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Abstract. Coupling between fluid fingering and strain localization during the imbibition
of a partially saturated soil is investigated in this paper. The fluid mixture saturating the
granular skeleton is regarded as a non-uniform fluid characterized via a double well Hel-
moltz free energy endowed with a gradient regularizing contribution. The porous medium
is assumed deformable and the associated elasto-plastic constitutive law is described by
the “Sinfonietta Classica” plastic model. Because of the higher differential order of the
hydraulic problem a mixed finite element method is employed.

1 INTRODUCTION

Fingering is a hydraulic instability that can occur in partially saturated porous media
when a transversal perturbation of a fluid-fluid interface separating two fluids of different
densities and viscosities progresses in time, see [1]. This can happen both during drainage
and imbibition processes, say when a non-wetting fluid displaces a wetting one, initially
saturating the porous medium, or viceversa when the wetting displaces the non-wetting
fluid. The study of this phenomenon is of interest in several circumstances as the natural
water infiltration of unsaturated soils, where air is the displaced phase, see e.g. [2, 3], or
the sealing tightness of the caprock covering aquifer reservoir rocks used in underground
gas storage or CO2 sequestration applications, see e.g. [4].

As previously mentioned, both in the case of drainage and imbibition, fingering is in-
duced by the loss of stability of a fluid front driven by a pressure gradient under transversal
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perturbations. When this pressure gradient is due to gravity, gravity driven imbibition
fingering occurs, see e.g. [5].

The typical approach based on the classical Richards equation [6], describing water
infiltration through partially saturated soils, is definitely not suitable for capturing the
structure of the fingering phenomenon, where the saturation degree is expected to localize
in a narrow band. A purely hydraulic extension of the Richards model based on an
enriched energy penalizing the gradient of the saturation degree, has been proposed in
[7]. Alternatively modifications of the constitutive law of capillary pressure have been
considered, which introduce a non-monotonic relation between the pore water pressure
and the saturation degree, see e.g. [8], together with a regularization term depending on
the rate of saturation as proposed in [9].

In this paper a phase field approach to partial saturation is adopted in the spirit
of Landau and Cahn-Hilliard models, regarding the degree of saturation of the phase
field parameter. Moreover the hydraulic model is inscribed within the framework of
poromechanics in order to identify the effects of fingering instabilities on the strain and
stress distribution in the porous skeleton. To do so an elasto-plastic model, retrieved from
the literature, see e.g. [10], accounting for negative hardening induced by saturation, is
adopted.

2 Phase field model for partially saturated porous media

The poromechanical model based on a phase field approach to partial saturation in-
troduced in [11] is here adopted with the purpose of describing the formation of fingering
instabilities and of possibly induced localized strains in a granular medium. The pore
space is filled by a mixture of two phases, an incompressible liquid phase (water) and a
gaseous phase (air) that is considered as passive, which means that its density can be
neglected with respect to that of the liquid. The phase field approach consists to assume
the gas-liquid mixture as a non-uniform fluid in the sense of Cahn-Hilliard [12] by intro-
ducing an order parameter, the phase field, which in this case is the saturation degree
Sr.

Following the standard formulation of continuum poromechanics [13], the Lagrangian
pull-back of the mass balance of this non-uniform fluid in the reference configuration of
the solid skeleton can be written as follows:

dmf

dt
+∇.M = 0 (1)

where mf = ρwφSr is the mass of the mixture per unit reference volume, φ is the La-
grangian porosity, ρw the density of the liquid phase and M the mass flux.

The liquid and the gaseous phases of the non-uniform fluid are regarded as possible
equilibrium states of the mixture. Therefore a double well potential describing the Hel-
moltz free energy of the fluid is introduced as a function of the saturation degree Sr:

Ψf (Sr) = C
γ

R
S2
r (1− Sr)2 (2)
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Figure 1: (a) Plot of the energy of the non-uniform fluid Ψf , the capillary energy U and the energy of
the pore fluid mixture Ψf +U ; (b) plot of the corresponding first order energy derivatives, µ, −∂U/∂Sr,
s = −µ− ∂U/∂Sr and −π(Sr)

As depicted in Figure 1 the two minima of Ψf correspond to the zeros of its non-monotonic
first derivative µ = ∂Ψf/∂Sr, which physically represents the chemical potential of the
fluid, where the fluid mass moves from higher to lower potentials.
In equation (2), γ is the liquid-gas surface tension and R a characteristic length describing
the effective size of the pore space through which the fluid can flow; in the following the

Leverett estimate of R is considered R =
√

κ
φ0

, φ0 being the initial porosity and κ the

intrinsic permeability.
As the fluid mixture just occupies the porous network of the granular skeleton, following
[11] we consider from now on an additional contribution to the pore fluid energy accounting
for the retention properties of the solid skeleton. This is the classical capillary energy
which can be prescribed via a vanGenuchten formulation so that its derivative is given by

∂U

∂Sr
= −(ρwg)

1

α

[(
Sr − Sresr

1− Sresr

)−1
m

− 1

] 1
n

(3)

where α is the inverse of the capillary rise and Sresr is the liquid residual saturation.
The energy and the chemical potential of the pore fluid, say of the non-uniform fluid
within the porous network, differ therefore from those of the pure mixture, see Figure 1.
The coefficient C of equation (2) gives the relative weight of the mixture free energy with
respect to the capillary one.

In order to convexify the problem a gradient contribution to the free energy of the
non-uniform fluid is finally added as

Ψnl =
1

2
c∇(φSr)∇(φSr) (4)
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which allows to incorporate in the model a penalization associated to the diffuse interface
formation. In equation (4) c is an higher order stiffness incorporating the notion of
a characteristic length ` corresponding to the square root of the ratio between c and
ρwgα

−1.
The variational derivative of the overall pore fluid energy accounting for the contribu-

tions of Ψf , U and Ψnl provides the expression of the so called effective chemical potential,
therefore defined as follows

µeff =
∂U

∂Sr
+
∂Ψf

∂Sr
−
(

∂Ψnl

∂(φSr),l

)
,l

(5)

In the framework of this enriched poromechanical model the mass flux M is described
by a generalized Darcy’s law:

Mk = −ρw
κk(Sr)

η
(µeff,k − ρwgk) (6)

where k(Sr) is a function that accounts for non-uniform mobility of the fluid mixture
within the pore network, from now on assumed to coincide with the relative permeability
of the liquid phase (k(Sr) = S3

r ), η being the viscosity of the liquid.
Replacing equation (5) into equation (6) and this last into the fluid mass balance (1)

implies the following fourth order partial differential equation for the saturation degree:

dφSr
dt

=

{
κk(Sr)

η

[(
∂U

∂Sr
+
∂Ψf

∂Sr
−
(

∂Ψnl

∂(φSr),l

)
,l

)
,k

− ρwgk
]}

,k

(7)

In addition to the mass balance equation, the momentum balance equation of the
porous medium must be also considered, say

div(σ) + f = 0 (8)

where f is the body force and σ is the total stress defined following [13] as σ = σ′−bπ(Sr)1,
with σ′ the effective stress, b the Biot coefficient and π(Sr) = Sr∂(U+Ψf )/∂Sr−(U+Ψf )
the equivalent pore pressure, see Figure 1.

3 The elasto-plastic constitutive model

The constitutive relation for the effective stress is provided via an elasto-plastic con-
stitutive model where, for the sake of simplicity, the elastic part is kept as the classical
Hooke law, while the plastic one is assumed to be given via a non-associate plastic model
introduced in the eighties by Nova: the Sinfonietta Classica model [14]. Let p′ = −Tr(σ′)

3

be the effective pressure and q′ =
√

3
2
s′ : s′ the deviator stress defined as the second in-

variant of the deviatoric (effective) stress s′ = σ′ + p′1. The yield function f and the
plastic potential g are given by:

f = 3β(ι− 3) ln
p′

pc
+

3

2
(ι− 1)

q′2

p′2
+ 3ι

det(s′)

p′3
= 0 (9)
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g = 9(ι− 3) ln
p′

pg
+

3

2
(ι− 1)

q′2

p′2
+ 3ι

det(s′)

p′3
= 0 (10)

where β controls the associativity of the plastic law, it can be observed that the normality
rule applies only if β = 3. The parameter ι is defined by ι = (9− Z2)/(3− Z2 + 2Z3/9)
where Z indicates the slope of the characteristic state line: Z = 6 sinϕ/(3 − sinϕ), ϕ
being the friction angle and pc is the so-called preconsolidation pressure, say the highest
mean effective stress ever experienced by the granular medium.

Depending on the values of the β and ι the model allows to characterize the behavior
of materials ranging from sands to soft rocks, especially during monotonic loading.

Following [10] a double hardening law is introduced for the preconsolidation pressure
which separately accounts for the parametrization of ṗc by the plastic strain rate as well
as by the variation of the saturation degree:

ṗc = ṗc(sat) + ṗc(unsat) (11)

where ṗc(sat) is given by the original Sinfonietta Classica hardening law

ṗc(sat) =
pc
βp

(
− ε̇pv + χ

√
ε̇pd : ε̇pd

)
(12)

with ε̇pv = Tr(ε̇p) and ε̇pd = ε̇p − 1
3
ε̇pv1 the volumetric and the deviatoric parts of the

plastic strain rate and ṗc(unsat) describes the variation of the preconsolidation pressure
with respect to the variation of the saturation degree:

ṗc(unsat) = −λpcṠr (13)

In equation (13) λ is a constitutive parameter to be calibrated.

4 Modeling fluid fingering instabilities and coupled strains during imbibition

4.1 Numerical procedure

The coupled problem described by the mass balance equation (7) and the momentum
balance equation (8) endowed with the constitutive law of the generalized chemical po-
tential and the total and effective stress is solved numerically using the finite element
method. In order to reduce regularity of shape functions needed to solve equation (7) a
mixed finite element approach is adopted building up a weak coupled formulation for the
two coupled second order differential equations (1) and (5) prescribing the evolution of
the saturation degree and the generalized chemical potential. As a consequence both Sr
and µeff are going to be regarded in the following as nodal unknowns.

The time derivative in the fluid mass balance is discretized adopting an implicit Euler
scheme. Due to the non-linearity of the problem with respect to the plastic strain and the
degree of saturation a nested Newton-Raphson method is developed in order to resolve the
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plastic constitutive law in the Gauss points and to calculate the saturation degree, together
with the generalized chemical potential and the displacement of the porous medium in all
the nodes of the finite element discretization. The model was implemented in a Matlab
finite element code [15] allowing in its original version to solve non-linear mechanical
problems.

4.2 Problem Set-Up

We simulate water infiltration into an initially partially saturated and initially confined
loamy sand in plane strain conditions. The domain is a 1×0.6 m2 rectangle. The mesh is
made of 15748 unstructured linear triangular finite elements generated by Gmsh [16]. The
element size is half the intrinsic length `, assumed as ` = 0.01L, L being the characteristic
size of the domain. The soil is assumed homogeneous and isotropic. The model parameters
are summarized in Table 1.

The initial saturation is S0
r = 0.2 while the initial confinement is given by a pressure of

400KPa. Starting from this initial state we set the displacement to zero and we keep the
stress state then we apply a vertical downward oriented inflow at the top surface of the
domain, while at the bottom surface the generalized chemical potential remains constant
and equal to its initial value.

Boundary conditions are reported in Table 2.

Table 1: Model parameters

Parameter Value Unit
Young modulus E 4340 KPa
Poisson’s ratio ν 0.36 -
Biot coefficient b 0.79 -
Friction angle ϕ 36 °
Permeability κ 10−12 m2

Saturated permeability Ksat 10−5 m/s
β 3 -
βp 0.01 -
λ 2 -

Initial preconsolidation pressure p0
c 500 KPa

Initial porosity φ0 0.37 -
Water density ρw 1000 Kg/m3

Water viscosity η 0.00089 Pa.s
Residual saturation Sresr 0.1567 -

α 3.52 m−1

n 3.17 -
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Table 2: Boundary conditions for the incremental problem

Top surface Bottom surface Right surface Left surface

Mechanical σ · n = 0
ux = 0

σ · n = 0 σ · n = 0
uy = 0

Hydraulic
Sr = 0.85

µeff = −3.79KPa q · n = 0 q · n = 0
q · n = −0.1Ksat

4.3 Results

In this section the results of the gravity driven imbibition process are presented ana-
lyzing and comparing, in particular, the occurrence of fingering instabilities, exhibited by
the saturation degree, with the evolution of the plastic strain induced by saturation.

Figure 2: The distribution of water saturation at different times. (a) t = 8000s. (b) t = 22000s. (c)
t = 32000s. (d) t = 40000s

The four panels of Figure 2 show the space and time evolution of Sr within the granular
medium. A downward moving liquid front forms, panel (a), and progressively destabilized,
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panel (b), exhibiting almost periodic transversal oscillations. Fingers start to form, panel
(c), and propagate towards the bottom of the sample. Withdrawal of the liquid phase
is observed close to the injection point, panel (d). A relatively small overshoot can be
observed in panel (d) behind the tip of the finger.

Figure 3: (a) The plot of the generalized capillary pressure s = −µ − ∂U/∂Sr; (b) The plot of the
equivalent pore pressure π(Sr) = Sr∂(U + Ψf )/∂Sr − (U + Ψf )

In Figure 3a the plot of the generalized capillary pressure s = −µ−∂U/∂Sr is reported.
The S-shaped profile of s, at the interface between the finger and the almost dry material,
is apparently due to the non-monotonic behavior of s as a function of Sr. This implies the
generalized capillary pressure to reduce in the more external part of the diffuse interface,
then to grow and reduce again when following a transversal section of the finger, see also
Figure 7. The small overshoot in the profile of Sr is responsible for a similar oscillation
of s behind the tip of the finger. In Figure 3b the profile of the equivalent pore pressure,
π is also reported, which exhibits a similar behavior as that of s.

In Figure 4 the plot of the effective chemical potential µeff , panel (a), and of the
second gradient contribution −c∇ · ∇(φSr) to it, panel (b), are drawn. It is worth to
notice that no significant concentration in the µeff profile can be observed at the interface
between the dry and the wet zone, this because the second gradient contribution definitely
counterbalances the effect of the generalized capillary pressure through the interface.

The negative hardening, described by equation (13), which is induced by the progressive
saturation of the sample, implies that an initially elastic state of stress can become plastic
just because of the shrinkage of the reversibility domain. Plastic strains therefore naturally
arise allowing the effective stress to remain almost constant during the wetting process,
see Figure 5. Because of biaxial loading conditions the initial state of stress is definitely
non-isotropic which therefore implies the plastic strains to have volumetric and deviatoric
components different from zero.
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Figure 4: (a) The plot of the effective chemical potential µeff at t = 40000s. (b) The plot of the second
gradient term c∇.∇(φSr) at t = 40000s
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Figure 5: Plots of the initial yield surface, the stress state and the final yield surface in (p′, q′) plane

The space and time evolution of the volumetric plastic strain is reported in Figure
6. Looking at the first three panels it can be observed that plastic strains appear in a
region when the saturation front passes through it. This behavior is detailed in Figure
7 comparing the two profiles of Sr and εpv at a time t = 40000s. It is evident that the
diffuse interface between the dry and the wet region includes the one between the elastic
and the plastic zone. The widthness of this overlapping being correlated to the value of
the coefficient λ describing the negative hardening.

Comparing panels (c) and (d) of Figure 2 and Figure 6 it is interesting to remark that
the fingering in the saturation degree do not coincide with those of the plastic strain after
withdrawal of water. This is obvious because of the irreversibility of the plastic strains.
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Figure 6: The volumetric plastic strain εpv at different times. (a) t = 8000s. (b) t = 22000s. (c)
t = 32000s. (d) t = 40000s

As for the total volumetric strain, this last shows a slightly growing profile along the mean
section of the finger, with respect to that of the plastic volumetric strain, see Figure 7.
This is due to the above mentioned small overshoot of the degree of saturation and to the
poroelastic stress-strain relation.

Finally the contour plot of the deviatoric plastic strain, panel (a), and the deviatoric
total strain, panel (b), are shown in Figure 8. As the shape of the fingers reflects those
of the volumetric plastic strain it is interesting to remark that the total deviatoric strain
concentrates in the zones of withdrawal of the liquid phase as well as at the tip of the
finger, while inside it is almost vanishing. The comparison between the plastic and the
total deviator strain plots indicates that the elastic component of the deviatoric strain
definitely compensate plastic effects inside the finger and become dominant in the high
curvature zones of the finger profile.
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Figure 7: Plots of the saturation degree Sr, the total volumetric strain εv and the volumetric plastic
strain εpv at a time t = 40000s along a finger section

Figure 8: (a) Deviatoric plastic strain at t=40000s. (b) Total deviatoric strain at t=40000s

5 CONCLUSIONS

In this paper, we have presented a poromechanical model based on a phase field ap-
proach that describe fingering formation during water infiltration into an initially dry soil.
An elasto-plastic constitutive model extended to include the effect of the variation of the
saturation degree on the hardening law has been adopted to describe the response of the
granular material during water infiltration process.

Concerning hydraulic response, the space and time evolution of the saturation degree
within the granular medium show the formation of fingers. Moreover the hydro-mechanical
coupling has been analyzed through the space and time evolution of the volumetric and
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the deviatoric plastic strain. A maximum plastic deformation due to the shrinkage of the
yield surface appears in a subdomain when the saturation front passes through it.
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