Introduction to brain parcellation

Sarah Genon Cognitive Neuroinformatics Lab

Brain parcellation

Algorithm

Boundary mapping

Border detection in cortex based on cytoarchitecture

Clustering or factorization

Clustering of amygdala voxels based on their activation in behavioural paradigms

Global

Markers

Histology-based:

ReceptorsMyelin

MRI-based: • Myelin

Cytoarchitecture

Local

MRI-based:

Resting-state functional connectivity

Meta-analytic activation modelling

- Meta-analytic connectivity modelling
- Diffusion tractography
- Structural covariance

Boundary mapping of resting-state functional connectivity of cerebral cortex

Clustering of cerebral cortex based on resting-state functional connectivity

Eickhoff, Yeo & Genon, 2018, Nat. Rev. Neurosci.

Connectivity-based parcellation (CBP)

How to estimate connectivity ?

Type of connecti vity	Functional		Co-plasticity	Structural (white matter)
Data	Task-based fMRI	Resting state fMRI	Anatomical MRI	Diffusion MRI
Approach	Task-based: Activation during task	Resting-state: Signal fluctuations at rest	Morphometry- based: Structural co- variation in the population	Diffusion-based: Estimation of fiber direction
Main method	Meta-Analytic Connectivity Modeling (MACM)	Cross-timepoint correlation in signal fluctuations (RSFC)	Correlation of local GM across subjects (SC)	Probabilistic diffusion tractography (PDT)
	study c study b	time voxel A time voxel B time time time	VBM-esti tissue va	imated Ive MMA MAA

Eickhoff, Yeo & Genon, 2018, Nat. Rev. Neurosci.

CBP: how ?

ndividual voxels in the ROI

1) Region of Interest:

Dorsal Premotor Cortex:

Interface between prefrontal and primary motor

2) Connectivity matrix

3) Clustering/factorization

Genon et al., 2017, Cerebral Cortex

Convergence between connectivity modalities

Genon et al., 2017, Cerebral Cortex

Local microstructure VS large-scale functional integration

Plachti et al., 2019, Cerebral Cortex; Plachti et al., 2020, Brain

Local microstructure and large-scale functional integration

Plachti et al., 2019, Cerebral Cortex; Plachti et al., 2020, Brain

Local microstructure and large-scale functional integration

CBPtool for different connectivity modalities:

https://github.com/inm7/cbptools

Reuter et al., BSF, 2020

CBPtool for different connectivity modalities:

https://github.com/inm7/cbptools

Reuter et al., BSF, 2020

Take home messages

Brain parcellation

= a very wide **set of methods** to identify brain regions and/or networks

From histology to MRI-based connectivity

To **understand** and/or to **represent** brain organization and data

Convergence and divergence between mapping features

Resource for CBP:

CBPtool, user-friendly and flexible pipeline for connectivity-based parcellation <u>https://github.com/inm7/cbptools</u>

THANK YOU

Cognitive Neuroinformatics Lab

Simon Eickhoff

Düsseldorf university Katrin Amunts

McGill University Boris Bernhardt

Yale University Todd Constable

<u>NUS</u> Thomas Yeo

Helmholtz Portfolio Theme Supercomputing and Modeling for the Human Brain

s.genon@fz-juelich.de