting RL parameters of wound inductors using the Finite Element
method. To this end, the Representative Volume Element (RVE) technique is employed to convert the geometrical uncertainties
(e.g. due to conductor positions in the winding window) into material uncertainties (complex permeability and conductivity). The
dimensionality of the stochastic input space is in that way reduced, thereby allowing the use of the Polynomial Chaos Expansion
(PCE) technique for building the stochastic surrogate.
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I. INTRODUCTION

IN many modeling problems, model inputs can be hard
to obtain with an acceptable accuracy, so that simulation

results may be difficultly interpretable. For instance, when
modeling wound inductors with the finite element method, the
position of the conductors in the winding window is usually
not known precisely [1], and/or material parameter values can
only be provided by the manufacturers with a limited accuracy
(e.g. 20% for the magnetic permeability). In this context, it is
crucial to take into account these uncertainties in the modeling
process, using e.g. Monte Carlo simulations. This process can
however become very time consuming, given the high number
of evaluations needed to cover the whole probabilistic input
space. In this context, stochastic surrogate models, such as
Polynomial Chaos Expansions (PCE) can be employed to
speed up the computations. However, PCE surrogates can
only deal with a limited amount of input random variables,
which is not appropriate in our case, considering that random
variables can be associated with the position of each conductor
in the winding window. This work proposes to reduce the
dimensionality of the input space of the stochastic surrogate
by using the Representative Volume Element (RVE) [2] tech-
nique, thereby allowing the use of lighter PCE surrogates. The
method is demonstrated on the RL parameters extraction of
wound inductors.

In section 2, we will present the methodology used in this
hybrid approach, with the RVE and PCE concepts adapted
to our problem. Section 3 will be devoted to the validation
through simulation results, for which comparisons between
the reference and surrogate models from different points of
view (distributions of model outputs, CPU times, probability
densities) will be useful. Finally, a conclusion will present ad-
vantages linked to this approach and the short-term prospects.
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II. METHODOLOGY

In order to construct the PCE as a stochastic surrogate (for
the propagation of geometric uncertainties) while avoiding the
problem of curse of dimensionality (i.e. large increase in the
number of evaluations of the deterministic FE model), we
used in this work a technique which consists in reducing
the dimension of the stochastic input space. This reduction is
made possible thanks to the transformation of the geometric
uncertainties (positions of the conductors in the winding
window) into material uncertainties which are much smaller in
number. The distributions of these equivalent properties will
then be necessary for the construction of the PCE.

A. Representative Volume Element

The theory of RVE [2] consists in extracting from a finite
volume of a heterogeneous medium, equivalent properties of
the associated homogeneous medium in order to reduce com-
putational loads. This implies that this representative volume
must be small in order to be numerically analyzed. But it must
also be large enough to represent the micro-structures without
introducing macroscopic properties that do not exist. The
starting hypothesis is to consider that the periodic structure
repeats in space indefinitely. This can lead to deviations from
the reference model.

The extraction of equivalent properties is done by decou-
pling the skin and proximity effects and by matching the
complex power on the two equivalent models [3, 4] (fine
and homogenized models). The conductivity, related to the
skin effect, is deduced by imposing a net current I in the
coil, whereas the reluctivity, related to the proximity effect, is
deduced by imposing a unidirectional magnetic induction (Bx
for instance) on the periodical structure.

The complex power absorbed by the RVE can be calculated
by [4]

S = P + iQ = (
l

2
)

∫
RVE

(j2/σ + i ω ν0 b2) dΩ, (1)
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where P and Q are the active and reactive powers; l, j and b
are the depth on the 3rd dimension (taken equal to 1m), the
current density and the magnetic induction. In terms of global
quantities, the skin and proximity effects may be taken into
account by expressing the complex power in the following
form [3]

S = P + iQ = (1/σskin J2/2 + i ω νprox b2av/2)ΩRVE , (2)

where σskin, νprox and bav define the equivalent complex
conductivity and reluctivity and the average induction in
the homogeneous medium related to the RVE. J and ΩRVE
represent the current density and the homogenized volume of
the RVE respectively. For practical reasons, this power can
also be expressed as a function of an equivalent impedance
Zskin [4] which can be integrated into the homogenized model
of the inductor by circuit coupling (see Fig. 1):

S = P + iQ = Zskin I
2/2 + i ω l Ac νprox b2av/2 (3)

Fig. 1. Meshing and circuit coupling between Zskin and the homogenized
winding ΩS (U and I being respectively the voltage imposed, as a constraint
at circuit level, and the current weakly deduced from FEM).

A skin effect excitation can be obtained by imposing a
unitary net current (I = 1A) in the conductors and homo-
geneous boundary conditions (a = 0, through a zero net flux
on the RVE, bav = 0). The proximity effect excitation of the
RVE central cell can be obtained by imposing a unit magnetic
induction (bav = 1T ) through appropriate boundary conditions
and a zero net current (I = 0) in the RVE conductors. From
these two types of excitation, we can deduce the equivalent
impedance (see Fig. 2) and reluctivity of the homogeneous
medium constituting the RVE.

B. Size of the Representative Volume Element

The choice of the size of the RVE is a crucial step which
comes into play in the accuracy of the PCE surrogate to
represent the reference FE model over the whole range of

Fig. 2. Real and imaginary parts of conductivity extracted from RVE.

Fig. 3. Current density module jm map for different sizes of RVE excited
by a magnetic induction Bx= 1 T.

frequencies. Reducing the systematic deviation may be done
by increasing the size of the RVE. To make this choice, we
compared the extracted parameters (reluctivity for instance,
through FE models) of three different sizes of the RVE over
the range of frequencies. Their geometry consists of one layer
or two layers of conductors around a central cell or the one
consisting of the whole winding window. Fig. 3 presents the
current density maps, for different sizes of RVE, resulting from
a proximity effect constraint through a magnetic induction
(Bx= 1 T) along the x-axis.

By comparing the evolutions (see Fig. 4) of the extracted
parameter and the computational loads generated by the three
cases, our choice was oriented towards the RVE consisting
of one layer of conductors around a central cell. This choice
is explained by the fact that it presents the smallest of the
quasi-periodic structures which can represent the geometric
uncertainties in the winding window with weak edge effects
(e.g. errors on outputs parameters linked to the homogeniza-
tion process).

C. Polynomial chaos expansion

The PCE is the developmentMPC(X) of a model response
Y =M(X) in the space of random functions relating to the
distributions of its random inputs X [5].

Y =M(X) ≈MPC(X) =
∑
α∈A

yαϕα(X), (4)

where A is the truncated set of multi-indices of the PCE.
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Fig. 4. Comparison of equivalent reluctivity extracted from RVEs of different
sizes.

The computation of its coefficients yα is carried out by dif-
ferent methods, including the most classic projection method
[5], using multiple integrals. The number N of integration
nodes depends on the dimension M of the random input
and on the maximum degree p of the PCE according to the
expression:

N = (p+ 1)M (5)

Hence this explosion of the number of evaluations of the
numerical reference model which is often called curse of
dimensionality.

To build the PCE substitute, we start from a sample of
size N of the random inputs (called experimental design). The
determination of the PCE coefficients then goes through the
resolution of the following optimization problem:

ŷ = arg min E[
(
yTϕ(X)−M(X)

)2
], (6)

for which the solution is given by the ordinary least squares
(OLS) method, namely

ŷ = (ATA)−1AT y, (7)

where Aij = ϕ(X)j(x
(i)) contains the values taken by

the polynomial basis at level of points of the experimental
design and is called experimental matrix; i = 1, · · · , N ; j =
0, · · · , P − 1.

An important parameter for evaluating the quality of the
constructed PCE is the relative empirical error, deduced from
the experimental design. This kind of parameter can lead
to over-fitting, since it decreases with the degree p of the
PCE regardless of the size N of the experimental design. In
order to overcome this problem, an adaptive technique for
constructing sparse PCEs using an a priori cross validation
error [5] was used in this work. This type of PCEs implies
low order interactions between the random variables, which
are by experience the most important in various numerical
models (sparsity-of-effects principle). This was taken into

account in the initial optimization problem (see equation (6)),
by associating it with a penalty term of the form λ||y||1, i.e.
the problem:

ŷ = arg miny∈R|A| E[(yTϕ(X)−M(X))2] + λ||y||1, (8)

where the regularization term ||ŷ||1 =
∑
α∈A |y|α forces

the minimization to favor low rank solutions. In this latter
context, the least angle regression (LAR) algorithm is the one
implemented in UQLab [6], a specific module for uncertainty
quantification under Matlab.

From Table I, we can notice the accuracy with which we
manage to fit the parameter R (from finite element method) at
1.2 MHz thanks to LAR strategy. For the same max degree,
one observes a more sparse basis than with the OLS strategy.

TABLE I
COMPARING OLS AND LAR STRATEGIES FOR SURROGATE MODEL OF

R@1.2MHZ PARAMETER

R@1.2MHz [Ω] Error Max. Degree Nonzero Coef.

OLS 0.4723 2 15

LAR 0.0406 2 8

III. SIMULATION RESULTS

The test case consists of a 40-turns inductor (of 5 layers)
having a ferrite core without air gap. The conductors have a
0.315 mm diameter. The distributions of the RL parameters
from reference and homogenized 2D models of the inductor
are presented in Fig. 5. For this test case, we observe a very
low dispersion of the inductance along the range of frequencies
analyzed. This shows that at the magnetic level, the random
aspect related to the positions of conductors in the winding
window does not really have any influence. In other words,
inductance keeps its deterministic aspect. This may be justified
by the fact that the ferrite magnetic core, in which the large
part of the magnetic flux circulates, does not introduce any
uncertainty linked, for example, to its geometric dimensions
or to its air gap thickness.

The construction of the PCE surrogate is based on the
homogenized FE model (2D magnetostatic formulation) of the
inductor as a deterministic model allowing the computation
of PCE coefficients. Thus, the number of random variables
would be considerably reduced compared to the initial one
(two coordinates for each conductor in the winding window)
relating to the brute-force FE model (with fine mesh and 2D
a-v magnetodynamics formulation).

To validate the proposed methodology, the comparison
between the distributions of RL parameters extracted from the
homogenized FE model and PCE surrogate is done through
their histograms (see Fig. 6). We can observe a good agreement
between them. This shows the ability of the PCE surrogate to
mimic the behavior of the reference model in face of geomet-
rical uncertainties linked to the positions of the conductors in
the winding window. Another advantage of the PCE lies in the
fact that predictions are available faster than for an expensive
reference model. The following table shows how faster a
stochastic analysis can be done using the PCE surrogate.
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TABLE II
CPU TIME COMPARISON BETWEEN REFERENCE AND PCE MODELS∗

CPU time [s] Per iteration 370 MC iterations**

PCE surrogate 0.3075 0.9625

Brute-force model 21 7489

From RVE to homogenization 14 4754
* from DC to 1.2 MHz; ** 370 Monte Carlo iterations

IV. CONCLUSION

In this work, we have shown how the dimension of the
random input of a FE model for extraction of RL parameters
of an inductor could be greatly reduced thanks to the transfor-
mation of geometrical uncertainties into material uncertainties,
and then to build a surrogate model which requires fewer
resources and less computation time. The advantage of this
approach is rather in the reduction of the number of evaluations
of the deterministic numerical model, for instance, in case of
sensitivity analysis of the outputs (RL parameters of a wound
inductor) of the numerical model faced with the variability of

(a)

(b)

Fig. 5. Distribution of the RL parameter at 1.2 MHz, extracted from brute-
force and homogenized models.

(a)

(b)

Fig. 6. Histograms of RL parameter (at 1.2 MHz) extracted from the
homogenized model and the PCE prediction.

the random inputs. As a short-term perspective, we plan to
conduct a sensitivity analysis of this FE model with respect
to the geometrical uncertainties and also to the material
uncertainties linked to the magnetic permeability and the air
gap size of the magnetic core thanks to the use of PCE
substitute and to the RVE theory.
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