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Abstract: As the last stage of plant development, leaf senescence has a great impact on plant’s life
cycle. Genetic manipulation of leaf senescence has been used as an efficient approach in improving
the yield and quality of crop plants. Here we describe an ethyl methane sulfonate (EMS) mutagenesis
induced premature leaf senescence mutant yellow leaf 1 (yl1) in common tobacco (Nicotiana tabacum L.).
The yl1 plants displayed early leaf yellowing. Physiological parameters and marker genes expression
indicated that the yl1 phenotype was caused by premature leaf senescence. Genetic analyses indicated
that the yl1 phenotype was controlled by a single recessive gene that was subsequently mapped
to a specific interval of tobacco linkage group 11 using simple sequence repeat (SSR) markers.
Exogenous plant hormone treatments of leaves showed that the yl1 mutant was more sensitive to
ethylene and jasmonic acid than the wild type. No similar tobacco premature leaf senescence mutants
have been reported. This study laid a foundation for finding the gene controlling the mutation
phenotype and revealing the molecular regulation mechanism of tobacco leaf senescence in the
next stage.
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1. Introduction

Tobacco (Nicotiana tabacum L.) is an important agricultural crop widely grown in the world.
It plays an important role in plant genetics and transgenic research as a model plant [1,2]. Also,
it can be used as a bioreactor for vaccine production [3–5]. In addition, due to the huge biomass of
tobacco, it has become a potential bioenergy plant [6–8]. In tobacco production, mature/ripe leaves are
harvested, so leaf senescence is critical for both the yield and quality of tobacco products. Therefore,
studying tobacco leaf senescence has important theoretical significance and a practical application
value. Although plant leaf senescence regulation has been extensively studied in model systems such
as Arabidopsis and rice, limited information is available about tobacco leaf senescence regulation at
present. Several studies focused on transcriptome and metabolome of tobacco leaf senescence [9–12].
These studies have provided global and potential gene dynamic expression changes and signaling
pathways for leaf senescence regulation in tobacco, but few genes involved in regulation of tobacco
leaf senescence have been identified.

Senescence is the terminal phase of plant development that typically displays as a decline at the cell,
tissue, organ, and whole plant levels [13]. Leaf senescence is the main part of plant senescence, and is
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strictly controlled at the molecular level during plant development [14]. In a controlled environment
with sufficient nutrition and favorable growth conditions, leaf senescence depends on the leaf age and
development stage of the plant [15,16]. Leaf senescence is affected by both endogenous and exogenous
factors, which regulate the expression of genes involved in the execution process of senescence, and
eventually lead to the death of the whole plant [17]. Furthermore, leaf senescence is regulated by
a complex regulatory network composed of transcription factors, hormones, environmental factors,
sugar metabolism, epigenetic regulation, and miRNA mediated regulation [17–21]. Leaf senescence is
not a completely passive and adverse biological process. During leaf senescence, macromolecules such
as proteins, lipids, and nucleic acids are broken down. The nutrients released from the catabolism of
these macromolecules, as well as other nutrients, are recycled to new buds, young leaves, developing
fruits, and seeds, which influence the yield of crops [15]. Premature leaf senescence generally causes
significant yield loss while delayed leaf senescence leads to increased grain production in many crop
species [22,23].

Chlorophyll breakdown is one of the most important catabolic processes during leaf senescence
in higher plants [24]. The yellowing of leaves caused by chlorophyll loss is the major phenotype of
plant senescence. Total chlorophyll content is the most commonly used parameter for characterizing
senescence progression. Drastic changes in gene expression are associated with leaf senescence.
Arabidopsis leaf senescence transcriptome data revealed that many transcription factor families are
overrepresented in the transcriptome of leaf senescence [18,25]. In addition to transcription factors,
many genes associated with metabolism and signal transduction were identified to be associated with
leaf senescence. Based on their different expression patterns, genes with differential expression were
classified as senescence down-regulated genes (SDGs), such as ribulose bisphosphate carboxylase small
subunit (RBCS) encoding a member of the rubisco small subunit, a key enzyme in photosynthesis, and
senescence up-regulated genes, which are also called senescence-associated genes (SAGs) [26]. While
many of the SAGs could be induced by senescence as well as other senescence-inducing factors, such
as environmental stresses, SAG12 was found to be strictly induced by natural senescence [27], and
thus, often used as a leaf senescence marker gene. Plant hormones are important endogenous factors
involved in the regulation of leaf senescence. Some of the senescence regulating plant hormones are
also involved in the plant’s response to environmental stresses and stress-induced senescence [19,28,29].
Thus, leaf senescence often involves complex cross talks between signaling pathways associated with
multiple hormones and stress signals.

Molecular markers are powerful tools for genetic research and plant breeding that have been
widely used in many types of biological research. Genetic linkage mapping based on molecular
markers can clarify the structure and organization of the genome. In tobacco, a large number of simple
sequence repeat (SSR) markers have been developed based on the released data of tobacco genome
sequences and expressed sequence tags. Bindler et al. [30,31] used two different tobacco varieties,
Hicks Broadleaf and Red Russian, in constructing a mapping population, and they published more
than 5000 SSR markers and obtained a high-density tobacco genetic map containing 24 linkage groups
(LGs) with 2363 SSR markers loci. Tong et al. [32] developed a total of 4886 SSR markers (including
1365 genomic SSRs and 3521 EST-SSRs), which were functional in a set of eight tobacco varieties
of four different types and were essentially non-overlapping with the set published by Bindler et
al. [30,31]. These SSR markers have been wildly used for the identification of quantitative trait loci
(QTLs) associated with tobacco disease resistance [33–36] and tobacco traits [37], and they have also
been used for genetic diversity analysis of tobacco varieties [38,39].

In this study, we identified a tobacco mutant yl1, which exhibited a premature leaf senescence
phenotype. We characterized the premature leaf senescence phenotype of yl1, determined the
physiological parameters related to leaf senescence and the expression of senescence marker genes,
analyzed its phenotypic inheritance, and mapped the causal gene.
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2. Results

2.1. The yl1 Plants Exhibit Premature Leaf Senescence

Compared with HonghuaDajinyuan (HD), yl1 plants showed a premature leaf senescence
phenotype from about 50 days after transplanting (DAT), and throughout the subsequent developmental
stage (Figure 1). No significant difference of leaf color was observed between HD and yl1 35 DAT or at
earlier development stages (Figure 1A). The yellowing of the bottom leaves appeared in the yl1 plants
around 50 DAT, and the leaf color was lighter than HD (Figure 1B). At the flowering stage, about 75
DAT, significant difference in leaf color of the bottom and middle leaves were observed between the yl1
and HD plants (Figure 1C,E) and this difference in leaf yellowing was more profound at 95 DAT when
the upper leaves of the yl1 plants became completely yellow, whereas the majority of leaves in the HD
plants still retained their green color (Figure 1). These results suggest that the yl1 plants seemed to
display a phenotype of premature leaf senescence.
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Figure 1. Phenotypic comparison between HonghuaDajinyuan (HD) and yl1. The phenotype of HD
and yl1 plants grown in the field. (A) 35 days after transplanting (DAT), bar 20 cm; (B) 50 DAT, bar 20
cm; (C) 75 DAT, bar 30 cm; and (D) 95 DAT, bar 35 cm. (E) The middle leaves of HD and yl1 75 DAT,
bar 10 cm.

2.2. Alterations of Leaf Senescence Related Parameters

In order to further characterize the phenotype of yl1, we determined the chlorophyll content, Fv/Fm
ratio, soluble protein content, and the expression of senescence marker genes in yl1 in comparison
with HD (Figure 2). Consistent with the premature leaf yellowing phenotype, Chlorophyll a (Chl a),
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Chlorophyll b (Chl b), and the total chlorophyll (Chls) of the middle leaves in yl1 were lower than in
counterpart leaves of the HD plants at the same developmental stages. The contents of Chl a, Chl b,
and Chls decreased rapidly in yl1 50 DAT, whereas the HD plants did not start losing chlorophyll until
75 DAT (Figure 2A–C). In tobacco, senescence of leaves progresses from the bottom to the top of a
plant. At 75 DAT, although no significant difference in chlorophyll contents was observed in upper
leaves, chlorophyll contents in the middle and lower leaves were significantly lower in yl1 than in the
HD plants (Figure 2D–F). At 75 DAT, the Fv/Fm ration and soluble protein in upper, middle, and lower
leaves of yl1 were significantly lower than in the HD plants (Figure 2G,H). Furthermore, the expression
of the marker genes SAG12 and RBCS of the individual samples was determined. As shown in Figure 2I
and J, in yl1, expression of the senescence marker gene SAG12 was first detected at 50 DAT and the
photosynthetic gene RBCS became undetectable at 75 DAT. For HD plants, SAG12 expression was first
detected at 75 DAT and RBCS expression became undetectable at 95 DAT. Significantly lower SAG12
and higher RBCS expression were detected at different leaf positions of 75 DAT plants (Figure 2K,L).
The premature leaf senescence phenotype of yl1 was well reflected in the expression patterns of SAG12
and RBCS.
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Figure 2. Leaf senescence related parameters of HD and yl1. Black and grey columns indicate HD and
yl1, respectively. (A) Chlorophyll a (Chl a), (B) Chlorophyll b (Chl b), and (C) total Chlorophyll (Chls)
in middle leaves of the same leaf position of HD and yl1 at 35, 50, 75, and 95 DAT. (D) Chl a, (E) Chl b,
(F) Chls, (G) Fv/Fm ratio, and (H) soluble protein in upper, middle, and lower leaves of the same leaf
position of HD and yl1 75 DAT, respectively. Relative expression of (I) SAG12 and (J) RBCS in middle
leaves of the same leaf position of HD and yl1 at 35, 50, 75, and 95 DAT. Relative expression of (K)
SAG12 and (L) RBCS in upper, middle, and lower leaves of the same leaf position of HD and yl1 at
75 DAT. Values are mean ± SD of three individual replicates. * and ** represent significant difference
determined by the Student’s t test at p ≤ 0.05 and p ≤ 0.01, respectively.

2.3. The Premature Leaf Senescence of yl1 is Controlled by a Single Recessive Gene

To analyze the inheritance of the premature leaf senescence phenotype of yl1, two wild type
tobacco varieties, HD and Gexin 3 (G3), were crossed with yl1. All the F1 plants showed a normal green
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phenotype similar to the wild type. A total of 43 out of 154 (HD × yl1) and 40 out of 155 (G3 × yl1) F2
plants, respectively, displayed the premature leaf senescence phenotype, showing a segregation ratio
of 3:1 (χ2 < χ2

0.05 = 3.841; Table 1). These results suggest that the premature leaf senescence phenotype
of yl1 was controlled by a single recessive gene. To further verify this observation, BC1F1 populations
were generated by crossing the F1 plants of HD × yl1 and G3 × yl1 with yl1 separately. The phenotypic
segregations of the BC1F1 populations correlated to the expected ratio of 1:1 with similar numbers of
wild type and mutant type plants (χ2 < χ2

0.05 = 3.841; Table 1).

Table 1. Genetic analysis of yl1.

Population Type Cross Total Wild Type Mutant Type Segregation Ration χ2 1

F2 HD × yl1 154 111 43 2.581 0.701
F2 G3 × yl1 155 115 40 2.875 0.054

BC1F1 (HD × yl1) × yl1 155 83 72 1.153 0.781
BC1F1 (G3 × yl1) × yl1 163 77 86 0.895 0.497

HD: HonghuaDajinyuan, tobacco variety; G3: Gexin 3, tobacco variety; 1 Value for significant at 0.05 and
df = 1 is 3.841.

2.4. Preliminary Mapping of YL1

The BC1F1 population developed between parent G3, and yl1 was used to map YL1. A total of
265 simple sequence repeat (SSR) markers showing polymorphism between G3 and yl1 were identified
from 1376 pairs of SSR markers by Bindler et al. [30,31] and Tong et al. [32], from which 96 markers
were evenly distributed on 24 linkage groups (LGs) of tobacco and were selected to screen 19 recessive
individuals from the BC1F1 population of G3 and yl1. The results showed that the marker PT53066
located on LG11 was associated with the yl1 phenotype (Figure 3A). In order to obtain more linked
markers, we used more polymorphic SSR markers on the flanks of PT53066 to screen the 19 mutant
plants and identified three more linked markers: PT60305, PT60998, and PT60975 (Figure 3B). In order
to obtain the exact location of the YL1 gene on LG11, we enlarged the BC1F1 population to get 46
premature leaf senescence individuals and screened them with the above four linked SSR markers.
The isolation of each SSR marker and YL1 was converted into genetic distance by the QTL Ici Mapping
software (V4.0). The results showed that YL1 was located between the markers PT53066 and PT60305,
with the genetic distance of 1.08 and 3.51 cM, respectively (Figure 3B).

2.5. Plant Hormone Treatments

In order to find out whether YL1 is involved in hormone signaling pathways that regulate leaf
senescence, leaf discs from the middle leaves of 50 DAT plants were used in plant hormone treatments
(Figure 4). Without plant hormone treatment, the yellowing of the yl1 leaves was faster than that of
HD (Figure 4 Control). As senescence-promoting hormones, treatments of both 1 - aminocyclopropane
- 1 - carboxylic acid (ACC) and methyl jasmonate (MeJA) accelerated yellowing of leaf discs with a
significantly more profound effect on the yl1 leaves, suggesting that yl1 was more sensitive to ACC
and MeJA than the HD plants (Figure 4).
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Figure 3. Preliminary mapping of YL1. (A) Linkage relationships between tobacco simple sequence
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indicates centimorgan.
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3. Discussion

The yl1 mutant has been continuously planted in Zhucheng City, Shandong Province, China,
for four years. A reliable and stable early yellowing phenotype has been consistently observed in yl1
plants over the years. The external performance of leaf senescence is that the leaf color turns yellow or
even dead, while the internal performances include the chloroplast structure changing significantly
or even completely disintegrating, and the decrease of the photosynthesis and protein [15]. One of
the early physiological manifestations of leaf senescence is the collapse of the membrane structure
due to membrane lipid de-esterification [40]. With the occurrence of senescence, the outer layer of the
chloroplast disappears, and the chlorophyll degrades. Chlorophyll a (Chl a) and Chlorophyll b (Chl b)
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are the two prevailing forms of chlorophyll, which are involved in different light harvesting. Chl a is
associated with the energy processing centers of the photosystems, while Chl b is considered to be
an accessory pigment that transfers light energy to Chl a [41]. The chlorophyll breakdown process
is initiated by conversion from Chl b to Chl a by a Chl b reductase [24]. The content of Chl a, Chl b,
and total chlorophyll (Chls) in yl1 was lower than that in HD during the whole development process,
and the difference was more significant at the middle and late stages of development. Moreover,
chlorophyll degradation was initiated earlier in yl1 than in HD at an early development stage of than
50 DAT (Figure 2A–C). Therefore, we believe the low chlorophyll content at late stage is due to early
chlorophyll degradation, a typical premature senescence phenotype. The phenotype of the yl1 mutant
was further confirmed by the difference in Fv/Fm ratio, soluble protein content, and expression levels
of the senescence-associated marker genes (Figure 2G–L).

Mapping functional genes using EMS mutants combined with map-based cloning has been applied
in many crops; however, in tobacco, it has lagged behind when compared with those of other plants
such as rice. The common tobacco (Nicotiana tabacum L.) is an allotetraploid (2n = 48) species produced
by the hybridization and chromosome doubling of N. sylvestris (2n = 24) and N. tomentosiformis (2n =

24) [42], with 4.5 Gb genome and more than 70% repetitive sequences [43]. The difficulty of mapping
tobacco genes by map-based cloning is partially due to the large genome of tobacco with lots of
repetitive sequences. Wu et al. (2014) used SSR markers by Bindler et al. [30,31] and Tong et al. [32] to
perform a preliminary mapping of a light color mutant ws1 controlled by two recessive nuclear genes.
The ws1a locus was mapped between PT54006 and PT51778 with a genetic distance of 8.04 and 3.96
cM, respectively, and the ws1b locus was mapped between PT53716 and TM11187, each with a genetic
distance of 8.56 cM from ws1b [44]. Michel et al. [45] located NtTPN1, a gene required for potato virus
Y-induced veinal necrosis in tobacco, between PT60530 and PT61143 with a distance of 0.5 and 2.9
cM, respectively. A tobacco black shank resistance gene Ph was located at the top of LG20, but there
were no more PT SSR markers available for subsequent localization [46]. The gene responsible for the
premature senescence phenotype of yl1 was mapped between the markers PT53066 and PT60305, and
the genetic distance was 1.08 and 3.51 cM, respectively. Similarly, we were not able to further narrow
down the interval using the PT/TM SSR markers. Obviously, we need more molecular markers to
enrich the linkage genetic map of tobacco.

Recently, a total of 1,224,048 non-redundant Nicotiana SSR markers were discovered and
characterized in silico in seven Nicotiana genomic sequences, of which 99.98% are novel [47].
In addition to SSR markers, single nucleotide polymorphisms (SNPs) are also commonly used
molecular markers [48]. With the rapid advance in next generation sequencing (NGS) technologies,
it has become possible to complete genome sequencing of large crop species. Especially for tobacco,
which is a crop with huge genome and low genetic diversity, it is necessary to develop SNPs from
the genomic region due to their wide distribution in the genome. In the past five years, four sets of
tobacco SNPs have been developed in tobacco through different varieties, sequencing populations,
and sequencing methods; they have been integrated into the 24 LGs developed by Bindler et al., and
new genetic linkage maps have been drawn [49–52]. These will be good tools for the fine mapping of
YL1 in future.

In view of the important role of plant hormones in leaf senescence, we attempted to explore the
relationship between the causal gene and hormone pathways by the hormone treatment of detached
leaves, and to provide potential methods for screening candidate genes in the future. Ethylene is one
of the most important plant hormones that induce leaf senescence. Some ethylene receptors, such as
EIN2, a core member of ethylene signaling pathway, play a role in other hormone signaling and act as
a node in the interaction between plant hormone signals [19]. Jasmonic acid induces the expression
of key enzymes involved in chlorophyll degradation, so it has long been thought to accelerate leaf
senescence [53]. In addition, jasmonic acid regulates leaf senescence by interacting with other hormonal
signaling pathways such as salicylic acid, auxin, and ethylene [54–56]. When HD and yl1 were treated
with ACC and MeJA, both of them had accelerated leaf senescence. It is clearly that yl1 is more sensitive
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to ACC and MeJA. However, we did not find that yl1 showed more interesting responses to ethylene
and jasmonic acid.

In summary, we have identified a novel tobacco EMS mutagenesis induced premature leaf
senescence mutant controlled by a recessive single gene and have preliminarily mapped the causal
gene to an interval between PT53066 and PT60305 on the tobacco LG11, with the genetic distance of 1.08
and 3.51 cM, respectively. This provides good genetic material. Further cloning and characterization
of the causal gene will lead to a better understanding of the molecular mechanisms underlining
leaf senescence in tobacco and provide useful information in the genetic manipulation of tobacco
leaf senescence.

4. Materials and Methods

4.1. Plant Materials and Genetic Populations

The yl1 mutant was identified from the chemical mutagen EMS induced library derived from the
common tobacco variety HonghuaDajinyuan (HD) [57]. The yl1 mutant was identified from one the
M2 lines, and further verified in the M3 and M4 generation. HD and another wild type tobacco variety
G3 (Gexin 3) were crossed with yl1, respectively, to produce genetic populations. The F1 (HD × yl1;
G3 × yl1) plants were self-pollinated to generate F2 segregating populations. BC1F1 segregating
populations ((HD × yl1) × yl1; (G3 × yl1) × yl1) were generated by crossing F1 with yl1. All the
plants were grown in a field in Zhucheng City, Shandong Province. Leaf senescence phenotypes were
evaluated by visual observation. Segregation patterns were evaluated for the “goodness of fit” to the
expected ratios using the chi-squared test.

4.2. Sampling for Measurement of Leaf Senescence Related Physiological Parameters and RNA Extraction

Plants of HD and yl1 were grown in the field in Zhucheng City, Shandong Province, during the
2018 growing season. Middle position leaves of each plant were collected at different developmental
stages. The collection of the leaf samples was done at four developmental stages during the growing
season: 35, 50, 75, and 95 days after transplanting (DAT). For each sample, one leaf from the middle
position was collected from three plants randomly. Each leaf was divided into two parts along the
main vein. One half was wrapped in aluminum foil, immediately immersed into liquid nitrogen, and
stored at -80 ◦C until it was used for extracting the RNA and soluble protein, while the other half was
put in sample bag and stored in the ice box for chlorophyll content measurements.

4.3. Measurement of Leaf Senescence Related Physiological Parameters

Chlorophyll was extracted and quantified as described previously [58]. Briefly, 0.5 g of the leaf
sample was immersed in 30 mL ethanol overnight in darkness until the leaves became completely
pale. The absorbance at 649 nm and 665 nm of the extraction solution was quantified using a UV-Vis
spectrophotometer (TECAN, Infinite M200, Salzburg, Austria).

Fluorescence of living leaves was measured using a portable modulated chlorophyll fluorometer
according to the manufacturer’s instructions (Opti-Sciences, OS1p, Hudson, USA).

Extraction of the soluble protein in each sample was according to the manufacturer’s instruction
(CWBIO, CW0885M, Beijing, China). Briefly, about 0.2 g of the frozen leaves material was homogenized
in 1 mL extraction reagent containing a protease inhibitor cocktail. The amount of soluble proteins
in each sample was measured using the BCA protein assay kit (CWBIO, CW0014S, Beijing, China)
according to the manufacturer’s instruction.

4.4. RNA Extraction and qRT-PCR

The total RNA was extracted using the TRIzol reagent (Invitrogen, Carlsbad, USA). First-strand
cDNA was synthesized from 1 µg of total RNA using the PrimeScriptTM RT reagent Kit with gDNA
Eraser (TAKARA, RR047, Dalian, China) according to the manufacturer’s instruction. qRT-PCR was
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carried out on a Thermal Cycler Block 7500 (ABI, Waltham, USA) according to the manufacture of TB
GreenTM Premix Ex TaqTM II (Tli RNaseH Plus) (TAKARA, RR820, Dalian, China). The means of
three biological and technical replicates were analyzed. The Actin was used as a reference gene for
internal control, while SAG12 and RBCS were used as senescence markers. The primer sequences of
the genes for qRT-PCR are shown in Table 2.

Table 2. The primer sequences of genes for qRT-PCR.

Gene Name Accession Number 1 Forward Primer Sequence 1 Reverse Primer Sequence 1

Actin Nitab4.5_0009320g0010.1 CAAGGAAATCACGGCTTTGG AAGGGATGCGAGGATGGA
SAG12 Nitab4.5_0001608g0070.1 ATTTTCAGCGGTGGCAGCT GTAAGAAGTCGTAGGCTCG
RBCS Nitab4.5_0006249g0010.1 CCTGCTAAGGATACAATTAG CTCAAATTTCTTGTTGTCA

1 The accession number and gene sequences were obtained from the N. tabacum CDS database
(https://solgenomics.net) [59].

4.5. DNA Extraction and SSR Analysis

Genomic DNA was extracted using the Plant Genomic DNA Kit (TIANGEN, DP305, Beijing,
China). The DNA concentration was measured using a NanoDrop 2000 spectrophotometer (Thermo
Scientific, Waltham, USA) and adjusted to 50 ng/µL. Tobacco simple sequence repeat (SSR) markers
were used to map YL1 based on the high-density genetic map of tobacco [30]. PCR was performed in a
Veriti 96-Well Thermal Cycler (ABI, Waltham, USA) following the previously described method [44].
Briefly, each reaction contained 7.5 µL of 2 x Taq PCR MasterMix (TIANGEN, KT211, Beijing, China),
50 ng template DNA, and 1 µL of 5 µM forward and reverse primers in a volume of 15 µL. The PCR
program was as follows: pre-denaturation at 95 ◦C for 3 min, followed by 30 cycles of 15 s at 95 ◦C,
30 s at 50–60 ◦C (the annealing temperature of different primer pairs), and 30 s at 72 ◦C, and then a
final extension at 72 ◦C for 5 min. After that, 6 µL PCR products were separated on 6% nondenaturing
polyacrylamide gel and visualized with silver staining as previously described [60].

4.6. Linkage Map and Genetic Distance

The BC1F1 population ((G3 × yl1) × yl1) was used to obtain the markers linked to YL1.
The polymorphic SSR markers between G3 and yl1 were partially selected and used to screen a
small number of recessive individuals of the BC1F1 population with the premature leaf senescence
phenotype, as well as their parents. After confirming the linkage between one marker and YL1,
all adjacent polymorphic SSR markers were run across the whole recessive individuals of the population.
The linkage map based on the segregations between YL1 and the markers was constructed by QTL
Ici Mapping software V4.0 [61], and the threshold value of the logarithm of odd (LOD) was set at 3.0.
Genetic distances were calculated and presented in Kosambi centiMorgans (cM).

4.7. Plant Hormone Treatments

Leaf discs from middle leaves of plants grown in greenhouse 50 DAT were used for plant hormone
treatments. Detached leaves were cut into small discs (~1.5 cm in diameter) and floated on an incubation
buffer (1/2 MS, 3 mM MES, and pH 5.8) with and without hormones in Petri dishes with filter paper.
The samples were incubated at 28 ◦C under 24 h light in a growth chamber. The plant hormone was
diluted to working concentrations using the incubation buffer. The working concentrations of the plant
hormones are 100 µM for 1 - aminocyclopropane - 1 - carboxylic acid (ACC) and 50 µM for methyl
jasmonate (MeJA) [62].
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