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Abstract: In order to reduce aircraft fuel consumption and to improve the reliability of the
design process, multi-disciplinary optimization is nowadays carried out during the preliminary
design stage. These optimization calculations must model the aeroelastic behavior of the aircraft
in order to be effective and to take full advantage of composite materials. Since many design
variables are involved during the early stages, the optimization problem is usually solved using
the adjoint method. Moreover, the fluid model and the associated numerical simulation method
must be selected with care, as they are the main contributors to the overall computational cost.
In the present work, an open-source full potential solver with discrete adjoint capability is in-
tegrated in a multi-disciplinary optimization framework. Aerodynamic and aerostructural opti-
mization calculations are subsequently carried out on typical benchmark cases to illustrate the
methodology. Overall, the results show that the adjoint nonlinear potential formulation yields
optimized wing shapes and structures at very low computational cost. The next steps consist in
improving the problem formulation, by considering full aircraft configurations along with more
realistic design variables, constraints and objective functions, and in improving the aerodynamic
model by including viscous effects.

1 INTRODUCTION

For the air transport sector to remain economically competitive and to decrease its environmen-
tal impact, aircraft fuel consumption must continuously be reduced. To this end, aerodynamic
shape optimization is usually performed in conjunction with aeroelastic tailoring [1]. Such
an aerostructural optimization process enables the design of light wings with efficient shapes,
exploiting the orthotropic mechanical properties of new composite materials, thus guarantee-
ing good aerodynamic performance and the ability to withstand the aerodynamic loads and the
aeroelastic instabilities. The formulation of modern aircraft optimization problems usually in-
volves a few functionals, like the fuel burn and the failure index of the material, and thousands
of design variables, such as the wing shape and structural parameters. Moreover, the base-
line design is already quite close to the optimal solution, hence not requiring a full exploration
of the design space [2, 3]. Consequently, gradient-based optimization is usually employed,
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whereby the gradients are computed using the adjoint method [4, 5], as using other methods
such as finite-differences would lead to a prohibitive computational cost [6–8]. Despite the re-
cent advances in high-fidelity multidisciplinary optimization, and the ever-increasing available
computational power, low-fidelity linear aerodynamic modeling methodologies are still widely
used in industry so as to decrease the computational cost [9]. This is particularly the case during
preliminary aircraft design, where aerostructural optimization is introduced early to make the
design process more robust by directly considering complex fluid-structure interactions, hence
helping to prevent future failures resulting from unaccounted aeroelastic behaviors. However,
linear models are not accurate in the transonic regime, where modern transport aircraft fly, since
nonlinear compressible effects become important and cannot be neglected. A viable trade-off
between accuracy and computational cost can be achieved by resorting to the full potential equa-
tion [10,11]. The goal of the present work is to carry out aerodynamic shape and aerostructural
optimization calculations on benchmark wings, similar to those performed during preliminary
aircraft design, in order to demonstrate the effectiveness and the computational efficiency of the
full potential discrete adjoint formulation implemented in the open-source finite element code
DART [12].

The present work is organized as follows. In section 2, the aerostructural optimization frame-
work and its associated numerical tools are briefly described. Results are then presented in
chapter 3. Finally, the last section summarizes and concludes the article, and suggests research
directions for future work.

2 METHODOLOGY

2.1 Formulation of the optimization problem

In the present work, the aerostructural optimization problem is formulated using the three-fields
formulation, initially developed by Farhat et al. [13] and later improved by Maute et al. [14].
This formulation is required when nonlinear aerodynamic models are used and the geometry
is subjected to large displacements, such that the contributions of the grid motion cannot be
neglected. The problem is formulated as follows,

min
p

Fobj(u,v,x;p)

s.t.Ru = 0

Rv = 0

Rx = 0

C(u,v,x;p) = 0,

(1)

where u and v denote the vector of structural and aerodynamic variables, x is the vector of
volume mesh coordinates, p is the vector of design variables, Ru and Rv represent the structural
and aerodynamic equations noted in residual form, Rx is the vector of residuals of the mesh
morphing laws, and Fobj(u,v,x,p) is the functional to be minimized under the constraints
C(u,v,x,p). In order to minimize Fobj, the augmented Lagrangian L is first constructed as

L = Fobj + λuRu + λvRv + λxRx, (2)
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where λu, λv and λx are Lagrange multipliers, and then differentiated such that

δL = 0 ⇒
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. (3)

The fourth equation represents the total gradient of the functional Fobj with respect to the de-
sign variables p. It can be computed by first solving the last three nonlinear equations for the
variables u, v and x, then solving the first three linear equations for the Lagrange multipliers,
and finally by injecting those variables into the expression of the total gradient. An optimizer
can then be used to drive that gradient to zero, hence finding the optimal values of the design
variables. Note that the constraints C are handled separately from the adjoint formulation.

2.2 Numerical tools

The optimization process is solved using MPHYS 1, a modular multiphysics simulation package
built on top of the OpenMDAO framework [15] 2. MPHYS automates the connection of the
different software components used in the optimization process and required by OpenMDAO,
so that high-fidelity aerostructural computations can be carried out easily. The code is open-
source and is developed jointly by NASA and the MDO Lab of the University of Michigan. The
Sequential Least Squares Programming (SLSQP) method [16] implemented in scipy [17] or
pyOptSparse [18] 3 is used as the optimization driver.

The aerodynamic surface is parametrized using pyGeo [19] 4, a set of python tools providing
geometry manipulation features. More specifically, pyGeo allows to parametrize and constrain
a geometry represented by a surface grid, using the free form deformation technique [20]. The
geometry can then be deformed according to some design parameters, and pyGeowill calculate
the sensitivities of the surface deformation with respect to these parameters. The code is open-
source and developed by the MDO Lab.

The aerodynamic model is based on the full potential equation and solved using DART [12] 5, a
finite element code designed to quickly compute inviscid transonic flows. DART allows to cal-
culate the aerodynamic loads and to provide the sensitivities of flow functionals using analytic
gradients. The volume mesh deformation procedure is based on linear elasticity [21, 22] and is
also embedded in DART. The code is open-source, written in C++ and interfaced in python, and
developed at the University of Liège. The aerodynamic meshes are created using Gmsh [23] 6,
a three-dimensional unstructured mesh generation software also actively developed at the Uni-
versity of Liège.

1https://github.com/OpenMDAO/mphys, accessed March 2022.
2https://openmdao.org/, accessed March 2022.
3https://github.com/mdolab/pyoptsparse, accessed March 2022.
4https://github.com/mdolab/pygeo, accessed March 2022.
5https://gitlab.uliege.be/am-dept/dartflo, accessed March 2022.
6http://gmsh.info, accessed March 2022.
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The structural equations are solved using TACS [24–27] 7, a finite element code dedicated to the
analysis of composite structures. TACS computes the deflection of the structural model when
it is subjected to external loads, and provides the sensitivities of structural functionals using
analytic gradients. The parametrization of the structural elements is also defined in TACS. The
code is written in C++ and interfaced in python. It is developed by both the SMDO group at
Georgia Tech and the MDO Lab.

Since the structure and the aerodynamic equations are solved on different grids, the relevant
data need to be interpolated from one mesh to another. MELD [28] 8 implements such a transfer
scheme, and is used to pass the aerodynamic loads to the structural mesh and the structural
displacements to the aerodynamic mesh. The code is written in C++ and interfaced in python,
and is developed by the SMDO group.

3 RESULTS

3.1 Aerodynamic shape optimization

The first two optimization calculations are carried out on a NACA 0012 airfoil at Mach number
M∞ = 0.78 and on the Onera M6 wing [29] 9 at Mach M∞ = 0.839. Although the first problem
is two-dimensional, it is formulated and solved in three dimensions since pyGeo only handles
3D geometries. The objective of the optimization is to minimize the drag coefficient CD by
adapting the shapes of the wing. The geometry is embedded in a free-form deformation (FFD)
box, as shown in Figure 1(a), whose control points are restricted to move vertically to control
the cross-sectional shape of the wing. Three levels of refinement, summarized in Table 1, are
used in order to assess the effect of the box discretization on the results. Additionally, the
angle of attack of the freestream flow, α, is allowed to change. Furthermore, in the case of the
Onera M6, the points of the sections along the wing span, except for the points located at the
centerline, can rotate rigidly in order to create a twist. The lift coefficient of the NACA airfoil
is constrained to CL = 0.40, and that of the Onera wing to CL = 0.30. The internal volume of
the wing is prevented from decreasing in order to emulate the presence of a structural wingbox.
The leading edge radius and the trailing edge thickness are constrained to remain constant so
that the leading edge cannot sharpen and the trailing edge cannot collapse. Additionally, the
upper and lower control points at the wing leading and trailing edges are constrained to move
in equal and opposite direction so that they cannot emulate a twist, which would be redundant
with the twist design variables [30]. The optimization tolerance is set to a tenth of a drag count.
The optimization problems are summarized in Table 2.

Table 1: Number of control points in the chordwise, spanwise and vertical directions used to discretize the FFD
box for the NACA 0012 and the Onera M6 cases.

NACA 0012 Onera M6
FFD nx ny nz nx ny nz

Coarse 5 2 2 5 3 2
Medium 7 2 2 7 5 2
Fine 9 2 2 9 7 2

7https://github.com/smdogroup/tacs, accessed March 2022.
8https://github.com/smdogroup/funtofem, accessed March 2022.
9https://www.grc.nasa.gov/www/wind/valid/m6wing/m6wing.html, accessed March

2022.
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Table 2: Summary of the NACA 0012 and Onera M6 optimization problems.

NACA 0012 Onera M6
Objective Number Bounds Number Bounds Scaling
Drag coefficient 1 − 1 − 102

Design variables
Angle of attack 1 [0; 5]◦ 1 [0; 5]◦ 10−1

Shape nx × ny × nz [−2; 2] cm nx × ny × nz [−1; 1] cm 101

Twist − − ny − 1 [−5; 5]◦ 10−1

Nonlinear constraints
Lift coefficient 1 = 0.40 1 = 0.30 1
Wing volume 1 [100;−] % 1 [100;−] % 1
Leading edge radius 2 [100;−] % 10 [100;−] % 1
Trailing edge thickness 2 [100;−] % 10 [100;−] % 1
Linear constraints
Leading/trailing edge 2 = 0 m 2× ny = 0 m 1

(a) NACA 0012.

(b) Onera M6.

Figure 1: Optimization setup for the NACA 0012 and the Onera M6 cases. The points controlling the shape design
variables are shown in light blue and the shape constraints are displayed in red.

3.1.1 Grid convergence

The aerodynamic computations are performed in domains discretized using tetrahedral ele-
ments. Before running the optimization, a grid convergence analysis is first carried out. The
results provided in Table 3 indicate that the medium meshes yield converged results, since the
difference in aerodynamic coefficients between the coarse and medium grids is much smaller
than the difference between the medium and fine grids.

3.1.2 Aerodynamic and pressure coefficients

The angle of attack and integrated aerodynamic coefficients obtained on the baseline and the
optimized geometry of the NACA 0012 airfoil and the Onera M6 wing using three levels of
refinement of the FFD box are provided in Table 4. Additionally, the pressure coefficient com-
puted on the NACA 0012 is given in Figure 2, and the pressure coefficient computed on four
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sections along the span of the Onera M6 wing is given in Figure 3. Note that the second section
corresponds to the location of the mean aerodynamic chord. The initial solution on the baseline
NACA 0012 was computed at zero angle of attack, as DART could not converge at CL = 0.4
due to the strong shock embedded in the flow. In both cases, the optimization process turns
the baseline symmetric airfoils into supercritical ones adapted to the transonic regime. In the
NACA case, using the coarse and medium levels of refinement of the FFD box only allows to
weaken the shock on the suction side of the airfoil, while using the finest discretization com-
pletely removes the shock. In the case of the Onera wing, the shock is not present on any of
the optimized geometries, regardless of the level of refinement. Additionally, a negative twist
is added on the outboard of the wing. Overall, using more control points to discretize the FFD
box allows to further reduce the drag for a given lift. However, fine discretizations also produce
undesirable bumps in the solution, creating small-amplitude low-frequency spatial oscillations
along the chord. While these bumps are barely noticeable on the solution obtained using the
medium FFD, they become pronounced if the fine FFD is used. Furthermore, the fine FFD also
creates an airfoil with alternating positive and negative camber at the wing tip of the Onera
M6. These nonphysical features may be due to the inviscid nature of the calculations. If the
fluid were viscous, a boundary layer would be created, and any bumps would produce more
drag, which would drive the optimizer away from such a solution. Viscous effects can be taken
into account by complementing the full potential equation by the integral boundary layer equa-
tions through a viscous-inviscid interaction method [31]. Such a coupling is currently being
developed and implemented in DART [32, 33]. Alternatively, imposing the thickness to change
uniformly along the chord might also help alleviate this issue, probably at the cost of obtaining
a less optimal solution. It should be mentioned that similar bumps were already noticed in the
context of aerodynamic [34] and aerostructural [35] optimization based on the Euler equations,
but to a lesser extent. In conclusion, since using fine discretizations of the FFD box only slightly
reduces the drag but produces nonphysical features in the optimized solution, it seems desirable
to use coarse or medium levels of refinement along with the potential formulation.

3.1.3 Optimization convergence and computational time

The computations were run on a desktop workstation equipped with an AMD 3970X processor
rated at 3.7 GHz using a single thread. The number of gradient and functional evaluations, as
well as the computational time are given in Table 5. As expected, using finer FFD discretizations
amounts to increasing the number of design variables, which decreases the convergence rate and
increases the computational cost. Overall, the full potential formulation is very fast and yields
optimized aerodynamic shapes in less than a minute for a two-dimensional case, and in less than
30 minutes in three dimensions. The computational cost of the full potential based calculations
can be compared to those performed by Lyu et al. [34] using a similar formulation but with the
Euler equations. While the present approach only required 10 to 14 gradient evaluations, 112

Table 3: Cell count, aerodynamic coefficients and computational times obtained using three grids for the NACA
0012 at α = 0◦, M∞ = 0.78 and the Onera M6 at α = 3.06◦, M∞ = 0.839.

NACA 0012 Onera M6
Mesh N. cells CL CD CPU time N. cells CL CD CPU time
Coarse 10 529 0.0382 0.00245 0.4 s 196 080 0.2865 0.01062 0.5 min
Medium 21 639 0.0155 0.00204 1.1 s 477 857 0.2996 0.01126 1.5 min
Fine 39 739 0.0182 0.00189 3.9 s 826 182 0.3013 0.01129 3.5 min

6



IFASD-2022-178

Table 4: Angle of attack and integrated aerodynamic coefficients obtained on the baseline and the optimized ge-
ometry of the NACA 0012 airfoil and the Onera M6 wing using three FFD disretizations.

NACA 0012 Onera M6
Solution α(◦) CL CD α(◦) CL CD

Initial 0.00 0.016 0.0020 3.06 0.300 0.0113
Coarse FFD 0.19 0.400 0.0018 3.78 0.300 0.0082
Medium FFD 0.00 0.400 0.0015 3.94 0.300 0.0079
Fine FFD 0.00 0.400 0.0013 4.91 0.300 0.0078

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

Figure 2: Pressure coefficient computed on the baseline and optimized geometry of the NACA 0012 airfoil at
M∞ = 0.78 using three FFD discretizations. Black: baseline, blue: coarse FFD, red: medium FFD,
green: fine FFD.

iterations were needed by the Euler calculation for a total computational time of 348 core-hours.
Note that the computational time should not be directly compared as the Euler computations
were performed on a 2013 supercomputer.

Table 5: Number of gradient and functional evaluations, and computational time required for the NACA 0012 and
Onera M6 cases.

NACA 0012 Onera M6
FFD N. grad./func. eval. Wall-clock time N. grad./func. eval. Wall-clock time
Coarse 10/13 31 s 4/11 15 min
Medium 14/30 58 s 8/15 21 min
Fine 13/34 65 s 15/27 34 min

3.2 Aerostructural optimization

The third optimization computation is carried out on the RAE benchmark wing, which is similar
to that of a typical regional jet, and whose geometrical and structural parameters are given in Ta-
ble 6 10. The structural model is made of an isotropic material representative of Aluminum 7000

10The wing geometry is available at https://github.com/mdolab/MACH-Aero/tree/master/
tutorial/aero/geometry/. The structural model has been built by the MDO Lab and is
available at https://github.com/OpenMDAO/mphys/tree/main/examples/aerostructural/
mach_tutorial_wing/vlm_meld_tacs/. Links accessed March 2022.
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(a) Centerline.
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(b) 44% semi-span.
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(c) 65% semi-span.
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(d) 95% semi-span.

Figure 3: Pressure coefficient computed on the baseline and optimized geometry of the Onera M6 wing at M∞ =
0.839 using three FFD discretizations. Black: baseline, blue: coarse FFD, red: medium FFD, green: fine
FFD.

series, and is discretized using second-order shell elements based on the mixed interpolation of
tensorial components formulation [24].

Table 6: Geometric and structural data.

Geometric parameters Values Structural parameters Values
Aspect ratio 8.6 Density 2 780 kg/m3

Taper ratio 0.3 Young modulus 73.1 GPa
Leading edge sweep 28.2◦ Poisson ratio 0.33
Reference area 91 m2 Shear correction factor 5/6
Airfoil RAE 2822 Yield stress 324 MPa

Two scenarios are included in the optimization problem: a nominal cruise, and a 2.5g pull-up
maneuver. The flight conditions are given in Table 7.

The objective of the optimization is to minimize the fuel burn Wfuel in cruise, which is computed

8



IFASD-2022-178

Table 7: Flight conditions.

Parameters Symbols Cruise Maneuver
Load factor n 1.0 2.5
Mach number M∞ 0.82 0.78
Pressure altitude h 35 000 ft 20 000 ft
Dynamic pressure q∞ 11 250 Pa 19 850 Pa

using the Breguet formula,

Wfuel = (Wfixed +Wwing)×
(
exp

(
Rct
V∞

CD0 + CD

CL

)
− 1

)
, (4)

where Wfixed is the fixed mass of the aircraft, Wwing is the mass of the structural wingbox, R
is the mission range, ct is the thrust specific fuel consumption, V∞ is the true airspeed, and CL

is the lift coefficient. In order to account for the viscous drag, a fixed drag coefficient CD0 is
added to the drag coefficient CD obtained using DART. The values of the different parameters
have been derived from a typical cruise mission profile of an Embraer regional aircraft and are
provided in Table 8.

Table 8: Cruise mission parameters for the RAE optimization case.

Parameters Symbols Values
Fixed weight Wfixed 34 tons
Range R 2 500 nm
Specific fuel consumption ct 0.65 h−1

True airspeed V∞ 473 kts
Fixed drag coefficient CD0 0.022

Similar to the previous cases, the wing skin and the wingbox are embedded in a FFD box,
whose points can move in the vertical direction to control the cross-sectional shape of the wing,
as shown in Figure 4. Additionally, the twist angle of the last 3 sections along the wing span
and the angle of attack of the freestream flow are allowed to change. Furthermore, the thickness
of the 18 ribs, leading and trailing edge spars, 16 stringers and 324 skin panel patches are also
used as design variables. The lift coefficient and the aircraft weight are related through the load
factor n, which is constrained for the cruise and the maneuver conditions as

n =
q∞SrefCL

g
(
Wfixed +Wwing +

Wfuel

2

) =

{
1.0 (cruise)

2.5 (maneuver)
, (5)

where q∞ is the dynamic pressure, Sref is the reference area and g is the acceleration due to
gravity. Note that the trim Equation 5 does not account for any lifting surfaces other than the
wing. The structural failure index of the wing is constrained to remain below a given threshold
during the maneuver. The local failure criterion is computed in each shell element by dividing
the von Mises stress by the yield stress, and the global index is calculated by aggregating the
criterion over all the elements using a Kreisselmeier-Steinhauser function [26, 36]. The global
failure index is multiplied by a safety factor of 1.5. The ratio of the internal volume of the wing-
box to its initial value is constrained to be no less than the ratio of the fuel weight to its initial
value, so that the fuel required for the flight can be stored inside the fuel tanks. This volume
constraint is enforced from the wing root to 75% of the span, where the fuel tanks would be lo-
cated in an actual wing. Furthermore, the height of the trailing edge spar is constrained to 80%
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of its initial value, such that sufficient space is reserved for the attachment of the control surface
actuation devices [35]. Similar to the previous cases, the leading edge radius and the trailing
edge thickness are constrained to remain constant, and the upper and lower control points at
the wing leading and trailing edges are constrained to move in equal and opposite direction.
Finally, structural smoothness is ensured by constraining the difference in the thicknesses be-
tween adjacent structural elements to remain below a given value. The optimization tolerance
is set to 1 kg and the different physics are coupled using a Block Gauss-Seidel scheme [37],
whereby relative tolerances on the residuals for the direct and adjoint solutions are set to 10−6.
The optimization problem is summarized in Table 9.

Table 9: Summary of the RAE optimization problem.

Objective Number of variables Bounds Scaling
Fuel burn 1 − 10−4

Design variables
Fuel available fraction 1 [0.5; 1.5] 1
Angle of attack 1 [0; 5]◦ 1
Shape 70 [−10; 10] cm 101

Twist 3 [−5; 5]◦ 1
Ribs thickness 18 [1; 20] mm 102

Spar thickness 36 [1; 20] mm 102

Stringers thickness 288 [1; 20] mm 102

Skin thickness 324 [1; 20] mm 102

Nonlinear constraints
Trim 2 = 1 1
Failure 1 = 1/1.5 1.5
Fuel fraction 1 [100;−] % 1
Wing volume ratio 1 [100;−] % 1
Leading edge radius 10 [100;−] % 1
Trailing edge thickness 10 [100;−] % 1
Trailing edge spar height 10 [80;−] % 1
Linear constraints
Leading/trailing edge 10 = 0 m 1
Structural smoothness 1 256 [−; 1] mm 103

Figure 4: Optimization setup for the RAE wing case. The aerodynamic and geometric design variables are indi-
cated in light blue and the geometric constraints are displayed in dark blue.

10



IFASD-2022-178

3.2.1 Grid convergence

As in the previous cases, the aerodynamic computation is performed in a domain discretized
using tetrahedral elements. A grid convergence analysis is carried out at 2.55◦ angle of attack
and Mach M∞ = 0.82. All computations converged in nine coupling iterations. The results
provided in Table 10 indicate that the medium mesh yields sufficiently converged results. Note
that only the inviscid drag contribution is shown.

Table 10: Cell count, aerodynamic coefficients, tip displacements and computational times obtained using three
grids for the RAE case.

Mesh N. cells CL CD ∆tip CPU time
Coarse 330 978 0.3830 0.00802 1.18 m 5.4 min
Medium 655 569 0.4069 0.00931 1.22 m 12.8 min
Fine 1 118 925 0.4080 0.00996 1.24 m 21.4 min

3.2.2 Optimization convergence and computational time

The optimization computation is started from two different initial conditions, a light and a heavy
structural wingbox weight, by setting the thickness of all the structural patches to a uniform
value. The path taken by the optimization process, illustrated as a function of the wingbox
weight and the aircraft lift-to-drag ratio, and by the evolution of the load factors, the failure
criterion and the fuel burn as a function of the iterations are depicted in Figure 5. The light case
required 50 functional evaluations to converge, while the heavy case converged in 39 iterations.
Although the optimized designs differ, the two cases follow a similar pattern, whereby both
the structural weight and the lift-to-drag-ratio increase, and achieve a similar reduction in fuel
burn. A more realistic case would consist in using a pre-optimized wing as an initial condition,
whereby the wingbox would have been designed using maneuver loads obtained on a rigid
geometry.

1 2.25 3.5

12.5

13.5

14.5

10200

10550

10900

(a) Fuel burn as a function of structural wingbox mass
and lift-to-drag ratio.

0.95

1.05

2

3

0.6

2.4

0 10 20 30 40 50

10

11

(b) Load factors, failure criterion and fuel burn as a func-
tion of iteration count.

Figure 5: Path and history of the RAE optimization cases. Blue: cruise, red: maneuver. Solid: light, dashed:
heavy.

The computations were run in serial and parallel on a desktop workstation equipped with an
AMD 3970X processor rated at 3.7 GHz. Message Passing Interface (MPI) has been used to
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distribute the computation of the scenarios, while multi-threading has been used to run DART in
parallel. The number of gradient and functional evaluations, as well as the computational time
are given in Table 11. The wall-clock time is less than twenty-four hours for both the light and
heavy cases. Although running the scenarios and DART in parallel reduces the computational
cost, the scaling is quite poor. Firstly, MPI scales roughly as 1.3 out of 2. This is because each
scenario requires a different number of aerostructural coupling iterations to converge, and the
two scenarios need to be converged before the gradients can be computed. Secondly, the scaling
factor due to multi-threading is roughly of 1.4 out of 4. This is mainly due to the linear solver
used in DART, whose scaling factor is typically around 0.5. Furthermore, only DART, which
requires about 75% of the computational time, is run in parallel, while TACS and MELD are run
in serial.

Table 11: Number of gradient and functional evaluations, and computational time required for the RAE cases. n
is the number of MPI processes and k is the number of threads per process.

Light Heavy
n× k N. grad./func. eval. Wall-clock time N. grad./func. eval. Wall-clock time
1× 1 49/50 23.0 h 37/39 19.3 h
1× 4 49/50 16.8 h 37/39 13.6 h
2× 1 49/50 17.9 h 37/39 15.4 h
2× 4 49/50 13.7 h 37/39 11.1 h

3.2.3 Lift and pressure coefficients

The sectional lift coefficient distributions along the span of the baseline and optimized RAE
wing obtained in cruise and maneuver conditions are illustrated in Figure 6. For conciseness,
only the light case is considered in the next analyses. The optimization process adapted the
twist of the wing so that the loads are shifted inboard. This has two advantages. Firstly, the
optimized lift distributions are closer to the elliptical lift distribution, which reduces the induced
drag. Secondly, the bending moment at the root is reduced, which in turn reduces the deflection
at the wingtip.

(a) Cruise (M∞ = 0.82 at 35 000 ft). (b) Maneuver (M∞ = 0.78 at 20 000 ft).

Figure 6: Sectional lift coefficient distribution along the span of the baseline and optimized RAE wing, in cruise
and maneuver conditions. Black dashed: elliptical distribution, blue: baseline, red: optimized.
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The pressure coefficient contour on the suction side of the baseline and optimized RAE wing
obtained in cruise condition is depicted in Figure 7. Additionally, the pressure coefficients are
extracted along the chord at four spanwise stations and plotted in Figure 8. Note that the station
located at 41% semi-span corresponds to the mean aerodynamic chord position. Overall, the
optimization process adapted the original RAE 2822 airfoil in order to suppress the strong shock
on the suction side of the wing, which allowed to reduce the drag while increasing the lift. As
in the NACA and Onera cases, the optimization produced some bumps on the wing’s surface.
While these bumps are small on the inboard section of the wing, their amplitudes become bigger
outboard. Resorting to viscous-inviscid interaction or improving the thickness constraints might
help alleviate this issue.

Figure 7: Pressure coefficient contour on the suction side of the baseline (left) and optimized (right) RAE wing in
cruise (M∞ = 0.82 at 35 000 ft).

3.2.4 Structural thickness and failure criterion

The thickness of the structural patches and the failure criterion computed on the baseline and
optimized RAE wing in maneuver are shown in Figure 9. The thickness of the ribs has decreased
to about 1 mm. Moreover, the thickness of the other structural components has been tailored to
the loads: it increased inboard, and remained small at the wingtip. This modification decreased
the failure index below the imposed threshold, particularly on the inboard section, where it was
initially violated.

4 CONCLUSION

In the present work, the discrete adjoint full potential code DART, has been integrated in a state-
of-the-art multi-disciplinary analysis and optimization framework in order to perform aerostruc-
tual computations for preliminary aircraft design. The code is based on finite elements and is
open-source. The methodology has been demonstrated by means of aerodynamic and aerostruc-
tural optimization calculations performed on typical wings. Overall, the adjoint full potential
formulation allows to design optimized wing shapes and structures at low computational cost,
regardless of the number of design variables, which is of paramount importance in the prelim-
inary design stage. More specifically, the optimizer produces supercritical airfoils adapted to
the transonic conditions, so that shocks are suppressed and wave drag is reduced. Moreover,
the twist along the wing span is adapted such that the tip vortices and the induced drag are
reduced. Finally, the thickness of structural components is tailored to the loads, which allows
to design a light wing respecting the failure criterion of the material. A typical aerostructural
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(d) 95% semi-span.

Figure 8: Pressure coefficient computed on the baseline and optimized geometry of the RAE wing in cruise (M∞ =
0.82 at 35 000 ft). Blue: baseline, red: optimized.

optimization computation takes less than a day on a single core of a modern computer work-
station. The computational time can be further reduced to half a day by using both shared and
distributed memory parallelization. The next steps consist in improving the formulation of the
optimization problem. More specifically, a structural wingbox designed using loads obtained on
a rigid wing will be used as an initial condition. Buckling constraints will also be considered.
Additionally, the planform shape will be parametrized so that the taper ratio, the sweep and the
dihedral angles can be optimized as well. Finally, the aerodynamic, the structural and the ge-
ometric models will be improved. A viscous-inviscid interaction method will be implemented
to account for viscous effects. A more detailed structural model, made of composite material
and including non-aerodynamic loads such as fuel loads, will be considered. Ultimately, the
methodology will be applied to full aircraft configurations, and results will be compared to
higher-fidelity computations.
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(a) Baseline thickness (m). (b) Optimized thickness (m).

(c) Baseline failure criterion. (d) Optimized failure criterion.

Figure 9: Thickness and failure criterion of the baseline and optimized structural wingbox for the RAE wing in
maneuver (M∞ = 0.78 at 20 000 ft).
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[34] Lyu, Z., Kenway, G. K., Paige, C., et al. (2013). Automatic Differentiation Adjoint of
the Reynolds-Averaged Navier-Stokes Equations with a Turbulence Model. In 21st AIAA
Computational Fluid Dynamics Conference. doi:10.2514/6.2013-2581.

[35] Kenway, G. K. and Martins, J. R. R. A. (2014). Multi-point High-fidelity Aerostructural
optimization of a Transport Aircraft Configuration. Journal of Aircraft, 51(1), 144–160.

17



IFASD-2022-178

[36] Kreisselmeier, G. and Steinhauser, R. (1979). Systematische Auslegung von Reglern
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