Jupiter's polar auroral bright spot as seen by Juno's multi-instruments

Kamolporn Haewsantati LPAP, STAR Institute K.Haewsantati@uliege.be Thesis advisor: Dr. Bertrand Bonfond

Jupiter's auroras

HST FTIS FUV image of Jupiter's northern aurora with three main regions, taken in 1998. (Credit: Clarke et al., 2004)

- The light emission produced by the interactions between precipitating high energy particles and the atmospheric particles
- Complex morphology
- Main components: the main emissions, the polar emissions, the equatorward emissions, and the satellites' footprints

Jupiter's auroral bright spot

Jupiter's auroras acquired by Juno-UVS contain the bright spot feature in (left) the northern hemisphere and (right) the southern hemisphere.

- The emissions in Jupiter's polar auroras
- Spot/compact shape
- Very dynamic and very bright in UV aurora

Summary from previous study

- Occurrence from both N&S hemispheres
- The emitted power is tens GWs, some bright spot emissions can reach up to a hundred GWs.
- The time interval between two consecutive brightening: ~2-40 minutes, same range as X-ray pulsed emissions
- Reappearance of bright spot emissions within a Juno perijove in the same system III
 position period ~25 min, indicative of quasiperiodic pulsations
- The system III positions of bright spots:
 - Northern hemi. : region around 175° system III longitude and 65° latitude
 - Southern hemi. : scattered around the polar region
 - Mostly at the edge of the swirl region
- Bright spot emissions can be seen at any local times, contrast from previous studies
- Cannot exclude the relation with cusp-like processes but would be much more complex

Current study: multi-instruments observations

-> Study three events during which Juno flew close to the field lines connecting to bright spot emissions.

Observations

- PJ3, Northern hemisphere
- PJ15, Southern hemisphere
- PJ33, Southern hemisphere

Instruments

- UV image: Juno-UVS
- Particles: JEDI
- Waves: Waves
- Magnetic field: MAG

Ultraviolet Spectrograph (Juno-UVS)

- 68-210 nm wavelength range with dog boneshaped slit
- Acquired a Jupiter's aurora image every ~30 seconds as Juno's spin period
- Polar projection: altitude 400 km above 1 bar level

Juno spacecraft and instruments

Waves

- Electric field spectra: 50 Hz to 41 MHz, magnetic field spectra: 50 Hz to 20 kHz
- A sample rate of one spectrum per 1s
- Determine electromagnetic/quasielectrostatic by *E/cB* ratio along with the electron cyclotron frequency (F_{ce}) and the electron plasma frequency (F_{pe})

Juno spacecraft and instruments

Jupiter Energetic-particle Detector Instrument (JEDI)

- Measures the energy, angular, and compositional distributions
- Electrons: ~25 to ~1,200 keV
- Ions: ~10 keV to >1.5 MeV for protons and ~150 keV to >100 MeV for oxygen and sulfur
- Two sensors coverage ~360° along the plane roughly perpendicular to the Juno spin axis and a sensor cover nearly ~180° along Juno spin axis

Juno spacecraft and instruments

Juno magnetometer (MAG) instrument

- Three components of the magnetic field vectors in the range of ~1 nT to ~16x10⁵ nT
- Sample rate of 64, 32, or 16 measurements per second
- Focus on the 1-s resolution magnetic field perturbations

Juno spacecraft and instruments

- 11 Dec 2016 time 15:38:26 UT
- 64.38°N latitude and 159.61° SIII longitude
- Power ~20 GW

- An intensification of whistler-mode hiss waves (upward direction away from Jupiter) during 15:36 UT - 15:40 UT, a few seconds before the enhancement of upward electrons
- Electron intensities started to increase at 15:37 UT until ~15:42 UT
- 15:38 15:39 UT, the upward electron flux reached ~900 mW/m² while the energy flux of downward electron was below 70 mW/m²

- An intensification of whistler-mode hiss waves (upward direction away from Jupiter) during 15:36 UT - 15:40 UT, a few seconds before the enhancement of upward electrons
- Electron intensities started to increase at 15:37 UT until ~15:42 UT
- 15:38 15:39 UT, the upward electron flux reached ~900 mW/m² while the energy flux of downward electron was below 70 mW/m²

- A deflection in all three components at ~15:40 UT
- Significant and indicate the presence of strong field aligned currents

(a) 10 10-4 Frequency (Hz) 10⁴ 10³ 10² Intensity (counts/s/ster/cm²/keV) (d) Electron 0 - 30 deg Energy (keV) 1000.00 0-30 deg 100.00 mW/m) .00 150-180 deg 0.10 0.01 2.8 132.5 69.3 1535 2.7 135.6 71.2 1540 Lon₁ Lat 73.3 1545 2016 Dec

- 7 Sep 2018 time 02:28:55 UT
- 82.88°S latitude and 58.19° SIII longitude
- Power ~6.4 GW
- High color ratio (around 15) indicating high energy particles precipitating in the atmosphere

- Intensifications of whistler-mode wave, upward direction
- Intensified before 02:28 UT and damped in the 02:28 - 02:30 UT range -> corresponds to the bright spot crossing according to the JRM09 magnetic field model
- An intensification dominated by upward electrons just before 02:25 UT, i.e., right before Waves observed its intensification
- Two intensifications upward electrons (energy flux 30-40 mW/m²) near 02:30 UT

- Intensifications of whistler-mode wave, upward direction
- Intensified before 02:28 UT and damped in the 02:28 - 02:30 UT range -> corresponds to the bright spot crossing according to the JRM09 magnetic field model
- An intensification dominated by upward electrons just before 02:25 UT, i.e., right before Waves observed its intensification
- Two intensifications upward electrons (energy flux 30-40 mW/m²) near 02:30 UT

• Magnetic field deflection in all three components but small amplitude

PhD day 2022

- 16 Apr 2021 time 01:38:30 UT
- 83.51°S latitude and 59.50° SIII longitude
- Power ~10 GW

- Intensifications of whistler-mode wave, at ~01:33-01:37 UT
- Intensity enhancement of upward electron beam (energy >500 keV) at ~01:33 UT – 01:35 UT
- Electron energy flux decreased after 01:35 UT and continued to be small during the UVS bright spot detection time

- Intensifications of whistler-mode wave, at ~01:33-01:37 UT
- Intensity enhancement of upward electron beam (energy >500 keV) at ~01:33 UT – 01:35 UT
- Electron energy flux decreased after 01:35 UT and continued to be small during the UVS bright spot detection time

• No significant of magnetic field deflection in all three components

 Table 1.
 Summary data for bright spot in situ observation

		PJ3	PJ15	PJ33
Date		11-Dec-16	7-Sep-18	16-Apr-21
Juno footprint position (Lat, SIII Lon)		$(63.65^{\circ}, 160.20^{\circ})$	$(-83.04^{\circ}, 63.93^{\circ})$	$(-83.37^{\circ},\!65.50^{\circ})$
${\bf Juno \ altitude \ } ({\bf R}_J)$		1.8 - 1.7	1.5 - 1.6	2.58 - 2.69
Bright spot crossing time (UT)		15:38:26	02:28:55	01:38:30
Bright spot position (Lat, SIII Lon)		$(64.38^{\circ}, 159.61^{\circ})$	$(-82.88^{\circ}, 58.19^{\circ})$	$(-83.51^{\circ}, 59.50^{\circ})$
Bright spot power (GW)		15.30	5.58	10.81
JEDI	electron direction and enhancement time	Upward during 15:36 UT - 15:42 UT	Upward, 2 peaks $(31.9 \text{ and } 37.4 \text{ at time} \sim 02:30 \text{ UT})$	Upward during 01:33 UT - 01:35 UT
	$\begin{array}{l} {\rm maximum\ electron\ energy\ flux\ (mW/m^2)}\\ {\rm electron\ direction}^a\\ {\rm average\ electron\ energy\ flux}^b\ (mW/m^2)\\ {\rm proton\ direction} \end{array}$	899.82 at 15:38:47 UT Upward 267.24 upward	49.62 at 02:23:22 UT Upward 3.1 upward	860.52 at 01:34:29 UT Upward 0.22 upward then perpendicular
Waves	Whistler-mode intensification waves direction	15:37 UT - 15:40 UT upgoing	02:26 UT - 02:28 UT upgoing	01:33 UT - 01:37 UT no analysis
MAG		A perturbation with small amplitude during 15:38 UT - 15:42 UT	A small deflection but less obvious	no significant deflection

^{*a*} at bright spot crossing time ^{*b*} during bright spot crossing (± 10 s) Haewsantati et al. (2022), In preparation

Summary

- An enhancement of upward electron flux observed by JEDI are found in all three events -> the particle acceleration region takes place below the spacecraft
- The intensification of whistler-mode waves at the time of the particle enhancements -> wave-particle interactions contribute to the acceleration of particles which cause the UV aurorae
- Time delays between UVS observation and waves and particles observation possibly caused by the uncertainty of mapping from the JRM09 magnetic field model
- The fixed in System III position of bright spot -> the processes giving rise to them take place close to the planet
- Magnetospheric currents might not play the major role on bright spot emission
- Possible causes -> magnetic reconnection near Jupiter's pole & Alfvenic resonance
- Confirmed by further study on high resolution magnetohydrodynamic simulations of the Jovian magnetosphere, the flyby over the bright spot through or below the particle acceleration region

Thank you

PhD day 2022