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Abstract 15 

We report the generation and analysis of single-cell RNA-Seq data (> 38,000 cells) from native 16 

and iPSC-derived murine retina at four matched developmental stages spanning the 17 

emergence of the major retinal cell types.  We combine information from temporal sampling, 18 

visualization of 3D UMAP manifolds, pseudo-time and RNA velocity analyses, to show that 19 

iPSC-derived 3D retinal aggregates broadly recapitulate the native developmental 20 

trajectories. However, we show relaxation of spatial and temporal transcriptome control, 21 

premature emergence and dominance of photoreceptor precursor cells, and susceptibility of 22 

dynamically regulated pathways and transcription factors to culture conditions in iPSC-23 

derived retina.  We generate bulk ATAC-Seq data for native and iPSC-derived murine retina 24 

identifying ~125,000 peaks. We combine single-cell RNA-Seq with ATAC-Seq information and 25 

obtain evidence that approximately half the transcription factors that are dynamically 26 

regulated during retinal development may act as repressors rather than activators.  We 27 

propose that sets of activators and repressors with cell-type specific expression constitute 28 

“regulatory toggles” that lock cells in distinct transcriptome states underlying differentiation. 29 

We provide evidence supporting our hypothesis from the analysis of publicly available single-30 

cell ATAC-Seq data for adult mouse retina.  We identify subtle but noteworthy differences in 31 
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the operation of such toggles between native and iPSC-derived retina particularly for the Etv1, 32 

Etv5, Hes1 and Zbtb7a group of transcription factors. 33 

 34 

Keywords: retina, iPSC, single-cell RNA-Seq, ATAC-Seq, transcription factor      35 

            36 

Introduction 37 

It has recently become possible to recapitulate retinal development from induced pluripotent 38 

stem cells (iPSCs) in human and mice [1-3].  This has opened new avenues to explore the 39 

molecular mechanisms underlying developmental competence, commitment and 40 

differentiation for each of the major cell types during retinal neurogenesis.   It offers hope to 41 

improve therapies for retinal degenerative diseases which afflict tens of millions of people in 42 

the US and Europe alone and may account for approximately 50% of all cases of blindness [4]. 43 

Stem cells derived from patient-specific somatic cells offer new opportunities to study the 44 

effects of gene defects on human retinal development in vitro and to test small molecules or 45 

biologics to treat the corresponding disorders [5,6].  46 

Assessing how faithfully iPSC-derived 3D retinal aggregates recapitulate specific 47 

developmental programs has typically been done by monitoring the expression of limited 48 

numbers of cell-type specific markers and examining the spatial patterning of the 49 

corresponding groups of cells [7]. Interrogating the expression of a handful of marker 50 

genes/proteins does not fully inform about the proper temporal and spatial execution of the 51 

epigenetic program, nor does it inform about the presence of aberrant cell types. Single-cell 52 

RNA-sequencing (scRNA-Seq) now enables the profiling of samples of the transcriptome 53 

(typically between 3% and 15% of mRNAs present in a cell depending on the methodology) of 54 

individual cells. This permits the clustering of cells based on the similarity of their 55 

transcriptome and the identification of cellular subtypes including some that may not have 56 

been recognized before [8].   It allows to refine developmental trajectories by identifying cells 57 

occupying intermediate states connecting clusters in multidimensional expression space 58 

[9,10] and by predicting the developmental orientation taken by individual cells based on 59 

measured deviations from the steady-state ratio between spliced and unspliced RNA 60 

molecules (“RNA velocity”) [11,12].  Genes that are defining cellular sub-types can be 61 

pinpointed by differential expression analysis between clusters [13], while genes that drive 62 

the differentiation process may be identified by searching for gene sets that are dynamically 63 
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regulated across real and/or pseudo-time [14].  Recently, scRNA-Seq has been used to 64 

compare transcriptome dynamics during native and embryonic stem cells (ESC)- or iPSC-65 

derived retinal development in human [15-17].  This has revealed comparable cellular 66 

composition at equivalent ages and the convergence of the organoid transcriptomes to that 67 

of adult peripheral retinal cell types with, however, some differences in gene expression of 68 

particular cell types as well as structural differences of inner retinal lamination that seems 69 

disrupted in advanced organoid stages compared with fetal retina [16]. It has revealed striking 70 

cell type-specific expression of genes underpinning inherited diseases such as Leber 71 

congenital amaurosis, retinitis pigmentosa, stationary night blindness and achromatopsia, 72 

and its conservation in organoids [17].       73 

Here we report the generation and use of scRNA-Seq data collected at four matched stages 74 

of native and iPSC-derived retinal development in the mouse to study the dynamics of the 75 

transcriptome and compare it between the two systems.  We integrate scRNA-Seq data with 76 

bulk and single-cell ATAC-seq data (which identify active gene regulatory elements by virtue 77 

of local chromatin openness [18]), and provide evidence for the operation of transcription 78 

factor (TF)-based regulatory toggles combining activators and repressors, that may lock the 79 

transcriptome of distinct cellular sub-types in both native and iPSC-derived retina thereby 80 

underpinning the different cellular identities.               81 

 82 

Results 83 

Joint analysis of scRNA-Seq data from native retina and iPSC-derived 3D retinal aggregates 84 

highlights canonical cell types and developmental trajectories.    85 

To contribute to the comparison of the developmental trajectories in native retina (NaR) and 86 

iPSC-derived 3D retinal aggregates (3D-RA), we performed scRNA-Seq of murine NaR and 3D-87 

RA at four matched stages of development: embryonic day (E)13 vs differentiation day 88 

(DD)13, postnatal day (P)0 vs DD21, P5 vs DD25 and P9 vs DD29 [19].  NaR were dissected 89 

from two to 11 C57BL/6 mice (of both sexes) per stage.  Mouse 3D-RA were generated from 90 

the Nrl-GFP (C57BL/6 background) iPSC line [20] following [21-22] (SFig. 1).  Optic vesicle-like 91 

structures (OV) were manually dissected from 3D-RA. Cells from NaR and OV were dissociated 92 

and subjected to droplet-based scRNA-Seq using a 10X Genomics Chromium platform.  We 93 

obtained sequence information for 21,249 cells from NaR and 16,842 cells from 3D-RA, 94 

distributed evenly amongst developmental stages. We generated an average of 74,808 reads 95 
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per cell, corresponding to 5,940 unique molecular identifiers (UMIs) and 2,471 genes per cell 96 

(STable 1).    97 

We first analyzed all data jointly (i.e. NaR and 3D-RA) to cover a maximum of intermediate 98 

developmental stages and hence generate the most continuous manifold possible.  We used 99 

Canonical Correlation Analysis (CCA) implemented with Seurat [23] to align the NaR and 3D-100 

RA datasets based on the expression profiles of 1,253 “most variable” genes (STable 2). We 101 

projected the corresponding 30-dimensional distances (based on the 30 first CCA) between 102 

cells in 2D- and 3D-space using Uniform Manifold Approximation and Projection (UMAP) [24].  103 

We assigned all 38,091 cells jointly (i.e. NaR and 3D-RA) to 71 clusters by k-means clustering 104 

(Fig. 1A).  105 

We defined gene expression signatures for 13 recognized retinal cell types using published 106 

information [25] (STable 3 and SFig. 2), and regrouped the clusters accordingly in 13 cell types 107 

corresponding to neuroepithelium (NE), retinal pigmented epithelium (RPE), early (ERPC), late 108 

(LRPC), and neurogenic retinal progenitor cells (NRPC), retinal ganglion cells (RGC), horizontal 109 

cells (HC), amacrine cells (AC), photoreceptor precursor cells (PRP), cones (C), rods (R), bipolar 110 

cells (BC), and Müller cells (MC) (Fig. 1B).  Using additional gene expression signatures we 111 

further identified:  (i) actively dividing ERPC, LRPC and NRPC (in S and G2-M phases of the cell 112 

cycle)[26], (ii) T1, T2 and T3 post-mitotic transitional precursor cell populations recognized in 113 

human native and hPSC-derived retina [16], (iii) the ciliary marginal zone (CMZ) [27], (iv) a 114 

recently described subgroup of Tbr1+ RGC cells located in the inner plexiform layer [28], and 115 

(v) starburst AC [29](Fig. 1C, SFig. 2 and STable 3). 116 

Labelling cells by developmental stage (stages I to IV) distinguished ERPC from LRPC, and 117 

revealed the expected sequence of emergence of RGC (stage I), followed by HC, AC and PRP 118 

(stage II and III), then C, R, BC and MC (stage III and IV).  Cells assigned to the Tbr1+ RGC cluster 119 

appeared at stage II and III.  T1, T2 and T3 cells appeared in that order, and starburst AC at 120 

stage II and III (Fig. 1D).  The UMAP manifold connected cell types consistently with known 121 

developmental trajectories [16,25,30,31], including: (i) NE -> RPE, (ii) NE -> ERPC, (iii) ERPC -> 122 

NRPC (T1) -> RGC, (iv) LRPC -> NRPC (T1->T2) -> AC, (v) LRPC -> NRPC (T1) -> PRP (T3) -> C/R, 123 

and (vi) LRPC -> MC.  Reminiscent of previous studies [16,25], the cluster of HC cells was 124 

disconnected from the rest of the manifold providing no information about their precursors.  125 

In agreement with [25], BC appeared to emerge from PRP cells distinct from NRPC or T3 126 
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(Suppl. Video: http://www.sig.hec.ulg.ac.be/giga). Cell-specific RNA velocities [11] were 127 

consistent with the ERPC -> NRPC -> RGC trajectory but otherwise difficult to interpret (Fig. 128 

1E).  However, velocity pseudotime analysis (using a velocity-inferred transition matrix) 129 

implemented with scvelo [12] was remarkably proficient at ordering the four stages of 130 

development, as well as at identifying terminal cellular states (without benefitting from any 131 

information about development stage or root cells)(Fig. 1F). 132 

 133 

 134 
 135 
 136 
 137 
 138 
 139 
 140 
 141 
 142 
 143 
 144 
 145 
 146 
 147 
 148 
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Figure 1: Joint scRNA-Seq-based UMAP of 38,091 cells corresponding to four developmental stages of native 149 
(NaR) and iPS-derived (3D-RA) murine retina.   (A) 2D UMAP manifold showing NaR and 3D-RA cells jointly and 150 
their assignment to 71 clusters by k-means clustering. (B) Merging of the clusters in 13 major retinal cell types 151 
corresponding to neuroepithelium (NE), retinal pigmented epithelium (RPE), early (ERPC), late (LRPC), 152 
neurogenic retinal progenitor cells (NRPC), retinal ganglionic cells (RGC), horizontal cells (HC), amacrine cells 153 
(AC), photoreceptor precursor cells (PRP), cones (C), rods (R), bipolar cells (BC), and Müller cells (MC), on the 154 
basis of the expression of known marker genes (SFig. 2). (C) Identifying known retinal sub-populations: post-155 
mitotic transitional precursor cell populations (T1, T2, T3)[16], Ciliary Marginal Zone (CMZ)[27], Tbr1+ retinal 156 
ganglionic cells (Trb1RGC)[28], and starburst amacrine cells (SAC)[29].  (D) Cells colored by developmental stage: 157 
I. blue = DD13 + E13, II. green = DD21 + P0,  III. orange = DD25 + P5, IV. red = DD29 + P9. (E) Cell-specific RNA 158 
velocities [11] confirming the ERPC -> NRPC (T1) -> RGC cellular trajectory.  (F) Velocity pseudo-time analysis 159 
using a velocity-inferred transition matrix [12].  Increase in pseudo-time is marked by increase in redness.   160 
 161 

Comparison of NaR and 3D-RA cell fates in UMAP space highlights commonalities and 162 

differences in developmental trajectories.     163 

We then focused on the comparison between the behavior of NaR and 3D-RA cells.  Global 164 

comparison of the distribution of NaR and 3D-RA cells across the manifold indicates that in 165 

vitro neuro-retinal differentiation from iPSCs largely recapitulates native development (Fig. 166 

2A).  This is substantiated by noting that 82% of the 71 clusters and 86% of the 13 cell types 167 

contain at least 10% of the least represented cell origin (NaR or 3D-RA) (Fig. 2B&C).    168 

More granular examination, however, reveals noteworthy differences. The first one is the 169 

occurrence of NaR- or 3D-RA specific clusters and cell types: (i) the RPE cell type is almost 170 

exclusively composed of 3D-RA cells as a result of RPE elimination from NaR by dissection; (ii) 171 

the CMZ is absent in 3D-RA (only recently were culture conditions established for inducing 172 

selective CM retinal differentiation in human iPSC-derived RA [32]); (iii) AC cluster 65, thought 173 

to correspond to starburst AC, was only observed in 3D-RA; (iv) BC clusters 32, 34 and 48 are 174 

nearly exclusively composed of NaR cells, and (v) cluster 55 is exclusively populated by 3D-RA 175 

cells. Cluster 55 is thought to result from aberrant in vitro differentiation of NE into non-176 

retinal neuronal cells. Indeed, it is connected to NE by a cellular bridge (Video: 177 

http://www.sig.hec.ulg.ac.be/giga), and strongly expresses Tbr1 and other genes typical of 178 

developing cortical neurons including reelin (STable 4&6).  It is therefore  179 

The second difference is the apparent relaxation of pseudo-spatial and pseudo-temporal 180 

transcriptome control in 3D-RA versus NaR.  The developmental pathways traversed by NaR 181 

cells indeed appear tighter than those of 3D-RA cells, while NaR cells sampled at a specific 182 

developmental stage seem to populate fewer cell types than 3D-RA cells.  To quantify the 183 

former, we down-sampled cells to equalize NaR and 3D-RA numbers (within developmental 184 

stage) and computed the average distance from the n closest neighbors, which was indeed 185 
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highly significantly shorter for NaR than for 3D-RA (Fig. 2D).  To quantify the latter, we 186 

measured the diversity of cell types within stages (using a measure of entropy), which was 187 

indeed significantly lower in NaR than in 3D-RA for all four stages (Fig. 2E). The last 188 

noteworthy differences between both systems is the observation that PRP arise earlier in 3D-189 

RA than in NaR and accumulate at the expense of other cell types (particularly LRPC), yet 190 

partially fail terminal differentiation particularly into BC cells (Fig. 2A&F).  191 

 192 
 193 
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Figure 2: Comparison of Nar and 3D-194 
RA cells in scRNA-Seq-based UMAP 195 
space. (A) Distribution of NaR (upper) 196 
versus 3D-RA (lower) cells across the 197 
UMAP manifold, sorted by cell type 198 
(left) and developmental stage (right).  199 
(B-C) Proportion of 3D-RA cells 200 
(adjusted for number of NaR and 3D-201 
RA cells) in 14 cell types (B) and 71 202 
clusters (C).  86% of cell types and 203 
82% of clusters contain at least 10% of 204 
the least represented cell origin (NaR 205 
vs 3D-RA). Cell types are colored as in 206 
(A) and clusters are colored according 207 
to the cell type to which they were 208 
assigned. Notable clusters discussed 209 
in the main text are highlighted. 210 
Cluster 65 corresponds presumably to 211 
starburst AC. (D) Larger average 212 
distance in 2D UMAP space (Y-axis) 213 
from n nearest neighbors (X-axis) for 214 
3D-RA (red) than for NaR cells (blue). 215 
(E) Larger cell type diversity 216 
(sampling-based measure of entropy) 217 
in the four developmental stages for 218 
3D-RA than for NaR. (F) Proportions of 219 
cell types within developmental stage 220 
for NaR (left) and 3D-RA (right). 221 

 222 

 223 

 224 

 225 

3D-RA culture conditions perturb genes and pathways that play key roles in NaR 226 

development. 227 

To identify key genes for retinal differentiation, we performed differential expression analysis 228 

for each cell type against all others, first considering NaR cells only.  In NaR, we identified a 229 

total of 4,177 genes with significantly higher expression in at least one of the 13 main cell-230 

types (as defined above) compared to all other cell types merged (log-fold change ≥ 0.25 and 231 

p-value ≤ 0.001), hereafter referred to as “cell type-specifying” genes (Fig. 3A and STable 4).  232 

Of those, 3,675 were also identified as dynamically regulated genes when using Monocle 2 233 

[14] (SFig. 3 and STable 5).   234 

We then searched for enriched Reactome pathways [33,34] in the 13 lists of “cell type-235 

specifying” genes.  Two hundred sixty-eight pathways were significantly enriched (q ≤ 0.01) 236 
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in at least one cell-type (STable 6).  These corresponded primarily to: (i) accelerated cell 237 

division in ERPC, LRPC and NRPCs, (ii) intense post-transcriptional and translational activity in 238 

NE, ERPC, LRPC and NRPCs, (iii) activation of RHO GTPase- and NOTCH-dependent signaling in 239 

ERPC, LRPC, NRPCs, RGC and LRPC, NRPCs, respectively, as well as the GPCR-dependent 240 

phototransduction cascade in C and R,  (iv) activation of mitochondrial citric acid (TCA) cycle 241 

and respiratory electro transport in HC, C, R, BC, and MC, of cholesterol synthesis in ERPC and 242 

RGC, and of insulin- and glucagon-dependent metabolic integration in RGC and AC, (v) 243 

enhanced remodeling of the extracellular matrix in NE, RPE and MC, and GAP junction 244 

trafficking in RGC, and (vi) activation of ROBO receptors-dependent axon guidance in NE, 245 

ERPC and LRPC, and of synapse formation in RGC, HC, AC and BC (Fig. 3B).   246 

A Reactome pathway is considered enriched (in a list of submitted genes) if the number of 247 

genes in the list that are part of the pathway (the number of “found-entities”) is higher than 248 

expected by chance alone [33,34].  The found-entities for different enriched Reactome 249 

pathways often show considerable overlap. As an example, the same six genes 250 

(Rfc5;Rfc4;Rfc1;Rfc2;Prim1) in the list of 465 ERPC-specifying genes explain the enrichment of 251 

the “Leading strand synthesis” and “Polymerase switching” Reactome pathways (STable 6).  252 

We devised a method to assign colors to sets of found-entities such that strongly overlapping 253 

sets would have similar colors, while non-overlapping sets would have distinct colors 254 

(Methods and SFig. 4).  As an example, we can see from Fig. 3B that the 48 Reactome 255 

pathways highlighted in NE correspond to six distinct sets of found entities (six dominant 256 

colors), that one of these sets is also driving Reactome pathway enrichment in RPE (bordeau), 257 

and that two others (indigo blue and purple) are also driving pathway enrichment in ERPC.                  258 

 259 

At first sight, genes that were differentially expressed between cell-types in NaR appeared to 260 

recapitulate their in vivo expression profile quite well in 3D-RA (Fig. 3A).   Yet, to better 261 

appreciate the differences between in vivo and in vitro retinal differentiation, we performed 262 

differential expression analysis between NaR and 3D-RA separately for each cell type.  For 263 

each of the 13 major cell types, we generated two lists of genes corresponding respectively 264 

to genes that were under-expressed in 3D-RA when compared to NaR (NaR>3D-RA) and genes 265 

that were over-expressed in 3D-RA when compared to NaR (3D-RA>NaR) (q ≤ 0.01; STable 266 

7).  We then searched for biological pathways that were over-represented in the 267 

corresponding gene lists using Reactome.  This yielded 197 downregulated (NaR > 3D-RA) and 268 
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134 upregulated (3D-RA > NaR) pathways (Fig. 3B and STable 8).  Strikingly, both down- and 269 

upregulated pathways (i.e. when comparing NaR and 3D-RA by cell type) exhibited 270 

considerable overlap with the pathways identified (see previous paragraph) when comparing 271 

cell types within NaR (Cell type > Others) (115/197, p < 10-6 and 67/134, p < 10-6) (Fig. 3C).  272 

More specifically, (i) the rate of cell division in NE, ERPC, LRPC and NRPC was reduced in 3D-273 

RA when compared to NaR, (ii) post-transcriptional and translational mechanisms were 274 

exacerbated in ERPC, LRPC, NRPC, RGC, PRP, C, R, BC and MC of 3D-RA, when compared to 275 

NaR, (iii) signal transduction via WNT, TGF-beta, RHO GTPases, Esr, Notch, Hedgehog, MAPK, 276 

and Death receptors was diminished in 3D-RA when compared to NaR, particularly in ERPC 277 

and LRPC, while the phototransduction cascade was less active in 3D-RA-derived R than in 278 

NaR-derived R, (iv) mitochondrial citric acid (TCA) cycle and respiratory electron transport was 279 

increased in 3D-RA’s LRPC, NRPC, AC, PRP and C (yet increased in BC), cholesterol synthesis 280 

increased in 3D-RA’s C and R, and gluconeogenesis increased in 3D-RA’s PCP and R, (v) stress 281 

response and apoptosis was reduced in 3D-RA’s ERPC, yet increased in 3D-RA’s C, R, BC and 282 

MC (i.e. at the latest stages of 3D-RA culture), and (vi) vesicle mediated transport and synapse 283 

formation was decreased in 3D-RA’s LRPC, RGC and PRP (Fig. 3B).  As testified by their 284 

assigned colors in Fig. 3B, the found-entities driving Reactome pathway enrichment when 285 

analyzing cell-type specifying genes (Cell type > Others) or when comparing NaR and 3D-RA 286 

(NaR > 3D-RA and 3D-RA > NaR) showed considerable overlap (see also SFig. 4).  Thus, the 287 

genes and pathways that appear to be the most perturbed by the 3D-RA culture conditions 288 

are also the ones that play key roles in NaR development (i.e. the cell type-specifying genes 289 

as defined above). 290 

 291 
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Figure 3: Comparison of the cell type-specific transcriptome of NaR and 3D-RA by means of scRNA-Seq. (A) 292 
Expression profiles in 12 cell types of 7,292 genes that are dynamically regulated during in vivo retinal 293 
development (i.e. significantly overexpressed in at least one cell type when compared to all other ones in NaR) 294 
in NaR (upper panel) and 3D-RA (lower panel).  Abbreviations refer to cell types and are as defined in Fig. 1 295 
(including color code).  (B) Reactome pathways that are significantly (p ≤ 0.001) enriched amongst differentially 296 
expressed genes (“Cell type > Other”: when comparing expression levels between specific cell types and all other 297 
cells in NaR only; “NaR > 3D-RA” and “3D-RA > NaR”: when comparing expression levels between NaR and 3D-298 
RA cells within cell type).  Y-axis: Reactome pathways sorted by “top level” system (cell cycle, gene expression, 299 
signal transduction, metabolism, cell biology and development) and sub-level therein.  Tiles mark the pathways 300 
that are significantly enriched in the corresponding contrast and cell type.  The colors of the tiles reflect similarity 301 
in “found entities” as described in the main text and SFig. 4.  Last column (“Overlap”): White: pathways 302 
significant in one contrast only, Black: pathways significant in all three contrasts, Grey: pathways significant in 303 
“Cell type > Other” and (“NaR > 3D-RA” or “3D-RA > NaR”), Red: pathways significant in “NaR > 3D-RA” and “3D-304 
RA > NaR”. (C)  Number of unique and shared Reactome pathways between “Cell type > Other”, “NaR > 3D-RA” 305 
and “3D-RA > NaR”.  All overlaps are highly significant (p < 10-6) assuming random sampling from 2,365 Reactome 306 
pathways.  307 
 308 
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The expression level of many transcription factors is perturbed in 3D-RA. 310 

The 4,177 cell type-specifying genes in NaR (i.e. Cell type > Others, cfr above) comprised 293 311 

transcription factors (TF)[35], including 107 that were at least 1.5 times more strongly 312 

expressed in one cell type when compared to any of the other cell types (Fig. 4A and STable 313 

4). The latter comprised 88 TF that were previously reported in the context of retinal 314 

development, as well as 19 novel ones (NE: Peg3; LRPC: Lrrfip1; MC: Creb3l2, Csrnp1, Dbp, 315 

Nr4a1, Nr4a3; HC: Zfp618, Zfp804a; AC: Zfp503; PRP: Foxo3, Lcorl; R: Zfp516, Trps1, Ppard, 316 

Zc3h3, Mier1, Mier2, Lyar; BC: St18) (STable 9).  Contrary to the overall expression profile (Fig. 317 

3A), visual examination of the expression profiles of the 104 most differentially expressed TF 318 

indicated considerable loss of cell-type specificity in 3D-RA (Fig. 4A).  Indeed, 155 of the 293 319 

(53%) differentially expressed TF were significantly (q < 0.01) under-expressed in at least one 320 

cell type in 3D-RA when compared to NaR, while 80/293 (27%) were significantly (q < 0.01) 321 

over-expressed in at least one cell type (Fig. 4B and SFig. 6).  Striking examples include Skil 322 

(ERPC), HevL (LRPC), Neurog2 (NRPC), Lhx1 (HC), Neurod2 (AC), Insm2 (PRP), Nfic (C/R), Ahr 323 

(C/R), Bhlhe23 (BC) and Nr1d1 (MC), which are all significantly under-expressed in 3D-RA 324 

when compared to NaR (Fig. 4C).   325 

An additional 31 TF (not part of the 326 

list of cell type-specifying genes) 327 

were down-regulated in 3D-RA, 328 

while 19 were upregulated (SFig.6).  329 

Thus, the expression profile of a 330 

remarkably high number of TF 331 

appears perturbed in 3D-RA, and 332 

this may in part drive the 333 

differences observed between both 334 

systems, including with regards to 335 

Reactome pathways. 336 
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 338 
Figure 4: Comparison of the cell type-specific expression levels of TF in NaR and 3D-RA by means of scRNA-339 
Seq. (A) Standardized expression levels of 104 most cell type-specific TF across 12 cell types in NaR (upper panel) 340 
and 3D-RA (lower panel). Abbreviations refer to cell types and are as defined in Fig. 1 (including color code). (B) 341 
Number of differentially expressed TF in “Cell type > Others”, “NaR > 3D-RA”, and “3D-RA > NaR”, with 342 
corresponding overlaps.  The overlaps are highly significant (p < 10-6) assuming that TF are sampled randomly 343 
from the full collection of ~1,500 TFs [35]. (C) Examples of TF that are (i) significantly overexpressed in one cell 344 
type when compared to all others in NaR, and (ii) significantly under- or over-expressed in that cell type between 345 
NaR and 3D-RA.  The average expression levels (fraction of UMI) of the corresponding genes in the different cell 346 
types are shown for NaR (green) and 3D-RA (red).  The error bars correspond to 99% confidence intervals 347 
determined by bootstrapping (n=1000).   Green triangles mark cell types in which the corresponding gene is 348 
significantly (q < 0.01, i.e. accounting for multiple testing) overexpressed in NaR when compared to all other cell 349 
types combined.  Red triangles mark cell types in which the expression level differs significantly (q < 0.01) 350 
between NaR and 3D-RA.  The gene name and cell type of interest are given in the facet headers.         351 
 352 

C
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Combined analysis of scRNA-Seq and bulk ATAC-Seq data reveals putative regulatory 353 

toggles in NaR.  354 

It is generally assumed that execution of the transcriptional program underlying 355 

differentiation is controlled by dynamically regulated TF that activate downstream target 356 

genes.  To verify this assertion, we first performed bulk ATAC-Seq [36] on the first three stages 357 

of NaR (E13, P0, P5) and 3D-RA (DD13, DD21, DD25) samples to identify gene-switch 358 

components accessible during retinal development based on chromatin openness (SFig. 7A).  359 

For each sample type, we analyzed two technical replicates of two biological replicates for a 360 

total of 24 libraries.  We defined a total of 123,482 peaks using MACS2 [37] (STable 10).  Of 361 

these, 93,386 (75.6%) were detected in NaR, 97,333 (78.8%) in 3D-RA.  18,933 (15.3%) were 362 

common to all samples, 26,149 (30.0%) NaR-specific, 30,096 (24.4%) 3D-RA-specific, and 363 

4,703 developmental stage-specific (3.8%; stage I: 294, stage II: 82, stage III: 4,327).  The 364 

number of peaks increased with developmental stage in NaR but not in 3D-RA (highest 365 

number of peaks in DD13) (SFig. 7B).  Nevertheless, stage I samples (E13 and DD13) clustered 366 

together, while for subsequent stages samples clustered by origin (NaR vs 3D-RA) (SFig. 7C).  367 

DNA binding motifs are reported for 151 of the TF found to be cell type-specifying by scRNA-368 

Seq (see above), amounting to a total of 336 motifs (average number of motifs per TF: 2.3; 369 

range: 1 - 14). We used Homer to annotate our catalogue of ATAC-Seq peaks for the 370 

corresponding motifs [38].  In total Homer identified 7,128,225 binding motifs in 98,181 371 

ATAC-seak peaks assigned (based on closest proximity) to 19,171 genes (STable 11).  372 

To test whether TF that were overexpressed in a given cell type were indeed activating 373 

downstream target genes (as expected for “activator” TF), we searched for an enrichment of 374 

the cognate binding motifs in the ATAC-Seq peaks of genes that were significantly over-375 

expressed in that cell type (relative to ATAC-Seq peaks of genes that were significantly under-376 

expressed in the same cell type).  As an example, the Crx TF is overexpressed in PRP, C and R: 377 

are ATAC-Seq peaks in the vicinity of the genes that are overexpressed in these cell types 378 

enriched in Crx binding motifs as expected if Crx is an activator TF?  We used average number 379 

of binding motifs per ATAC-Seq peak per gene (total number of binding motifs divided by 380 

number of peaks) as metric to correct for gene length.  We first analyzed NaR, and found 84 381 

instances of binding motif enrichment (q-value < 0.01) for 37 TF over-expressed in the 382 

corresponding cell types (Fig. 5A, STable 12&13).   Examples of such activator TF include Crx 383 
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(enrichment of all three known Crx binding motifs: Crx-1, Crx-2 and Crx-3 ) in PRP, R and C, 384 

and Etv5 (1/1 binding motif) in LRPC (Fig. 5B).   385 

Intriguingly, we observed 45 instances of binding motif depletion (q-value < 0.01) for 26 other 386 

TF.  Stated otherwise, for 26 TF that were over-expressed in a given cell type, binding motifs 387 

were significantly more abundant in ATAC-Seq peaks of genes that were under-expressed 388 

than in the ATAC-Seq peaks of genes that were over-expressed in the corresponding cell type 389 

(Fig. 5A, STable 12&13).   One explanation of this finding is that these TF act as repressors 390 

rather than activators.  Examples of such candidate “repressor” TF are Arh (1/2 binding 391 

motifs) in C, and Tgif2 (2/3 binding motifs) in LRPC and NRPC (Fig. 5B).   392 

We reasoned that such repressor TF may be components of regulatory toggles that ensure 393 

cell type-specific gene expression not only by inducing expression of required genes (via 394 

activator TF), but also by precluding expression of undesired genes (via repressor TF) (Fig. 5C). 395 

To gain insights in the nature of the genes targeted by these putative repressor TF, we 396 

searched for cell types in which the corresponding binding motifs were enriched in over-397 

expressed genes (even if the TF itself is not strongly expressed in that cell type).  Fig. 5E shows 398 

the corresponding results for all repressor TF over-expressed in a given cell type jointly.  Thus, 399 

for all candidate repressor TF identified in a given cell type (f.i. Foxp1, Nr2f1, Six6 and Sox2 in 400 

ERPC; see Fig. 5E), we computed the log(1/p) value of the difference in the density of binding 401 

motifs in over- versus under-expressed genes in each cell type, signed them according to the 402 

direction of the difference (enrichment versus depletion in over-expressed genes), and 403 

averaged these values across the (f.i. four in ERPC) candidate repressor TF.  For comparison, 404 

similar plots (Fig. 5D) are shown for the combined effect of all activator TF expressed in a 405 

given cell type.  This analysis revealed that the identified repressor TF systematically target 406 

genes that are overexpressed in (and hence specify) another retinal cell type than the one(s) 407 

in which they are expressed, with a clear pattern.  It appears that the 12 cell types analyzed 408 

in NaR form three clusters: (I) NE, ERPC, LRPC and NRPC, (II) RGC, AC and HC, and (III) PRP, C, 409 

R, B, C and MC.  Repressor TF which are expressed in cluster (I) are primarily targeting genes 410 

that are over-expressed in cluster (III), repressor TF which are expressed in cluster (II) are 411 

primarily targeting genes that are expressed in cluster (I) or (III), and repressor TF which are 412 

expressed in cluster (III) primarily target genes that are expressed in cluster (I).  There was 413 

considerable overlap between the TF (activator and repressor) over-expressed in cell types 414 
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from the same cluster. As an example, Hif1A is over-expressed in R, C and BC (cluster III), while 415 

Bahrl2 is over-expressed in RGC, AC and HC (cluster II)(Fig. 5E).   416 

We also identified six “conditional activator” TF.  These were characterized by the enrichment 417 

of binding motifs in over-expressed genes for some cell type(s), yet the depletion of binding 418 

motifs in over-expressed genes for other cell type(s) (Etv1, Fosb, Otx2, Pax6, Tcf3, Sox11) (Fig. 419 

5B; STable 12&13).  A good example is Otx2, which is significantly over-expressed in PRP and 420 

NRPC, and whose three binding motifs are enriched in genes that are over-expressed in PRP 421 

while being enriched in genes that are under-expressed in NRPC (which include the genes that 422 

are over-expressed in PRP).  One possible explanation of these observations is that the 423 

corresponding TF are necessary but not sufficient to induce expression of target genes.   As 424 

an example, Otx2 may be induced in NRPC that will develop into PRP, but only exert its 425 

transcriptional effects after maturation into PRP. Consistent with this hypothesis, NRPC 426 

expressing Otx2 tended to cluster in the vicinity of PRP in the UMAP manifold (SFig. 8).  We 427 

therefore refer to these six TF as “conditional activators”.   428 

Finally, three TF were characterized by the enrichment of one of their binding motifs (in 429 

overexpressed genes), yet the depletion of another of their binding motifs in the same cell 430 

type (Lhx1, Plagl1, Zic1) (STable 12&13).  These will be referred to as “dual TF” yet were 431 

considered with caution. 432 

 433 

 434 

 435 
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Figure 5: Combined analysis of scRNA-Seq and bulk ATAC-Seq data reveals putative activator and repressor 438 
TF that may constitute regulatory toggles. (A) QQ plot of log(1/p) values of the difference in average number 439 
of binding motifs in ATAC-Seq peaks of over-expressed versus under-expressed genes for TF over-expressed 440 
in the corresponding cell type.  Enrichments are indicated by red dots, depletions by blue triangles.  Symbols 441 
are large for TF with q-value < 0.01, and small for TF with q-value ≥ 0.01. For the most significant effects, the 442 
name of the TF is given, as well as – between brackets - the index of the binding motif, and the cell type.  The 443 
grey line corresponds to expectations assuming that all tests are true null hypotheses. (B) Examples of activator, 444 
repressor and conditional activator TF.  Upper lines (“TF Expr”, white-red color code): standardized expression 445 
pattern of corresponding TF across 12 cell types. Lower lines (“BM Enr/Depl”, blue-white-red color code): 446 
standardized enrichment (red) or depletion (blue) of binding motif(s) of corresponding TF across 12 cell types.  447 
The red circles and blue triangles mark the cases that are part of (A). They require that the TF be overexpressed 448 
in the corresponding cell type, and that there is either a significant enrichment of binding motifs in 449 
overexpressed genes (red circles) or a significant depletion (blue triangles). (C) Components of regulatory 450 
toggles and principles underlying their detection.  Shown are a hypothetical precursor (blue) and derived 451 
differentiated cell (orange).  The precursor cell is expressing a number of activator (AP, blue) and repressor TF 452 
(RP, green). These are respectively activating and repressing target genes by binding to motifs in cis-acting 453 
regulatory elements labelled respectively as aP and rP. The differentiated cell is expressing its own activator (AD, 454 
orange) and repressor TF (RD, yellow), which are respectively activating and repressing target genes by binding 455 
to motifs in cis-acting regulatory elements labelled respectively as aD and rD.  Genes that are overexpressed in 456 
precursor cells (under-expressed in differentiated cells) are enriched in aP and rD binding motifs, and depleted 457 
in aD and rP binding motifs. Genes that are overexpressed in differentiated cells (under-expressed in precursor 458 
cells) are enriched in aD and rP binding motifs, and depleted in aP and rD binding motifs.  (D-E) Combined 459 
enrichment profile across all cell types (X-axis) of binding motifs for all activator (upper graph) and repressor 460 
(lower graph) TF expressed in a given cell type (Y-axis) in NaR.  Standardized (across entire array) sum of signed 461 
(+ for enrichment, - for depletion) log(1/p) values for binding motifs of TF expressed in a given cell type (Y-axis).  462 
Positive values are measured by a white-red color code; values ≤ 0 are in white. For each cell type, the number 463 
of overexpressed activator TF (upper graph, red circles on diagonal) and repressor TF (lower graph, blue triangles 464 
on diagonal) are given, and their names provided on the right. The horizontal and vertical dotted lines delineate 465 
clusters I, II and III as defined in the main text. 466 
 467 
 468 
ScATAC-Seq supports the toggle hypothesis. 469 

To further test our toggle hypothesis, we took advantage of publicly available scATAC-Seq 470 

data for 1,792 cells isolated from retina of eight-week old mice (P56)[39].  Using 471 

10xGenomics’ Cell Ranger ATAC software we clustered the cells based on transposase 472 

accessibility of 117,073 scATAC-Seq peaks.  Clusters were then assigned to specific cell-types 473 

using the same gene signatures used with the scRNA-Seq data (STable 3).  Cell-specific gene 474 

expression levels were estimated as the proportion of reads mapping to ATAC-Seq peaks 475 

assigned to the corresponding gene (i.e. the transposase accessibility of the gene in that cell).  476 

Consistent with the results reported in [39], these analyses confirmed that the sample is 477 

primarily composed of R (n = 736), AC (n = 500), BC (n = 419), C (n = 91), and MC (n = 46) (Fig. 478 

6A).   479 

Hence, this dataset provides scATAC-Seq information for one cell type belonging to cluster II 480 

(AC) and three cell types belonging to cluster III (R, C and BC).   Examining the list of activator 481 

and repressor TF reported in Fig. 5D and E, we concluded that we could use this scATAC-Seq 482 
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dataset to (i) test the predicted activator status of 11 of 12 TF active in C and/or R (i.e. 483 

expressed in C/R and activating genes in C/R) (Arid3b, Crx, Esrrb, Junb, Mef2a, Mef2d, 484 

Neurod1, Nrl, Nr3c1, Rora, Zeb1; no data available in Cell Ranger for Thrb; see Fig. 5D), and 485 

(ii) test the predicted repressor status of 4 out of 4 TF active in AC (i.e. expressed in AC and 486 

repressing genes in AC that are normally expressed in C/R)(Barhl2, Lhx9, Nr2f2, Scrt1; see Fig. 487 

5E).  488 

We first tested the 11 C/R activator TF.  Cell-specific TF expression levels were estimated as 489 

the proportion of reads mapping to ATAC-Seq peaks assigned to the corresponding TF-490 

encoding gene (i.e. the transposase accessibility of the TF-encoding gene in that cell).  The 491 

aggregate expression levels of the genes activated by the TF were estimated as the proportion 492 

of reads mapping to genome-wide ATAC-Seq peaks matched to a cognate binding motif by 493 

the Cell Ranger ATAC algorithm (10X Genomics)(i.e. the aggregate accessibility of the binding 494 

motif of the TF of interest in that cell).  Our prediction was that for C/R activator TF, both the 495 

TF-encoding genes and the cognate binding motifs (genome-wide) should be transposase-496 

accessible in C and R cells (= cluster III).  Visual examination of paired tSNE maps for (i) TF 497 

gene accessibility and (ii) cognate TF binding motif accessibility, clearly revealed the expected 498 

colocalization in C/R cells (as well as BC cells)(Fig. 6B).  To more rigorously assess the statistical 499 

significance of these visual impressions, we computed the correlations between the cells’ TF 500 

gene accessibility and TF binding motif accessibility.  The correlation was positive for 11/11 501 

C/R activators (𝑝%&'()*(+ ≤ 0.05 for 9/11)(Fig. 6C and SFig. 9).      502 

We then performed the same analyses for the four AC repressor TF.  Visual examination of 503 

the paired tSNE plots revealed a striking contrast with the 11 activator TF:  repressor TF gene 504 

accessibility was highest in AC (cluster II), while repressor TF binding motif accessibility was 505 

highest in the other cell types (cluster III) (Fig. 6B).   Accordingly, the correlation between the 506 

cells’ TF gene accessibility and TF binding motif accessibility was negative for the four AC 507 

repressors (𝑝%&'()*(+ ≤ 0.05 for 4/4)(Fig. 6C and SFig. 9). The probability to observe a 508 

positive correlation for 11/11 predicted activator TF and a negative correlation for 4/4 509 

predicted repressor by chance alone is 3x10-5. 510 

  511 



Georges et al.  Page 20 of 44 

 512 

Ce
ll 

ty
pe

s
Cr

x
Sc

rt
1

Ba
rh

l2

TF expression level TF binding site accessibility

Lh
x9

AC
C
R
BC
MC

Log2 Expr Modif Z-score

A

B



Georges et al.  Page 21 of 44 

Figure 6: Single-cell ATAC-Seq data support the regulatory toggle model. (A) scATAC-Seq based tSNE plot 513 
constructed with the Cell Ranger ATAC software (10xGenomics) and the data from Norrie et al. [38].  Cells were 514 
assigned to cell-types based on the accessibility of the marker genes reported in STable 3.  Cell-type 515 
abbreviations and colors are as in the previous figures. The number of cells per cell type are in good agreement 516 
with [39]. (B) (Left panels) Expression levels of one C/R activator (Crx) and three presumed AC repressors (Scrt1, 517 
Barhl2, Lhx9) inferred from their transposase accessibility, showing higher accessibility of Crx in R, C and BC, and 518 
higher accessibility of Scrt1, Barhl2 and Lhx9 in AC. (Right panels) Aggregate genome-wide transposase 519 
accessibility of cognate binding motifs, showing higher accessibility of Crx motifs in R, C and BC (i.e. same as for 520 
Crx itself), and higher accessibility of Scrt1, Barhl2 and Lhx9 motifs in R, C (and BC) than in AC (i.e. opposite as 521 
for corresponding TF). (C) Scatter plots showing the correlation between gene-specific TF transposase 522 
accessibility (y axis) and corresponding genome-wide TF binding motif transposase accessibility (x axis).  Dots 523 
correspond to individual cells. All correlations are highly significant, positive for the C/R activator, and negative 524 
for the AC repressors.  See SFig. 9 for plots of 11 C/R activators and 4 AC repressors.  525 

R activator
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Comparing the effects of activator and repressor TF between NaR and 3D-RA using scRNA-526 

Seq and bulk ATAC-Seq data. 527 

We repeated the same analyses as described above for the 13 major cell types detected in 528 

3D-RA (including RPE).  We identified 18 activator TF, 24 repressor TF, 3 conditional activator 529 

TF, and 2 dual TF (STable 12&14).   Thirty-eight of these 47 TF overlapped with those found in 530 

NaR.  Analyzing the combined effect of TF overexpressed in a given cell type largely confirmed 531 

the three clusters detected in NaR.  RPE appear to be part of cluster (I), while 3D-RA MC could 532 

not be classified as no over-expressed TF (whether activator or repressor) could be detected 533 

in this cell type in 3D-RA (Fig. 8A&B).  The degree of enrichment/depletion of TF binding 534 

motifs (measured by the signed (+ for enrichment, - for depletion) log(1/p)) in the different 535 

cell types was highly correlated between NaR and 3D-RA (r= 0.82, p < 2.2e-16)(Fig. 8C).  The 536 

slope of the regression line was significantly < 1 suggesting that, overall, the TF’s activator 537 

and repressor effects might be slightly reduced in 3D-RA when compared to NaR.  538 

Alternatively, statistical power could be slightly higher in NaR due to the larger number of 539 

analyzed cells. Outliers included Crx and Otx2 which appeared to have more pronounced 540 

activator effects in PRP of 3D-RA than of NaR (Fig. 8C&D).  This may be related to the fact that 541 

the 3D-RA culture conditions were designed to “push” PRP development (see also Fig. 2J).  542 

Other outliers were Etv1, Etv5, Hes1 and Zbtb7a which pointed towards TF-driven differences 543 

in the NaR and 3D-RA transcriptomes of HC and MC (Fig. 8C).  Binding motifs for this group of 544 

TF were enriched in genes that were under-expressed in MC of NaR but this was not observed 545 

in 3D-RA (dots near horizontal dotted line Fig. 8C), while being enriched in genes that were 546 

under-expressed in HC of 3D-RA but this was not observed NaR (dots near vertical dotted line 547 

in Fig. 8C)(Fig. 8D).  Of note, binding motifs of Etv1, Etv5, Zbtb7a, but not Hes1 are partially 548 

overlapping (SFig. 10).   The prediction is therefore that (i) there are genes that are under-549 

expressed in MC of NaR but not in MC of 3D-RA and whose ATAC-Seq peaks have a high 550 

density in Etv1/Etv5/Hes1/Zbtb7a binding motif, and (ii) there are genes that are under-551 

expressed in HC of 3D-RA but not in HC of NaR and whose ATAC-Seq peaks have a high density 552 

in Etv1/Etv5,Hes1/Zbtb7a binding motif.  Indeed, we found that there was a very strong 553 

coincidence between the density of Etv1/Etv5/Hes1/Zbtb7a binding motifs and the two 554 

predicted expression patterns (under-expressed in MC of NaR but not of 3D-RA; under-555 

expressed in HC of 3D-RA but not of Nar)(Fig. 8E&F).   We identified 77 genes under-expressed 556 

in MC of NaR but not of 3D-RA with high density in Etv1/Etv5/Hes1/Zbtb7a bindings motifs, 557 
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and 61 genes under-expressed in HC of 3D-RA but not of Nar with high density in 558 

Etv1/Etv5/Hes1/Zbtb7a bindings motifs (STable 15). We submitted these gene lists to 559 

Reactome. The pathways that were enriched overlapped strongly between the two lists 560 

(although only eight genes were common to both lists) and pertained mainly to RNA stability 561 

and translation and to a lesser extent to the cell cycle (STable 15).  They coincided remarkably 562 

well with the Reactome pathways that were highlighted by the genes that appeared in the 563 

scRNA-Seq analyses to be more strongly expressed in MC of 3D-RA than of NaR (found entities 564 

labelled in orange [3D-RA > NaR, column MC] in Fig. 3B).  Thus, the combined scRNA-Seq and 565 

ATAC-Seq analysis reveals that part of the difference between MC of Nar and 3D-RA is due to 566 

perturbed expression of genes that are controlled by the Etv1/Etv5/Hes1/Zbtb7A TF 567 

squadron. Of note, these effects appeared largely independent of differences in the 568 

expression levels of the corresponding TF (in MC/HC) between NaR and 3D-RA per se: Etv1 569 

was the only TF to have a significantly higher expression level in 3D-RA than NaR in MC (STable 570 

7).  571 
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 572 
Figure 8: Comparing the operation of regulatory toggles between Nar and 3D-RA.  (A,B) Combined enrichment 573 
profile across all cell types (X-axis) of binding motifs for all activator (A) and repressor (B) TF expressed in a 574 
given cell type (Y-axis) in 3D-RA.  Standardized (across entire array) sum of signed (+ for enrichment, - for 575 
depletion) log(1/p) values for binding motifs of TF expressed in a given cell type (Y-axis).  Positive values are 576 
measured by a white-red color code; values ≤ 0 are in white. For each cell type the number of overexpressed 577 
activator TF (upper graph, red circles on diagonal) and repressor TF (lower graph, blue triangles on diagonal) are 578 
given, and their names provided on the right. The horizontal and vertical dotted lines delineate clusters I, II and 579 
III as defined in the main text. (C) Comparison of the log(1/p) values for enrichment (+)/depletion (-) of TF 580 
binding motifs across cell types between NaR (X-axis) and 3D-RA (Y-axis).   Red circles: values for activator TF 581 
in the cell type in which they are overexpressed. Blue triangles: values for repressor TF in the cell type in which 582 
they are overexpressed. Small grey circles: values for cell types in which the corresponding TF is not 583 
overexpressed.  The identity of outlier TF is given, as well as – between brackets - the index of the binding motif, 584 
and the cell type.  “r” = correlation coefficient. (D) Expression levels (red scale) (upper line) and enrichment (red 585 
scale)/depletion (blue scale) of binding motifs in overexpressed genes (lower line) in NaR and 3D-RA for five TF 586 
highlighted in Fig. 8C. (E) Log2 fold over (+) or under (-) expression of genes in MC relative to the other cell types 587 
in NaR (x-axis) and 3D-RA (y-axis).  When the fold-change in expression is not significantly different from 0, the 588 
gene receives 0 value in the corresponding sample type (i.e. on the horizontal line for 3D-RA, and on the vertical 589 
line for NaR).  The size and redness of the symbols measures the density in the weighted sum of the binding 590 
motifs for Etv1, Etv5, Hes1 and Zbtb7a for the corresponding gene.  One can clearly see that the genes that are 591 
significantly underexpressed in NaR but not in 3D-RA (genes on left side of horizontal line) are enriched in genes 592 
with high density of TF binding motifs.  (F) As (E) for HC.  One can clearly see that the genes that are significantly 593 
underexpressed in 3D-RA but not in NaR (genes on bottom side of vertical line) are enriched in genes with high 594 
density of TF binding motifs. 595 
 596 
 597 
Discussion 598 

We herein use scRNA-seq to compare the unfolding of the epigenetic program in in vivo 599 

versus in vitro (from iPS cells) derived murine retina at four matched development stages 600 

encompassing the presumed emergence times of the major retinal cell types (E13 vs DD13, 601 

P0 vs DD21, P5 vs DD25 and P9 vs DD29).  Results obtained by combining information from (i) 602 

the analysis of four developmental stages, (ii) 3D UMAP manifolds visualized in virtual reality 603 

(http://www.sig.hec.ulg.ac.be/giga), and (iii) RNA velocity analysis, are in good agreement 604 

with the previously reported, main retinal developmental trajectories (Fig. 1F).  We identify 605 

E F

Genes that are underexpressed in 
3D-RA but not NaR HC are enriched 
in Etv1, Etv5, Hes1 and Zbtb7a 
binding motifs. 

Genes that are 
underexpressed in 
NaR but not 3D-RA 
MC are enriched in 
Etv1, Etv5, Hes1 and 
Zbtb7a binding 
motifs. 
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>4,000 genes that are differentially expressed during in vivo retinal differentiation 606 

corresponding to tens of biological pathways pertaining to the cell cycle, gene expression, 607 

signal transduction, metabolism, cell biology and development (Fig. 3). Several of these 608 

pathways were previously highlighted when submitting differentially expressed genes 609 

identified from the analyses of bulk RNA-Seq data from multiple time points (E11 to P28) 610 

during retinal development [40]. Our data now allows to assign highlighted pathways to 611 

individual cell types. Differentially expressed genes include ~300 TF, of which ~100 are at 612 

least 1.5 times more strongly expressed in one specific retinal cell type when compared to all 613 

other ones.  The latter include 19 TF not yet described in the field of retinal development 614 

which could serve as a starting point for functional investigations of the roles of these TF in 615 

retinogenesis and physiology.  616 

We generated bulk ATAC-Seq data for three of the four analyzed developmental stages in 617 

both NaR and 3D-RA. This allowed us to identify 98,181 putative regulatory elements assigned 618 

(by proximity) to 19,171 genes, that are accessible during retinal development.  This collection 619 

of ATAC-Seq peaks also allowed us to test the activity of 151 TF shown by scRNA-Seq to be 620 

differentially expressed during retinal development, and which have known binding motif(s).   621 

For 31 of these (considering both NaR and 3D-RA; STable 12), we observed an enrichment (q-622 

value < 0.01) of binding motifs in ATAC-Seq peaks of genes that are over-expressed in the 623 

same cell type as the TF.  This is what is expected for TF that act predominantly as activators 624 

in the corresponding cell type.  Reassuringly, the list of predicted activators includes several 625 

TF that are known to play key roles during retinal development such as Crx, Neurod1, Nr2e3, 626 

Nrl, Rora, Rorb, Rxrg, Sox9 and Thrb [30, 41-43].  627 

Unexpectedly, for 31 other TF we observed a significant depletion of binding motifs in the 628 

ATAC-Seq peaks of genes that were over-expressed in the same cell type as the TF.  This is 629 

what is expected if the TF acts predominantly as a repressor in that cell type. Accordingly, the 630 

list comprises several acknowledged repressors including Atf4 [44], Barhl2 [45,46], Bcl11a 631 

[47], Foxp1 [48,49], Foxp2 [50], Hey2 [51,52], Scrt1 (= Scratch Family Transcriptional 632 

Repressor 1) [53], Six6 [54], Sox2 [55], Tgif1 [56], Tgif2 [56], Vsx1 [57], Vsx2 [58], Zeb2 [59], 633 

and Zbtb12 [60].  Of interest, the list of putative repressors comprises three TF that have been 634 

labelled as “pioneer factors” (i.e. TF that engage with closed chromatin to open it and make 635 

it subsequently accessible to other TF [61]), including Ascl1 [62,63], Sox2 [62], and Isl1 [64].  636 

If the pioneer factor were transiently expressed in retinal progenitor cells (as observed for 637 
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Ascl1 and Sox2, but not Isl1; STable 12), rendering chromatin accessible to activator TF that 638 

are expressed and operate in later stages of development, this may conceivably also generate 639 

the observed depletion of binding motifs in the ATAC-Seq peaks of genes that are over-640 

expressed in the same cell type as the pioneer TF.   We note that three of the TF in the list of 641 

putative repressors (Ahr, Hif1α and Clock), which are typically regarded as paradigmatic 642 

activators, are functionally connected:  Ahr competes with Hif1α for binding to the nuclear 643 

translocator protein Arnt and – possibly - with Clock for binding to Arnt-similar Bmal1 [65].  It 644 

is tempting to speculate that this connection may underpin the fact that these three 645 

supposedly activator TF appear as repressors in our analyses.       646 

For 10 TF (Etv1, Fosb, Hes1, Jun, Junb, Lhx2, Otx2, Pax6, Sox11 and Tcf3, STable 12), 647 

overexpression of the TF was accompanied by binding motif enrichment in some cell type(s), 648 

and depletion in other(s).  We labelled these as “conditional activator” TF, meaning that the 649 

presence of the TF is necessary but not sufficient to exert its effect on transcription.  This 650 

could for instance reflect the need for post-translational modification of the TF [66], or for 651 

cooperation with other TF or cofactors [67], or the fact that the target sites of the TF are not 652 

yet accessible requiring further chromatin remodeling [39].  653 

It is increasingly recognized that many TF act both as activator or repressor in different or 654 

even in the same cell type, depending (i) on the combination of TF that bind to a given cis-655 

acting regulatory element, as well as (ii) the coregulators (devoid of own DNA binding domain) 656 

that they recruit to the regulatory element [67,68].  Accordingly, for many of the TF listed in 657 

STable 12, both activator and repressor effects have been reported in the literature. The 658 

approach that we have used (i.e. searching for an enrichment or a depletion of binding motifs 659 

for an overexpressed TF in the ATAC Seq peaks of all other overexpressed genes) reveals the 660 

activity of the TF (activation vs repression) that predominates in a given cell type.  For the 31 661 

TF whose predominant activity was of the repressor type, we could nearly always identify one 662 

or more cell types in which the ATAC-Seq peaks of over-expressed genes were enriched in the 663 

corresponding binding motif (despite the fact that the TF was not over-expressed in that cell 664 

type).  This strongly suggests that the corresponding repressor specifically targets genes that 665 

define another retinal cell type.  We revealed a clear relationship between the cell type(s) in 666 

which the repressor TF is expressed and the cell type(s) in which its target genes are 667 

expressed, allowing us to define three clusters: (I) NE, ERPC, LRPC and NRPC, (II) RGC, AC and 668 

HC, and (III) PRP, C, R, BC and MC (Fig. 5D&E).  Repressors TF expressed in cluster I (precursor 669 
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cells) primarily target genes defining cell types of cluster III (primarily photoreceptor and 670 

bipolar cells), repressor TF expressed in cluster III primarily target genes defining cell types of 671 

cluster I, and repressor TF expressed in cluster II target genes defining cell types of both 672 

clusters I and III.  Based on these findings, we propose that combinations of activator and 673 

repressor TF constitute regulatory toggles that help ensure cell type-specific gene expression 674 

and hence cellular identity (Fig. 5C).  Our results suggest that the hypothesized regulatory 675 

toggles involve multiple activators and repressors.  This may confer robustness to the system, 676 

and enable differentiation of multiple cell types. It also indicates that perturbing TF one at a 677 

time, whether by overexpression or knock-out/down, may not be effective to dissect such 678 

multifactorial toggles.  It may be necessary to perform pooled screens using CRISPR libraries 679 

targeting several candidates at once (at high multiplicity of infection) in Perturb-Seq like 680 

experiments conducted in 3D-RA [69] in order to induce detectable alterations in cellular 681 

behavior.   682 

We took advantage of publicly available scATAC-Seq data of adult (P56) retina of the mouse 683 

(providing information about cell type clusters II and III) [39] that allowed us to test two 684 

components of our regulatory toggle hypothesis in an independent data set interrogated with 685 

a distinct technology: the effect of 11 TF predicted to operate as activators in cluster III, and 686 

the effect of 4 TF predicted to operate as repressors in cluster II.  Our analyses provide a vivid 687 

visual illustration of (i) the coincident (i.e. in the same cell type) expression of activator TF and 688 

their target genes (measured by increased transposase accessibility of both TF-encoding gene 689 

and genome-wide ATAC-Seq peaks encompassing the cognate binding motif, respectively), 690 

and (ii) the discrepant (i.e. in distinct cell types) expression of repressor TF and their target 691 

genes measured in the same manner. Visual impressions were substantiated by highly 692 

significant positive (activator TF) and negative (repressor TF) correlations between the 693 

transposase accessibility of the TF-gene and the transposase accessibility of ATAC-Seq peaks 694 

encompassing the cognate binding-motifs (Fig. 6 and SFig. 9).  While the marked contrasting 695 

behavior of predicted activator and repressor TF in this assay supports the pertinence of our 696 

model, its biological interpretation is not trivial.   It is easy to understand that if an activator 697 

TF is expressed in a given cell (as testified by the openness of the chromatin surrounding it) 698 

and if it is active in that cell, regulatory elements to which it binds (by recognizing cognate 699 

motifs in it) to activate target genes will be open and hence accessible as well.   But what 700 

about the opposite pattern observed for candidate repressor TF?  The fact that ATAC-Seq 701 
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peaks encompassing binding motifs for a repressor are primarily closed in the cell type in 702 

which the repressor is expressed suggests that the repressor TF is largely effective and that it 703 

contributes to closing the regulatory elements to which it has or is bound.  The fact that these 704 

same peaks are open in cell types in which the repressor is not expressed suggests that the 705 

corresponding regulatory elements encompass binding motifs for both activator and 706 

repressor TF. This prediction is substantiated by the observation of strong positive 707 

correlations between the density of binding motifs (number of binding motifs divided by peak 708 

size) for repressor and activator TF in the utilized scATAC-Seq data (SFig. 11).   Thus, our data 709 

suggest that the same regulatory elements are used to activate gene expression in the cell 710 

type(s) where the gene product is needed, as well as to repress gene expression in the cell 711 

type(s) in which expression of the gene is unwanted.      712 

 713 

We show that 3D-RA broadly recapitulate the in vivo developmental program and 714 

trajectories.  However, developmental trajectories appear less canalized in 3D-RA when 715 

compared to NaR, PRP to develop earlier and at the expense of other cell types, and terminal 716 

differentiation of BC to be incomplete (Fig. 2). We identify ~3,000 genes that are differentially 717 

expressed between 3D-RA and NaR in at least one cell type, and identify the corresponding 718 

biological pathways pertaining in particular to the rate of cell division which  is reduced in 3D-719 

RA RPCs when compared to NaR, post-transcriptional and translational mechanisms which 720 

appear exacerbated in the majority of 3D-RA cell type when compared to NaR, signal 721 

transduction via WNT and Notch pathways which are diminished in 3D-RA RPCs when 722 

compared to NaR, 3D-RA differentiated cells which appear less functional with less 723 

phototransduction cascade activity and decrease synapse formation, and finally apoptosis 724 

and stress response which are increased at the latest stages of 3D-RA culture.  As for NaR, 725 

several of these perturbed pathways were highlighted before in analyses of bulk scRNA-Seq 726 

data obtained during the development of NaR and 3D-RA [40], and can now be assigned to 727 

cell type-specific transcriptome perturbations.  Strikingly, the perturbed pathways show a 728 

highly significant overlap with those that were shown to be differentially expressed during 729 

the in vivo development of NaR. We show that TF that are differentially expressed during in 730 

vivo retinal development are particularly sensitive to the iPSC culture conditions.   This is likely 731 

to drive the perturbations of the above-mentioned biological pathways.   732 
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We show how scRNA-Seq and bulk ATAC-Seq can be combined to gain novel insights into what 733 

may underpin differences observed between the NaR and 3D-RA transcriptomes. As an 734 

example, the comparison between MC from NaR and 3D-RA revealed 418 genes that were 735 

more strongly expressed in NaR when compared to 3D-RA (NaR > 3D-RA), and 424 that were 736 

more strongly expressed in 3D-RA (3D-RA > NaR) (STable 7).   The first list of genes (NaR > 3D-737 

RA) was not enriched for any Reactome pathway, but the second (3D-RA > NaR) highlighted 738 

53 of these (STable 8), corresponding to five subsets of “found entities” (five colors in MC 739 

column (3D-RA > NaR) in Fig. 3B).  One of these subsets (orange set, rich in genes encoding 740 

ribosomal proteins) highlighted pathways related to RNA stability (NMD), RNA translation, 741 

selenocystein metabolism and signaling by ROBO receptors.   Combined scRNA-Seq and ATAC-742 

Seq data indicated that genes with high density of binding motifs for Etv1, Etv5, Hes1 and 743 

Zbtb7a in their ATAC-Seq peaks are underexpressed in MC of NaR relative to 3D-RA (Fig. 744 

8E&F).   These four TF are expressed at relatively high and comparable levels in both NaR and 745 

3D-RA.   We identified the corresponding genes and subjected them to Reactome analysis.   746 

They identified – to a large extent – the same pathways as the orange gene subset defined 747 

above.  Thus, the differences between NaR and 3D-RA MC with regards to the corresponding 748 

pathways are most likely driven by perturbations of the Etv1, Etv5, Hes1 and Zbtb7a group of 749 

TF.  Examination of their transcriptional and binding motif enrichment/depletion profile 750 

across cell types (Fig. 8D) suggests that Etv1, Etv5 and Hes1 operate as “conditional TF” (as 751 

defined above) in NaR: despite still being present in MC they do not have the activator effect 752 

in these cells as seen in retinal progenitor cells (hence the observed depletion in the NaR MC 753 

transcriptome).  In 3D-RA MC, they may still have “residual” activator activity which would 754 

explain why the depletion is not seen.  Zbtb7a is clearly distinct from the other three: it is 755 

most strongly expressed in PRP, C and R, yet its binding motifs are primarily found in genes 756 

expressed in retinal progenitor cells.   How and why genes enriched in Zbtb7a motifs would 757 

be underexpressed in NaR but not 3D-RA MC remains unclear.  Yet these examples show how 758 

studying the regulatory toggle landscape may become a valuable approach to monitor how 759 

closely organoids recapitulate native development.  760 

 761 

Materials and methods 762 

Generation of iPSC-derived retinal aggregates. Maintenance of iPSCs: The mouse iPSC-763 

NrlGFP line was obtained from the laboratory of Retinal Regeneration from the RIKEN Center 764 
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for Developmental Bioloy (CDB) (Kobe, Japan). These iPSCs were generated from fibroblasts 765 

[70] of C57BL/6 Nrl-eGFP transgenic mice [20].  iPSCs were maintained according to [71] in 766 

60-mm Petri dishes (0,6 x 105 cells total per dish) coated with 0.1% gelatin (G2625, Merck, 767 

Darmastadt, Germany) in Glasgow’s Minimum Essential Medium (GMEM, 11710035,Thermo 768 

Fisher Scientific, Waltham, MA) supplemented with 10% Fetal Bovine Serum (FBS, #04-001-1, 769 

Biological Industries, Beit HaEmek, Israel), 1 mM sodium pyruvate (Merck), 0.1 mM MEM 770 

Non-Essential Amino Acids Solution (NEAA, Thermo Fisher Scientific), 0.1 mM 2-771 

mercaptoethanol (2-ME, Wako Pure Chemical, Osaka, Japan), 100 U/mL  penicillin-772 

streptomycin (Thermo Fisher Scientific), 1000 U/mL of Leukemia inhibitory factor (Esgro LIF, 773 

Merck), 3 µM CHIR99021 (BioVision, Milpitas, CA) and 1 µM PD0325901 (Stemgent, 774 

Cambridge, MA). Generation of iPSC-derived retinal aggregates : Differentiation of iPSCs into 775 

retinal aggregates was done using the SFEBq (serum-free floating culture of embryoid body-776 

like aggregates with quick re-aggregation) method according to [21] with some modifications 777 

following [71] and [72].  The iPSCs were dissociated (DD0) after 4-5 days of maintenance using 778 

0.25% trypsin / 1 mM EDTA (Thermo Fisher Scientific) at 37°C for 2 minutes. Embryoid body-779 

like aggregates were formed by adding 5,000 cells/dish in a low binding 96-well microplate 780 

(174925, Nunclon Sphera, Thermo Fisher Scientific) in 100 µL of differentiating medium.  The 781 

differentiating medium is composed of GMEM (Thermo Fisher Scientific), 0.1 mM AGN193109 782 

(Toronto Research Chemicals, Toronto, Canada), 5% of Knock-out Serum Replacement (KSR, 783 

Thermo Fisher Scientific), 1 mM Sodium Pyruvate (Merck), 0.1 mM NEAA (Thermo Fisher 784 

Scientific) and 0.1 mM 2-ME (Wako). At DD1, 20 µL of Matrigel Growth Factor Reduced 785 

Basement Matrix (Corning, Corning, NY) was added to obtain a final concentration equal to 786 

2%. The cells were left in this medium untill DD8.  At DD8, retinal aggregates were picked up 787 

and transferred in 60-mm Petri dishes in maturation medium composed of Dulbecco’s 788 

Modified Eagle’s Medium (DMEM)/F-12 with glutamax (Thermo Fisher Scientific), 1% of N-2 789 

supplement (Thermo Fisher Scientific) and 100 U/mL penicillin-streptomycin (Thermo Fisher 790 

Scientific).  0.5 µM retinoic acid (DD13 to DD18) (#R2625, Merck), 1 mM of L-taurine (DD13 791 

to DD29) (#T8691,Merck) and 1% FBS (DD21 to DD29) (Biological Industries) were added to 792 

this maturation medium.  Taurine and retinoic acid promote rod photoreceptors 793 

differentiation [73]. From DD8 to DD29 cultures were maintained in hyperoxic conditions 794 

(37°C, 40% O2 / 5% CO2). Development of retinal aggregates was monitored and GFP 795 
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expression was confirmed from DD18 using an EVOS FL digital inverted fluorescence 796 

microscope (Thermo Fisher Scientific). 797 

Immunofluorescence. Retinal aggregates were fixed for 20 minutes at room temperature in 798 

4% paraformaldehyde (PFA) in phosphate saline (PBS) at pH 7.4.  They were equilibrated 799 

overnight in 30% sucrose (in PBS) at 4°C before cryoprotection.  Eyeballs from wild type 800 

C57BL/6 mice, used as positive controls, were enucleated and punctured in the center of the 801 

cornea before fixation for 1 hour in 4% PFA and at room temperature, then washed in PBS 802 

and incubated in sucrose 30% at 4°C overnight.  Samples were embedded in Richard-Allan 803 

Scientific NEG-50 Frozen Section medium (Thermo Fisher Scientific). Slices of 10 to 15 µm 804 

were generated with a cryostat and placed on Superfrost Ultra Plus slides (Thermo Fisher 805 

Scientific).  For immunofluorescence, slides were first incubated in Blocking One solution 806 

(Nacalai Tesque, Kyoto, Japan) for 1 hour at room temperature, then at 4°C overnight with 807 

primary antibodies diluted in Dako REAL Antibody Diluent (Agilent, Santa Clara, CA). We used 808 

the following primary antibodies: rabbit antibody against Protein Kinase Cα diluted at 1:500 809 

(Antibody Registry ID: AB_477345, Merck), rabbit antibody against Recoverin at 1:1000 810 

(AB_2253622, Merck), rabbit antibody against Calretinin at 1:500 (AB_2313763, Swant, 811 

Marly, Switzerland), rabbit antibody against Pax6 at 1:100 (AB_2313780, BioLegend, San 812 

Diego, CA), mouse antibody against RET-P1 at 1:1000 (anti-Rhodopsin, AB_260838, Merck), 813 

sheep antibody against Chx10 at 1:1000 (AB_2314191, Exalpha Biologicals, Shirley, MA).  After 814 

24 hours, slides were washed three times for 5 minutes in 0.05% PBS- Tween then incubated 815 

with appropriate secondary antibodies in the dark at room temperature (anti-IgG rabbit A488 816 

and A647, anti-IgG mouse A555 and anti-IgG sheep A555, all from Thermo Fisher Scientific) 817 

and 1:1000 4',6-diamidino-2-phenylindole (DAPI) in Dako REAL Antibody Diluent. After 818 

another wash in PBS-Tween, slides were mounted with FluorSave Reagent (Merck). Images 819 

were taken with a Nikon Eclipse Ti confocal microscope.  820 

Single cell RNA Seq. Dissociation of native retinal tissue and 3D-culture retinal aggregates: 821 

The dissociation of mouse retinas and 3D retinal aggregates was inspired by the protocol of 822 

Macosko et al. [74].  Eyeballs of C57BL/6 wild type mice were enucleated at time points E13, 823 

P0, P5 and P9.  Dissected retinas were placed in Dulbecco’s Phosphate Buffered Saline (DPBS, 824 

Thermo Fisher Scientific). Optic vesicule (OV)-like structures of the iPSCs derived 3D retinal 825 

aggregates were cut at DD13, DD21, DD25 and DD29 and transferred in DPBS as well.  Papain 826 

4 U/mL (Worthington Biochemical Corporation) was added to the samples. The solution 827 
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containing the retinas and the OV-like structures was maintained at 37°C for 45 and 30 828 

minutes, respectively.  0.15% ovomucoid (Worthington Biochemical Corporation, Lakewood, 829 

NJ) was added for papain inhibition. Samples were centrifuged in order to eliminate the 830 

supernatant and cells were resuspended in DPBS. Cell numbers and proportion of living cells 831 

were estimated by Trypan Blue staining and using a Countess II cell counter (Thermo Fisher).  832 

scRNA-Seq: We generated two biological replicates for stages 1 to 3 (NaR and 3D-RA) and one 833 

biological replicate for stage 4 (NaR and 3D-RA).  We loaded ~15,700 cells for biological 834 

replicate 1 (stage 1-4) and ~10,000 cells for biological replicate 2 (stage 1-3) in a Chromium 835 

Controller instrument (10X Genomics, Pleasanton, CA).  Sequencing libraries were generated 836 

using Chromium Single Cell 3’ reagent kits v2.0 following the recommendations of the 837 

manufacturer (10X Genomics).  Actual sequencing was conducted on an Illumina NextSeq 500 838 

instrument (Illumina, Sand Diego, CA).  Bioinformatic analyses:  Demultiplexing, alignment, 839 

filtering, barcode counting, UMI counting, and aggregation of multiple runs were conducted 840 

using Cell Ranger v2.1.1 (10X Genomics).  Further filtering, k-means clustering, UMAP 841 

projection were conducted using the Seurat software suite 842 

(https://satijalab.org/seurat/)[23]. Velocity analysis was performed using the Velocyto R [11] 843 

and scvelo [12] packages.  Single- cell trajectory inference and pseudotime analyses were 844 

conducted using Monocle2 (http://cole-trapnell-lab.github.io/monocle-release/)[14].   845 

ATAC-Seq. Data generation: ATAC-seq libraries were constructed on NaR (E13, P0, P5) and 846 

3D-RA (DD13, DD21, DD25) samples with biological replicates following the Omni ATAC 847 

protocol [36]. We used 50,000 cells per reaction taken from the cell suspensions prepared for 848 

the scRNA-seq. We tested two different amounts of Tagment DNA TDE1 enzyme (1 and 2 μl 849 

in a 50 μl reaction volume) (Illumina) per sample. Genomic DNA (gDNA) libraries were also 850 

prepared using 50 ng of gDNA isolated from NaR P5 and 3D-RA DD25 cells by following the 851 

Nextera DNA Sample Preparation Guide (Illumina). The libraries were purified using the 852 

MinElute PCR purification kit (Qiagen, Venlo, Netherlands) followed by 13 and 5 cycles of PCR-853 

amplifications for ATAC-seq and gDNA libraries, respectively. After validating library size 854 

distribution using the QIAxcel capillary electrophoresis (Qiagen), the libraries were further 855 

purified using the SPRIselect reagent to remove large DNA molecules (a right-side size 856 

selection with 0.55X followed by 1.5X ratios of beads) (Beckman Coulter, Brea, California). On 857 

average 10.6 millions of 38-nucleotide paired-end sequences were obtained using a NextSeq 858 

500 sequencer (Illumina). Data analyses: Data was analyzed by following the ENCODE Kundaje 859 
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lab ATAC-seq pipeline (https://www.encodeproject.org/pipelines/ENCPL792NWO/). 860 

Sequences were trimmed using Trimmomatic [75] and aligned on the Mus musculus genome 861 

assembly mm10 using Bowtie2 [76].  After filtering out low quality, multiple mapped, 862 

mitochondrial, and duplicated reads using SAMtools [77] and the Picard Toolkit 863 

(http://broadinstitute.github.io/picard/), fragments with map length ≤ 146 bp were kept as 864 

nucleosome-free fraction.  Genomic loci targeted by TDE1 were defined as 38-bp regions 865 

centered either 4 (plus strand reads) or 5-bp (negative strand reads) downstream of the 866 

read’s 5’-end.  ATAC-seq peaks were called using the MACS2 software (narrowPeak; q-value 867 

≤ 0.01) [38].  FRiP scores were calculated as the fraction of TDE1 targeted loci falling into the 868 

called peaks.  Overlapping peaks across samples were merged and annotated for the 869 

occurrence of TF binding motifs of interest (Suppl. Table 11) and the closest gene using Homer 870 

[38].  TDE1 targeted loci overlapping the merged peaks were extracted and converted to a 871 

bedgraph file with a scaling factor to one million reads using BEDTools [78], and further to tdf 872 

format to visualize peaks on the Integrative Genomics Viewer [79].   The total number of TDE1 873 

targeted loci overlapping the merged peaks were counted using BEDOPS [80], normalized for 874 

peak lengths and a sequencing depth with per one million scaling factor, standardized and 875 

used for hierarchical cluster analysis using R hclust [81] and gplots (https://CRAN.R-876 

project.org/package=gplots). The detailed analysis pipeline is provided in the 877 

ATAC_seq_analysis_pipeline.docx file.   The overall mapping rate with Bowtie2 averaged 878 

98.6%, the mapping rate to the mitochondrial genome 4.1%, the duplicate fragment rate 879 

6.0%, the proportion of usable reads after filtration 83.4%, and the FRiP score 34.1%.  The 880 

FRiP score was significantly lower for E13 samples (reminiscent of the E14.5 samples in [82]), 881 

yet not so in the equivalent DD13 samples (Suppl. Table 16).    882 

Accessing publicly available scATAC-Seq and bulk ATAC-seq. Single-cell ATAC-seq data from 883 

8-wk wild-type C57BL/6 mouse retinas were obtained from GEO:GSE164044 [39] and 884 

analyzed using Cell Ranger ATAC v1.2.0 and Loupe Browser v5.0 with default settings (10X 885 

Genomics). Bulk ATAC-seq data on FACS-sorted rod and cone photoreceptors from 8-wk Nrl-886 

eGFP and Opn1mw-GFP mouse, respectively, were obtained from GEO:GSE83312 [83] and 887 

analyzed as above.   888 

Downstream analyses. Width of developmental trajectories in 2D UMPA space: To test 889 

whether the developmental trajectories were more tightly regulated in NaR than in 3D-RA we 890 

computed the average distance (computed as the Euclidian distance in 2D-UMAP space, 891 
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i.e..(𝑥1 − 𝑥3)3 + (𝑦1 − 𝑦3)3 ) between 500 randomly selected NaR and 500 randomly 892 

selected 3D-RA cells and their 𝑛 nearest neighbors (with 𝑛 ranging from 1 to 50).  The number 893 

of cells per developmental stage was adjusted between NaR and 3D-RA by down sampling to 894 

the number of the least populated source.  The corresponding calculations were performed 895 

five times.  The curves shown in Fig. 2D correspond to the averages across the five replicates.  896 

The grey confidence zone in Fig. 2D is bounded by the maxima and minima across the five 897 

replicates.  The corresponding script was written in Perl (Dev_path_width.pl) and the graph 898 

generated in R (Path_width.R).  Within developmental stage cell type entropy:  To compare 899 

cell type diversity within developmental stage between NaR and 3D-RA, we first equalized the 900 

number of cells with developmental stage between NaR and 3D-RA by randomly dropping 901 

cells from the most populated source. We then sampled two cells within cell source (NaR and 902 

3D-RA) and developmental stage and checked whether they were from the same cell type or 903 

not.  This was repeated 1,000 times yielding a measure of cell type diversity akin to (1-904 

entropy).  Down-sampling of cells was repeated 100 times.  Each data point in Fig. 2E 905 

corresponds to (1-Entropy) for one such random sample. The corresponding script was 906 

written in Perl (entropy.pl) and the graph generated in R (Entropy.R). Differential expression 907 

analyses: Differential expression analyses to identify genes that are upregulated in specific 908 

cell types when compared to all other ones (Cell type > Others) or that are differentially 909 

expressed between NaR and 3D-RA in a given cell type (Nar > 3D-RA and 3D-RA > NaR) were 910 

performed with the Findmarkers function in Seurat (https://satijalab.org/seurat/). Pathway 911 

analyses:  Pathway enrichment analyses were conducted using the on-line Reactome analysis 912 

tools [33,34].  Mouse gene identifiers were converted to human counterparts. Pathway 913 

analysis results were downloaded as flat files.  A total of 392 pathways with enrichment p-914 

value ≤ 0.01 in at least one analysis were kept and manually sorted according to Reactome 915 

hierarchy (Man_processed_reactome_output.txt).   A pathway is enriched in a list of genes if 916 

it contains more components of the pathway than expected by chance (given the number of 917 

genes in the list).   The overlapping genes (“Found entities”) hence define the enrichment.  918 

The same pathway can be enriched in two gene lists due to the same, distinct or partially 919 

overlapping sets of “found entities”.   We quantified the degree of overlap between sets of 920 

“found entities” for the 1,313 pathway enrichments using principal component (PC) analysis 921 

in a space defined by the presence/absence of 1,335 genes. The distance between sets of 922 
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“found entities” in a space consisting of the 20 first PCs was projected in 3D space using t-923 

distributed stochastic neighbor embedding (tSNE) implemented with the Rtsne R function.   924 

3D tSNE coordinates were converted to hexadecimal RGB code and used to color the sets of 925 

“found entities” (corresponding to the enrichment of a pathway in a specific gene list) when 926 

generating 2D tSNE graphs (SFig. 4), or when generating a tile showing the pathways enriched 927 

in specific analyses (Cell type>OTHER, NaR > 3D-RA or 3D-RA > NaR) and cell type within 928 

analysis (NE, RPE, ERPC, LRPC, NRPC, RGC, HC, AC, PRP, C, R, BC or MC) (Fig. 3B). The 929 

corresponding scripts were written in Perl (Reactome_analysis.pl) and R 930 

(Reactome_analysis.R).  Identifying regulatory toggles:  We used Homer [38] to compile the 931 

number of occurrences of 336 binding motifs for 151 of 307 dynamically regulated TF in 932 

98,181 ATAC-Seq peaks assigned to 19,170 genes.  For each gene, the data were summarized 933 

as (i) the total number of occurrences, and (ii) the mean number of occurrences per peak (i.e. 934 

density), for each of the 336 binding motifs (STable 11).  We then checked - for each of the 935 

336 binding motifs separately - whether the number (“total” in STable 11) and density 936 

(“mean” in STable 11) of motifs differed significantly between genes that were upregulated 937 

versus downregulated in every one of the 13 cell types.  Differential expression analyses to 938 

identify genes that are up- and downregulated in specific cell types were performed with the 939 

Findmarkers function in Seurat (https://satijalab.org/seurat/).  The corresponding results are 940 

summarized in a series of files labelled, respectively, “NaR/RET_<CELL_TYPE>_markers.txt” 941 

for NaR, and “3D_RA/IPS_<CELL_TYPE>_markers.txt” for 3D_RA.   We used a threshold q-942 

value of 0.05 to declare a gene as significantly up- or down-regulated in a given cell type. The 943 

statistical significance of the difference in number and density of binding motifs between up- 944 

and down-regulated genes was computed using Wilcoxon rank-based test implemented with 945 

the wilcox.test R function.   Differences were deemed significant if the q-value (computed 946 

with the qvalue R function) was ≤ 0.01.  Corresponding results are provided as STable 13 for 947 

NaR and STable 14 for 3D-RA.  The graphs for figure 5 were generated using the 948 

Comb_scRNA_ATAC_seq R script.   949 

All used scripts and datasets are available without restrictions from: 950 

http://web.giga.ulg.ac.be/pubdata/UAG/Georges_A_2020.                                                              951 
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