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Abstract
The Malmquist index (MI) has demonstrated its usefulness in comparing the performances of Decision Making Units
(DMUs) performances. The global MI (GMI) has been suggested as a means to overcome three drawbacks of the MI: non-
circularity, disparate measurements, and infeasibility. Recently, it has appeared that the MI can also be used to compare
groups of DMUs. While this new function of the index has also increased its usefulness, it presents the same drawbacks as
the MI. In this paper, we define the global counterpart of the MI for group contexts. We also consider the case where DMUs
have an economic optimization behavior by proposing a global cost MI (GCMI). The GCMI requires the observation of the
input prices. As it may represent a strong assumption, we propose solutions. These two novel indexes equip the practitioners
with a new toolkit. We illustrate the usefulness of our new indexes with the Chinese energy sector.

Keywords Global cost Malmquist index ● Global Malmquist index ● Groups ● Circularity ● Infeasibility ● China

1 Introduction

Caves et al. (1982) introduced the Malmquist index (MI;
named after (Malmquist 1953), to measure relative pro-
ductivity performance changes of Decision Making Units
(DMUs; such as firms, plants, utilities, countries, regions)
over several periods of time.1 Two main reasons explain
the important attention given to this index for both the-
oretical and practical works.2 On the one hand, as the MI
is based on a technical formulation of efficiency, it only
requires the observation of the input and the output data.
On the other hand, as shown by Färe et al. (1994), the MI
can be decomposed into different components (such as
efficiency change and technical change) to better

understand the causes of performance changes between
DMUs over time.

The MI, however, also presents certain less desirable
features or even drawbacks. Firstly, it is based on a tech-
nical formulation of efficiency, whereas a structural
approach is often more accurate. Next, the MI is not cir-
cular: there is no established relationships between MIs for
consecutive periods. Afterwards, the MI averages two
possibly disparate measurements of performance change.
Finally, when relying on Data Envelopment Analysis
(DEA)-based linear programs to compute the technical
efficiency scores, infeasibility may occur.3

Fortunately, solutions have been proposed to overcome
these four drawbacks. Firstly, Maniadakis and Thanassoulis
(2004) suggested an MI-based index when DMUs are cost
minimizers. They named this the cost Malmquist index
(CMI).4 At this point, it is worth noting that the CMI,
contrary to the MI, requires the observation of the input
prices (see Section 3.6 for more discussion). Next, Xue and
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1 We notice that some authors, such as O’Donnell (2012) and Peyr-
ache (2014), have questioned the purpose of the MI; namely whether it
really measures productivity performance change and under what
conditions. This debate is beyond the scope of this paper.
2 See, for example, for extensions: Chen (2003), Chen and Ali (2003),
Zelenyuk (2006), Yu (2007), Kao (2010), Portela and Thanassoulis
(2010), Wang and Lan (2011), Kao and Hwang (2014), Mayer and
Zelenyuk (2014), Fuentes and Lillo-Banuls (2016), Asmild et al.
(2017), Kao (2017), and Kevork et al. (2017).

3 DEA, after Charnes et al. (1978), is an approach to productive
efficiency measurement. DEA is intrinsically nonparametric, which
means that it does not require a parametric/functional specification of
the production technology. Typically, a DMU’s efficiency can be
computed by simple linear programs. Refer to Cooper et al. (2004),
Cooper et al. (2007), Fried et al. (2008), and Cook and Seiford (2009)
for reviews. See Section 3.5 for the DEA-based linear programs in the
group context.
4 See, for example, for extensions: Yang and Huang (2009), Huang
and Juo (2015), Walheer (2018b), and Zhu et al. (2017).
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Harker (2002) give conditions to avoid infeasibility issues
when relying on DEA-based linear programs. Finally, Färe
and Grosskopf (1996) defined sufficient conditions for the
MI to satisfy circularity and average same measurements of
performance change.

In many settings, DMUs are split into different groups
depending on, for example, their ownership, geographical
localization, economic infrastructure, resource endowments,
social environment, operational settings, etc. For these
contexts, Camanho and Dyson (2006) and Thanassoulis
et al. (2015), respectively, defined an MI and an CMI tai-
lored to evaluate the performance difference between (two)
groups.5 Their indexes mirror the initial MI of Caves et al.
(1982) and the CMI of Maniadakis and Thanassoulis (2004)
with the particularity of comparing groups of DMUs over
one period of time instead of DMUs over several periods
of time.

As a result, their new indexes share the same advantages,
i.e., they are easy to compute and can be decomposed into
different components; as well as the disadvantages, i.e.,
non-circularity, average possibly disparate measurements of
performance change, and sensitivity to infeasibility issues.
Non-circularity, in this context, implies the lack of stable
performance ranking between the groups. That is, there is
no relationship between the indexes capturing the differ-
ences in performances between groups. Next, the chosen
group for the technology may have an impact on the per-
formance difference results. That is, the two ratios forming
the MI and the CMI may give different measures of per-
formance change. Finally, when relying on DEA for com-
puting the efficiency scores, infeasibility may occur. This
happens, for example, when a group over- or under-
performs. All in all, while these drawbacks are important for
the MI and the CMI used to compare DMUs over periods of
time, they are probably even more important in the contexts
of comparing groups over one period of time.

To date, no solution has been proposed to overcome all
these issues for the MI and the CMI in group contexts. In
this paper, we propose two new indexes: a global MI (GMI)
and a global cost MI (GCMI) to compare groups. These
indexes present several attractive features: they are circular,
give only one measurement of performance difference, and
are immune to infeasibility issues. At this point, it is fair to
highlight that there is also a price to pay: rely on a fixed
reference technology and use a common price. We apply
our methodology to the case of the energy sector in China.
A particularity of our application is that we use the firm-
level database of the National Bureau of Statistics in China:
the Chinese Annual Survey of Industrial Firms Database.

This database offers a unique opportunity to study the
energy sector in China from a microeconomic point of view.
The sector has been playing a major role in boosting rapid
Chinese industrialization and urbanization. As such, mea-
suring the performances of the sector is of crucial impor-
tance for the managers of the firms, but also for policy
makers and regulators.

The rest of the paper is structured as follows. In Section
2, we present a brief discussion about circularity of MIs. In
Section 3, we define the GMI and the GCMI for group
contexts. In Section 4, we use our new indexes to measure
the performances of firms in the Chinese energy sector. In
Section 5, we present our conclusions.

2 Circular Malmquist indexes

As6 mentioned in the Introduction, one of the less desir-
able features or even drawbacks of the MI, as defined by
Caves et al. (1982), is that it does not satisfy the circu-
larity property. In this Section, we define circularity, and
discuss whether this is a major problem and what solu-
tions are available.

Intuitively, circularly is observed when there is a ‘circle
relationship’ between indexes of different time periods
(Frisch (1936)). For example, when comparing DMUs over
three time periods t, u, and v, circularly is satisfied if the
following is correct: Itu × Iuv= Itv, for all t, u, v. Of course,
circularity is only important when three or more time per-
iods are considered. In fact, this is a simple solution to avoid
this drawback: compare performance changes between two
time periods. A direct consequence of the non-circular
feature of the MI is that there is no clear relationship
between the results of different time periods. This implies,
for instance, that it is difficult to establish a stable ranking of
the time periods. Stability has here to be understood as
obtaining the same ranking for the time periods for a fixed
sample using the indexes. An important question is whether
it is possible to make the MI circular ? Many researchers—
such as Berg et al. (1992), Chambers and Färe (1994), Färe
and Grosskopf (1996), Althin (2001), Shestalova (2003),
Pastor and Lovell (2005, 2007), Afsharian and Ahn (2015),
and Diewert and Fox (2017)—have tried to answer this
question by suggesting different approaches. Intuitively, to
obtain a fixed ranking something has to be fixed over time.7

A common point of all these approaches is that extra
assumptions are needed to ensure circularity. Whether these
additional assumptions make sense or are too restrictive

5 The technique has been extended in two directions; Aparicio et al.
(2017) for unbalanced panels, and Walheer (2018a) for multi-
output DMUs.

6 This Section has been added on the request of an anonymous referee.
We thank the referee for challenging us.
7 Note that the problem become even more complex when the num-
bers of DMUs change over time. This is why most of the empirical
works using the MI use a balanced panel dataset.
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may be a subjective question and depend on the empirical
context. In fact, it is a balance between accepting additional
assumptions to make the MI circular or continuing with a
non-circular MI.

A first theoretical result, due to Färe and Grosskopf
(1996), provides a sufficient and not a necessary condition
to ensure circularity of the MI. It has been demonstrated that
the MI is circular when the technological change over time
shifts the entire frontier by the same amount. They name
this property Hicks neutrality. In practice, there is no reason
for it to be correct and, in fact, it often represents a
restrictive assumption about the production process.
Building on this first result, more practical approaches not
assuming Hick neutrality ensued. We may regroup these
techniques into two main procedures: the first one is
devoted to constructing a common or fixed reference tech-
nology, whereas the second alternative consists in resorting
to fixed weights.

At this point, it is fair to highlight that whatever the selected
procedure it represents an important price to pay to impose
circularity (Sickles and Zelenyuk, 2019). This probably
explains why most empirical works use the initial MI as
defined by Caves, Christensen and Diewert (1982), and,
hence, implicitly accepts its non-circular feature (and the other
drawbacks presented above in the Introduction). This, though,
does not imply that defining MIs that satisfy circularity is
irrelevant; at least, from a theoretical point of view.

When relying on a common reference technology, an
MI-based index that has received much attention in light
of its extensions and applications is the global MI (GMI)
introduced by Pastor and Lovell (2005).8 The GMI has
the particularity of using data of all DMUs in all periods
to define the technology. As a result, the GMI is circular,
gives one measurement of performance change, and is
immune to infeasibility issues. In other words, the GMI
solves three of the four issues of the MI. The last issue
has been solved by Tohidi et al. (2012) who have
extended the GMI to the case of cost minimizing DMUs.
Their index is naturally named the global cost Malmquist
index (GCMI).9

Instead of using the MI to compare DMUs over time, it
can be used to compare DMUs in different groups, as
suggested by Camanho and Dyson (2006) and followers. In
that context, circularity is defined in a similar fashion as
before. For example, when comparing three groups of
DMUs a, b, and c, we obtain circularity if the following is

satisfied: Iab × Ibc= Iac, for all a, b, c. Clearly, there is no
reason that the MI is now circular when comparing groups
while it was not when comparing time periods. Again,
whether this is a problem is a subjective question. Never-
theless, in group contexts, it is worth noting that non-
circularity implies the impossibility to establish a stable
ranking between group performances, which is probably a
desirable feature when using a group comparison tool. As
for the initial use of the MI, three solutions are possible: to
compare only two groups, to accept the non-circularity
feature, and to select additional assumptions in order to
obtain a circular MI. In the latter case, Camanho and Dyson
(2006) have proposed to rely on specific fixed weights.

In this paper, we suggest an alternative approach:
defining a global technology to make the MI circular in
group contexts. By doing so, we define two new indexes:
a GMI and a GCMI to compare groups. The new indexes
mirror the GMI of Pastor and Lovell (2005) and the
GCMI of Tohidi et al. (2012), but are tailored to compare
groups over one period of time instead of DMUs over
several periods of time. As such, the new indexes share
the virtues of the initial definitions of the GMI and
GCMI. That is, they are circular, give only one mea-
surement of performance difference, and are immune to
infeasibility issues. They also share the disadvantages
such as relying on a fixed reference technology and using
a common price. As with the initial definition of the
GCMI of Tohidi et al. (2012), our GCMI for group
contexts also requires the observation of the input prices.
As this assumption may be restricted for some settings
and applications, we propose solutions when the input
prices are partially or not observed.

3 Methodology

We develop a global Malmquist index (GMI) and a global
cost Malmquist index (GCMI) to compare groups of DMUs.
In what follows, we assume that we observe n DMUs split
into two groups: A and B. We restrict our attention to two
groups for simplicity. It is fairly easy to extend to the case
of more than two groups. We assume that they are nA
DMUs in group A and nB DMUs in group B. Clearly, the
following holds true: nA + nB = n. In group A, each DMU t
ϵ {1,…, nA} produces Q outputs, captured by yAt 2 RQ

þ,
using P inputs, captured by xAt 2 RP

þ at price wA
t 2 RP

þ.
Similarly, in group B, each DMU t ϵ {1,…, nB} produces
yBt 2 RQ

þ using xBt 2 RP
þ at price wB

t 2 RP
þ.

Before defining our concepts of GMI and GCMI we
briefly review the MI of Camanho and Dyson (2006) and
the CMI of Thanassoulis et al. (2015). This allows us to
better position our contribution among the existing
approaches. Next, we define our notions of GMI and GCMI.

8 See, for example, for extensions and applications: Oh (2010), Oh
and Lee (2010), Pastor et al. (2011), Wang et al. (2012), Afsharian and
Ahn (2015), and Oh and Lee (2017). The GMI is named global since it
is based on a global technology; in our context, it is the technology
that envelops all group-specific technology sets (see (12)).
9 See, for example, for extensions, Tohidi and Razavyan (2013),
Huang and Juo (2015), and Cho and Wang (2017).
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Afterwards, we compare and explain how to decompose our
indexes. Finally, we explain how to compute the indexes in
practice when prices are available or not.

3.1 Malmquist and cost Malmquist indexes for
group comparison

We define the technology in terms of input requirement sets.
For example, for DMU t in group A, it is given by:

IAt yAt
� � ¼ xA 2 RP

þ xA can produce yAt
��� �

: ð1Þ

IAt yAt
� �

contains the inputs xA that can produce the
output quantities yAt . We assume that these sets are nes-
ted, monotone, convex, and satisfy constant returns-to-
scale. Those axioms are very general and common to
many popular performance indexes. Two important
remarks have to be made at this stage. One, monotonicity
and convexity are not required to define cost-based per-
formance index (see, for example, Varian (1984) and
Tulkens (1993) for discussion). Two, the new indexes can
also be defined when assuming variable returns-to-scale;
in that case, an extra component, conceptually similar to
the one suggested by Ray and Desli (1997) for the MI of
Caves et al. (1982), capturing scale efficiency change will
be present in the decomposition. For the sake of simpli-
city, we rely on constant returns-to-scale in the following.

The first step to define the MI for group contexts is the
concept of (input) distance function. Note that we could
alternatively define the MI for group comparison in terms
of technical efficiency à la Debreu (1951)-Farrell (1957),
as technical efficiency is the reciprocal of the (input)
distance function. For example, it is given for DMU t in
group B taking group A as the referent group for the
technology by:

DA;B
t :¼ DA;B

t yBt ; x
B
t

� � ¼ sup θj xBt
θ

� �
2 IAt yBt

� �	 

: ð2Þ

DA;B
t is an adapted version of the Shephard’s

(1953, 1970) distance function in the group context. We
have that DA;B

t � 1. DA;B
t is interpreted as the reverse of

the maximal equiproportionate/radial input reduction of
DMU t in group B that still allows for producing the
output quantity yBt given the technology of group A. As
such, the subscript A on the distance input function refers
to the referent group for the technology, while the sub-
script B indicates the group of the evaluated DMU.

Building on the concept of distance function, Camanho
and Dyson (2006) define the MI to compare group B to
group A as follows:

MI ¼ MIA �MIB
� �1=2

; ð3Þ

where

MIA ¼
QnB

t¼1 DA;B
t

h i1=nB
QnA

t¼1 DA;A
t

h i1=nA
0
B@

1
CA

�1

andMIB ¼
QnB

t¼1 DB;B
t

� �1=nB
QnA

t¼1 DB;A
t

h i1=nA
0
B@

1
CA

�1

:

ð4Þ

Both MIA and MIB compare the performance of group
B to group A. The only difference between the two
indexes is the referent group for the technology: group A
for MIA and group B for MIB. MIA > 1 indicates that the
DMUs in group B are, on average, better (technical)
performers than those in group A. A value smaller than 1
indicates the opposite, while a value of 1 means that the
two groups, on average, have similar performances. The
interpretation of MIB is analogous. To avoid an arbitrary
choice of the reference group, a commonly agreed pro-
cedure in this context (see Färe et al. (1994)) is to take the
geometric average of the two components. As a result, MI
captures the (technical) performance of DMUs in group B
with respect to those in group A, and this is irrespective of
the chosen technology, i.e., the referent group. A value
greater than 1 induces greater average performances of
DMUs in group B than those in group A while a value
smaller indicators the converse.

Contrary to the MI, the CMI is designed to take the
cost minimization behavior of the DMUs into con-
sideration. Therefore, the first step is to define the notion
of cost efficiency in the group comparison context.
For example, cost efficiency for DMU t in group B taking
group A as the referent group for the technology is
given by:

CEA;B
t :¼ CEA;B

t yBt ; x
B
t ;w

B
t

� � ¼ CA;B
t

wB0
t xBt

; ð5Þ

where

CA;B
t :¼ CA;B

t yBt ;w
B
t

� � ¼ min
xB2IAt yBtð Þ

wB0
t x

B: ð6Þ

CA;B
t gives the minimal cost to produce the output

quantity yBt given the input prices wB
t and the technology

of group A. By construction, minimal cost cannot exceed
actual cost: CA;B

t � wB0
t x

B
t . If equality holds, outputs are

produced with minimal cost. If equality does not hold, it
reflects potential cost savings. As a consequence, it
implies that CEA;B

t is situated between 0 and 1, with 1
indicating that outputs are produced efficiently, i.e., with
minimal cost. A lower value reflects greater cost ineffi-
ciency and thus potential cost savings. Note that CEA;B

t is
only an adapted version of Farrell’s (1957) cost efficiency
in the group context.
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Thanassoulis et al. (2015) define the CMI for comparing
group B to group A as follows:

CMI ¼ CMIA � CMIB
� �1=2

; ð7Þ

where

CMIA ¼
QnB

t¼1 CEA;B
t

h i1=nB
QnA

t¼1 CEA;A
t

h i1=nA andCMIB ¼
QnB

t¼1 CEB;B
t

� �1=nB
QnA

t¼1 CEB;A
t

h i1=nA :
ð8Þ

The same comments made for MI apply for CMI. The
only difference between the two indexes is that CMI is
designed to take the cost optimization behavior of the
DMUs into account. CMI > 1 induces greater cost-
performances of DMUs in group B than those in group A,
CMI < 1 implies the opposite, and CMI= 1 reveals similar
cost-performances.

We end this part by showing that MI and CMI can be
connected by introducing the notion of allocative Malm-
quist index (AMI):

CMI ¼ MI � AMI: ð9Þ
Allocative efficiency, introduced by Farrell (1957),

measures inefficiency due to non-optimal allocation of
inputs (with respect to the cost optimization behavior). In
our group context, it is defined, for example for DMU t in
group B taking group A as the referent group for the
technology, by the product of the cost efficiency mea-
surement and the distance function: CEA;B

t � DA;B
t . Building

on the notion of allocative efficiency, we naturally define
AMI as follows:

AMI ¼ AMIA � AMIB
� �1=2

; ð10Þ

where

AMIA ¼
QnB

t¼1 CEA;B
t � DA;B

t

h i1=nB
QnA

t¼1 CEA;A
t � DA;A

t

h i1=nA andAMIB ¼
QnB

t¼1 CEB;B
t � DB;B

t

� �1=nB
QnA

t¼1 CEB;A
t � DB;A

t

h i1=nA :
ð11Þ

AMIA and AMIB compare the performance of group B to
group A taking, respectively, group A and group B as the
referent group for the technology. AMI > 1(<1) indicates that
the DMUs in group B, on average, are more (less) allocative
efficient than those in group A. A value of 1 means that the
two groups, on average, have similar allocative perfor-
mances. Allocative-type indexes can be found in, for
example, Maniadakis and Thanassoulis (2004), Yang and

Huang (2009), Huang and Juo (2015), Walheer (2018b), and
Zhu et al. (2017).

3.2 Global Malmquist and cost Malmquist indexes
for group comparison

The first step to define the GMI for the group contexts is the
concept of global technology. Intuitively, the global tech-
nology is defined for all groups, and thus remains unchan-
ged across groups. As a result, for the global technology,
the membership of the DMUs to a specific group does not
matter. Let us define yt 2 RQ

þ, xt 2 RP
þ, and wt 2 RP

þ, as
the output, input and input price vectors of DMU t ϵ {1,…,
n}, respectively.

The global input requirement set is defined for DMU t as
follows:

GIt ytð Þ ¼ IAt ytð Þ
[

IBt ytð Þ
n o

: ð12Þ

In words, the global technology is obtained as an envel-
opment of the group-specific technology sets. At this point, it
should be clear that the envelopment could be assumed as
convex or non-convex. It will not change the definition of the
concepts, but only the practical implementation (see Section
3.5). Allowing for convexity or not of the envelopment is a
choice left to the practitioners. Of course, this choice clearly
depends on the setting and/or the application considered. We
remark that the debate about imposing convexity or not is not
only specific to GMI and GCMI, but also holds true for many
concepts in the efficiency literature. See, for example,
Deprins et al. (1984), Kerstens and Vanden Eeckaut (1999),
Podinovski (2004a, b), and Leleu (2009), Huang et al.
(2013), and Afsharian and Ahn (2015).

Based on the global set, we can define our notion of
global (input) distance function in the group context, given
for DMU t by:

GDt :¼ GDt yt; xtð Þ ¼ sup θj xt
θ

 �
2 GIt ytð Þ

n o
: ð13Þ

GDt is the reverse of the maximal equiproportionate/
radial input reduction of DMU t that still allows for pro-
ducing the output quantity yt given the global technology.
By construction GDt ≥ 1, with GDt= 1 reflects technicallly
efficient behaviour, and GDt > 1 means that potential input
savings are possible.

Using the concept of global distance function, we define
the GMI in the group context as follows:

GMI ¼
QnB

t¼1 GDt

� �1=nBQnA
t¼1 GDt

� �1=nA
 !�1

ð14Þ

An initial observation is that GMI, contrary to MI, is not
based on the geometric average. As such, it provides a
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single measure of performance differences. It thus avoids
the difficult task of choosing a referent group for the tech-
nology, and the potential issue of different performance
measurements of the two components (i.e. MIA and MIB for
MI). Next, GMI is circular. That is, there is a relationship
between GMIs when there are several groups. Circularity
also implies that GMI fulfils transitivity, or in other words,
there is a stable ranking between the groups. Note that this
is not guaranteed with the MI (see Section 3.3 for more
discussion). Finally, GMI is immune to potential infeasi-
bility issues (see Section 3.5 for more discussion). GMI
captures the (average) technical performances between
DMUs in group B and in group A. GMI > 1 induces a
greater performance of DMUs in group B than those in
group A, GMI < 1 implies the opposite, and GMI= 1 reveals
similar performances.

To define the GCMI for group contexts, we first have to
introduce the extra notion of global input prices, denoted by
wG 2 RP

þ. These prices are common across groups and can be
seen, in microeconomic contexts, as benchmark or referent
prices (Kuosmanen et al. (2006)), and in macroeconomic
contexts, as the country, region, or sector prices. Different
options are available at this stage. The choice is left to the
practitioners, and clearly depends on the application con-
sidered. For example, we may assume that all DMUs face the
same input prices. That is, wG = wt, for t = 1,…, n. This
strategy is used, for example, in Färe and Zelenyuk
(2003, 2007), Zelenyuk (2006, 2016), Cherchye et al.
(2015, 2016), Walheer (2018a, 2018b, 2018d), and Färe and
Karagiannis (2017). Another option is to define the global
input prices as a function of the DMU-specific input prices.
That is, wG = F(w1,…, wn). An example, discussed in Tohidi
et al. (2012) in a context of comparing DMUs, is to rely on a
weighting average: wG ¼Pn

t¼1 ωtwt (with
Pn

t¼1 ωt ¼ 1 and
ωt ≥ 0, ∀t).

Building on our notions of global technology and global
input prices, we define the global minimal cost for DMU t
as follows:

GCt :¼ GCt yt;w
G

� � ¼ min
x2GIt ytð Þ

wG0
x: ð15Þ

GCt defines the minimal cost to produce yt given the global
technology and the global input prices. Also, GCt � wG0xt for
every DMU t. If they coincide, yt is produced with minimal
cost with respect to the global setting (i.e., technology and
prices). If they do not, it reflects potential cost savings.

Naturally, the concept of global cost efficiency is defined
for DMU t as follows:

GCEt :¼ GCEt yt; xt;w
G

� � ¼ GCt

wG0xt
: ð16Þ

GCEt is studied between 0 and 1. GCEt= 1 implies that
DMU t has a cost efficient behaviour, while a lower value

induces larger cost inefficiency behaviour with respect to
the global setting.

We define our concept of GCMI as follows:

GCMI ¼
QnB

t¼1 GCEt

� �1=nBQnA
t¼1 GCEt

� �1=nA : ð17Þ

GCMI shares the same virtues as those of GMI: it pro-
vides a single measure of cost-performance between groups
B and A, avoids to make a choice for the referent group for
the technology, and is circular. GCMI captures the (average)
cost-performances between DMUs in group B and in group
A. GCMI > 1(<1) induces a greater (smaller) cost-
performance of DMUs in group B than those in group A.

3.3 Comparison

We first define two extra notions to ease our discussion of
the comparison between our global indexes and the indexes
of Camanho and Dyson (2006) and Thanassoulis et al.
(2015): the best practice (technical) gap BPG and the best
practice cost gap BPCG. For example, they are defined for
group B taking group A as the referent group as:

BPGA;B ¼
QnB

t¼1 GDt

� �1=nB
QnB

t¼1 DA;B
t

h i1=nB
0
B@

1
CA

�1

andBPCGA;B ¼
QnB

t¼1 GCEt

� �1=nB
QnB

t¼1 CEA;B
t

h i1=nB :
ð18Þ

BPGA,B gives the (average) best practice gap of the DMUs
in group B between the global technology and the
technology of group A. When BPGA,B= 1, it means that,
on average, the distance functions are the same with respect
to both technologies; that is, there is no gap. The smaller the
ratio, the greater the gap. BPCGA,B has to be interpreted in
the same way, but in cost terms.

To compare GMI and MI, we make use of a ratio GMI
MI . It

can be shown that this ratio corresponds to the geometric
average of the ratio of benchmark technology gaps (the
proof is given in Appendix B):

GMI

MI
¼ GMI

MIA
GMI

MIB

� �1=2
¼ BPGA;B

BPGA;A
� BPGB;B

BPGB;A

� �1=2
: ð19Þ

An initial observation is that, in general, GMI is different
MI, and there is no established ranking between the two
indexes (that is GMI ≶MI). GMI corresponds to MI, i.e.,
GMI
MI ¼ 1, when GMI=MIA=MIB. This happens when the
chosen group for the technology is irrelevant. In that case,
we have that the global and the group-specific technologies
correspond. This implies that the distance functions with
respect to the global and group-specific technologies are
equal. As such, the best practice gaps are equal to 1, making
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the geometric average of the ratio of the best practice gaps
equals to 1.

A similar decomposition can be obtained when com-
paring GCMI and CMI (the proof is given in Appendix B):

GCMI

CMI
¼ GCMI

CMIA
GCMI

CMIB

� �1=2
¼ BPCGA;B

BPCGA;A
� BPCGB;B

BPCGB;A

� �1=2
:

ð20Þ
We conclude that GCMI

CMI ¼ 1, when GCMI ¼ CMIA ¼
CMIB. As for the relationship between GMI and MI, this
requires the global and the group-specific technologies to
correspond, but also that the global and group-specific
inputs coincide. When these two conditions are satisfied, we
have that the global and group-specific cost efficiency
measurements are similar, making the best practice cost
gaps equal to unity. In that case, the geometric average of
the ratio of best practice technology gaps equals 1. Clearly,
these two assumptions are rather restrictive in practice,
making GCMI different from CMI.

3.4 Decomposition

A desirable feature of the initial MI of Caves et al. (1982) is
that it can be decomposed into different sources (Färe et al.
(1994)). Attractively, our two new indexes keep this
desirable feature. In fact, GMI and GCMI can be decom-
posed into two parts as follows (the proofs are given in
Appendix B):

GMI ¼ TED� BPD; ð21Þ

GCMI ¼ CED � BPCD; ð22Þ

where TED ¼
QnB

t¼1
DB;B

t½ �1=nBQnA
t¼1

DA;A
t½ �1=nA

 !�1

; CED ¼
QnB

t¼1
CEB;B

t½ �1=nBQnA
t¼1

CEA;A
t½ �1=nA ;

BPD ¼ BPGB;B

BPGA;A; and BPCD ¼ BPCGB;B

BPCGA;A.
TED measures the difference in (technical) efficiency

spreads between group B and group A. This component is
present in the decomposition of MI (see Camanho and
Dyson (2006)). It is interpreted as the ratio of mean dis-
tance of the DMUs in Group B from their own frontier to
that of the DMUs in Group A from their own frontier.
When TED > 1, it indicates that the efficiency spread is
smaller for DMUs in group B than for those in group A.
TED < 1 shows the opposite, while TED = 1 implies
similar efficiency spread for both groups. Two important
remarks should be made about TED. First, this ratio does
not capture relative (technical) performances of units in
each group as the referent boundaries differ between the
numerator and the denominator. Second, we may interpret
TED as a comparison of structural efficiency of two

industries (see Farrell (1957) and Camanho and Dyson
(2006)). In a similar vein, CED defines the difference in
cost efficiency spreads between group B and group A. A
value larger (smaller) than 1 indicates that the there is
greater (smaller) consistency in cost efficiency levels in
DMUs of group B than in those of group A. This com-
ponent is also present in the decomposition of CMI (see
Thanassoulis et al. (2015)).

The distinguishing components of the proposed
decompositions are thus captured by BPD and BPCD.
BPD is the difference in best practice (technical) gaps
when comparing group B to group A. BPD= 1 when
BPGB,B= BPGA,A. This occurs when DMUs in group B
are, on average, at the same distance from the global
technology than DMUs in group A. The closer DMUs in
group B are from the global technology (i.e., the farther
DMUs in group A are), the larger BPD is. Therefore,
BPD > 1 (<1) means that DMUs in group B have, on
average, greater (smaller) best practice in technical terms
than those in group A. BPCD is interpreted in an analo-
gous manner, but in cost terms.

As a final remark, we point out that the advantages of
GMI and GCMI discussed previously, i.e. circularity and
single measurement of performance differences between
groups B and A, also hold true for TED, CED, BPD, and
BPCD.

An important point is to relate GMI and GCMI. We can
obtain a connection similar to the one discussed for MI and
CMI in (9). Firstly, note that CED and BPCD can be
decomposed into two parts as follows (the proofs are given
in Appendix B):

CED ¼ TED� AED; ð23Þ

BPCD ¼ BPD� BPAD; ð24Þ

where AED ¼
QnB

t¼1
CEB;B

t �DB;B
t½ �1=nBQnA

t¼1
CEA;A

t �DA;A
t½ �1=nA ; and BPAD ¼

QnB

t¼1
GCEt�GDt½ �1=nBQnB

t¼1
CEB;Bt �DB;Bt½ �1=nBQnA

t¼1
GCEt�GDt½ �1=nAQnA

t¼1
CEA;At �DA;At½ �1=nA

.

AED captures the difference in allocative efficiency
spreads between group B and group A. This component
relates the differences in (technical) efficiency and cost
efficiency spreads (see Thanassoulis et al. (2015)). A value
larger than 1 indicates that there is greater consistency in
allocative efficiency levels in DMUs of group B than in
those of group A. In other words, it implies that the input
prices are better aligned with the mix of inputs used (with
respect to the cost minimization behavior) by DMUs in
Group B rather than in Group A. Next, BPAD is a new
component and captures the difference in best practice
allocative gaps when comparing group B to group A. Note
that GCEt ×GDt defines the notion of global allocative
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efficiency of DMU t in the group context based on the
global technology and the global input prices.

To interpret BPAD, let us first define the notion of best
practice allocative gap. It is given, for example, for group B
taking group A as the referent group for the technology:

BPAGA;B ¼
QnB

t¼1 GCEt � GDt

� �1=nB
QnB

t¼1 CEA;B
t � DA;B

t

h i1=nB
0
B@

1
CA

�1

: ð25Þ

BPAGA,B gives us a best practice allocative gap of group B
between the global technology and the technology of group
A. When BPAGA,B= 1, it means that, on average, the
allocative efficiency measurements are similar with respect
to both technologies. That is, there is no allocative gap. A
smaller ratio induces a greater gap. Using this concept, we
can equivalently rewrite BPAD as follows:

BPAD ¼ BPAGB;B

BPAGA;A
ð26Þ

As such, BPAD mirrors BPD but in allocative terms.
BPAD > 1 means that DMUs in group B, on average, have
greater allocative efficiency with respect to the global
technology than DMUs in group A. BPAD < 1 reflects the
opposite, while BPAD= 1 means similar gaps between the
two groups. In other words, BPAD captures the change in
the distance between technical and cost frontiers between
group B and group A.

Combining (21) and (22) with (23) and (24), we obtain a
connection between GMI and GCMI:

GCMI ¼ CED � BPCD;

¼ TED� AEDð Þ � BPD� BPADð Þ;
¼ TED� BPDð Þ � AED� BPAD;

¼ GMI � AED� BPADð Þ;
¼ GMI � GAMI:

ð27Þ

GAMI stands for the global allocative Malmquist pro-
ducitivy index for group contexts. It measures the (average)
allocative performances between DMUs in group B and in
group A. GAMI > 1 induces greater allocative performances
of DMUs in group B than those in group A, GAMI < 1
implies the opposite, and GAMI= 1 reveals similar alloca-
tive performances. GAMI has the same desirable properties
than GMI and GCMI: it is circular and provides a single
measure of allocative performance differences. Formally, it
is defined as follows:

GAMI ¼
QnB

t¼1 GCEt � GDt

� �1=nBQnA
t¼1 GCEt � GDt

� �1=nA : ð28Þ

Also, it can be shown that GAMI can be decomposed into
two parts (the proof is given in Appendix B):

GAMI ¼ AED� BPAD; ð29Þ

and that it is related to AMI as follows (the proof is given in
Appendix B):

GAMI

AMI
¼ GAMI

AMIA
GAMI

AMIB

� �1=2
¼ BPAGA;B

BPAGA;A
� BPAGB;B

BPAGB;A

� �1=2
:

ð30Þ
As GAMI depends on both cost efficiency and distance

function, we need both conditions to have equality. That
is, it requires that the global and the group-specific tech-
nologies correspond, but also that the global and group-
specific inputs coincide. When those two conditions are
satisfied, the global and group-specific cost efficiency
measurements and distance functions are similar, making
the best practice allocative gaps and the differences in best
practice allocative gaps equal to unity. As such,
GAMI=AMI for those cases.

All in all, GMI and GCMI are equal when GAMI=1. This
happens when there is no inappropriate allocation of inputs
at the global level (with respect to the cost minimization
behavior). This occurs when the input prices are the most
favourable (i.e., the shadow prices). See Section 3.6 for
more discussion on the relationships between indexes and
components.

3.5 Practical implementation

We rely on Data Envelopment Analysis (DEA, after
Charnes et al. (1978)) to compute the distance functions
and the cost efficiency scores. The two main advantages of
using DEA in this context are, one, no functional form
assumption is required about the production process (in
particular for the input requirement sets), and, two, linear
programs can be used to evaluate the indicators. Also, note
that when relying on DEA, interesting results when input
prices are partially or not observed are found (see Section
3.6). At this point, it is worth noting that the proposed
linear programs do not suffer from infeasibility issues. This
is one advantage of the global setting (this is not guaran-
teed for MI and CMI).

Before presenting the linear programs, we first explain
how to practically capture returns-to-scale assumption when
relying on input requirement sets (instead of on production
possibility sets, as in the initial DEA models of Charnes
et al. (1978)). In fact, as shown by Petersen (1990) and
Bogetoft (1996), it suffices to define a factor that scales the
outputs up or down to make two DMUs comparable.
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Extending their initial definition to our group context, we
obtain the following factor for s ϵ {1,…, n}:

αs :¼ αs ytð Þ ¼ inf α 2 Rþ
0 αj ys � yt

� �
: ð31Þ

αs gives the factor by which ys has be scaled to be
comparable with yt (Note that when such factor cannot be
found, it suffices to set αs=+∞). The restricted value for
the factor αs captures the chosen returns-to-scale assump-
tion. As such, Rþ

0 is for constant returns-to-scale. Other
returns-to-scale assumptions are easily implemented by
replacing Rþ

0 by (0,1], [1,∞), {1} for the decreasing,
increasing and variable returns-to-scale, respectively.

Let us start with the linear programs for GCMI. To
evaluate that index, it suffices to compute for every DMU t
operating at (yt, xt) with input prices w

G the following linear
program (LP-1):

GCEt ¼ max
GCt2Rþ

GCt
wG0xt

s:t:GCt � wG0
αsxsð Þfor all s 2 1; ¼ ; nf g : αsysð Þ � yt:

In words, the constraint picks the minimal cost GCt

when comparing the evaluated DMU t to the dominating
DMUs (i.e., DMUs that produce more outputs than yt,
when rescaled by the factor αs). Therefore, if the minimal
cost GCt correspond to the actual cost wG′xt, the program
will give a cost score of 1. Otherwise, the cost score will
be smaller than 1. It could seem counter-intuitive to
maximize a cost function. In fact, the maximization selects
the most favorable minimal cost (this spirit is called the
benefit of the doubt; see, for example, Cherchye et al.
(2007), Cherchye et al. (2013), Cherchye et al. (2016), and
Walheer (2018a, b, d)). In the technical formulation (see
(LP-3) and (LP-4)), the benefit of the doubt spirit is
captured by the multipliers.

For the decomposition of GCMI, four additional cost
efficiency measurements have to be evaluated for every
DMU t in both groups: CEA;A

t , CEA;B
t , CEB;A

t , and CEB;B
t .

For example, CEA;B
t for every DMU t in group B oper-

ating at yBt ; x
B
t

� �
with input prices wB

t is obtained as fol-
lows (LP-2):

CEA;B
t ¼ max

CA;B
t 2Rþ

CA;B
t

wB0
t x

B
t

s:t:CA;B
t � wB0

t αA;Bs xAs
� �

for all s 2 1; ¼ ; nAf g : αA;Bs yAs
� � � yBt ;

where for s ϵ {1,… , nA}, αA;Bs :¼ αA;Bs yBt
� � ¼

inf α 2 Rþ
0 αj yAs � yBt

� �
is the rescale factor when compar-

ing DMU s in group A to DMU t in group B. In (LP-2), the
constraint picks the minimal cost CA;B

t when comparing the
evaluated DMU t in group B to the dominating DMUs in
group A. CEA;A

t , CEB;A
t , and CEB;B

t are easily obtained by
changing A to B and/or B to A in (LP-2).

Next, for GMI, it suffices to compute for every DMU t
operating at (yt, xt) the following linear program (LP-3):

GDtð Þ�1¼ min
θt; λs

θt

P
s
λs αsxsð Þ � θtxt for all s 2 1; ¼ ; nf g : αsysð Þ � yt;

8s : λs � 0:

For the decomposition of GMI, four distance functions
have to be evaluated for each DMU t in both groups: DA;A

t ,
DA;B

t , DB;A
t , and DB;B

t . For example, DA;B
t for every DMU t in

group B operating at ðyBt ; xBt Þ is obtained as follows (LP-4):

ðDA;B
t Þ�1 ¼ min

θBt ;λ
A
s

θBtP
s
λAs αA;Bs xAs
� � � θtxBt for all s 2 1; ¼ ; nAf g : αA;Bs yAs

� � � yBt ;

8s : λAs � 0:

DA;A
t , DB;A

t , and DB;B
t are obtained by changing A to B and/or B

to A in (LP-4). As a final remark, it is possible to define the
program when not assuming that the global and/or the group-
specific input requirements are convex. For the sake of
compactness, we do not explicitly give those programs here.

3.6 Observation of the group-specific and global
input prices

In practice, the group-specific and/or the global inputs could
be difficult to observe or to rely on. For these cases, GMI (and
its decomposition) can be computed as it does not depend on
the input prices, but this is not the case for GCMI and for its
decomposition. In particular, the global input prices are
required to compute GCMI, and both the global and group-
specific input prices are needed for its decomposition. For
these cases, the dependence of GCMI to the input prices
clearly represents an important drawback. In this last part, we
propose a solution to overcome this issue. Therefore, it means
that it is still possible to evaluate GCMI even if no input price
data are available. That is, it is still possible to consider
the cost minimization behavior of the DMUs when defining
the index even if no input price data are available.

Different strategies can be used to overcome the issue of
unknown input prices at both levels. We choose to rely on the
benefit of the doubt approach (see, for example, Cherchye
et al. (2007), Cherchye et al. (2013), Cherchye et al. (2016),
and Walheer (2018a)). The main advantage of this method is
its easy and intuitive use. Moreover, for our context, when
relying on this strategy we end with interesting relationships
between the indexes and their decomposition (Table 1).
Alternative methods include multi-objective programming
(see, for example, Zimmermann (1978), Charnes et al. (1989),
Kao and Chan (2013), Tohidi and Razavyan (2013), Kao et al.
(2014), and Despotis et al. (2016)), the law of one price
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(Kuosmanen et al. (2006), and Fang and Li (2015)), or
industry-based approaches (Li and Ng (1995), Ylvinger
(2000), Färe and Zelenyuk (2003, 2007), Walheer (2016a, b),
Zelenyuk (2006, 2016), and Färe and Karagiannis (2017)).
These approaches make extra assumptions on either the
technologies or the input prices, or are more complex (e.g.
non-linearity), while the benefit of the doubt approach gives
full flexibility and requires solving linear programs.

At this point, we remark that when partial information
on either the global input prices or the group-specific
input prices is available, they can be incorporated in (LP-
5) and (LP-6). For example, bounds for the prices could
be observed, or the relationship between the group-
specific and the global inputs prices could be known.
Incorporating these types of additional information gives
the advantage of increasing the realism of the computed
input prices. See our application in Section 4 for an
example.

Let us start with the case when the group-specific prices,
i.e., wB

t for t ϵ {1,…, nB} and/or wA
t t ϵ {1,…, nA}, are not

observed. In that case, we suggest choosing the prices that
maximize the minimal costs. Or, in other words, we eval-
uate the DMUs in the best possible way, which gives the
benefit of the doubt in the absence of true price information.
For example when the input prices are not observed for
group B, CEA;B

t can be evaluated for every DMU t operating
at yBt ; x

B
t

� �
by the following program (NLP-1):

CEA;B
t ¼ max

CA;B
t 2Rþ
wB

t 2RP
þ

CA;B
t

wB 0
t xBt

s:t:CA;B
t � wB0

t αA;Bs xAs
� �

for all s 2 1; ¼ ; nAf g :

αA;Bs yAs
� � � yBt :

(NLP-1) looks very similar to (LP-2). The only difference is
that in (NLP-1), the input prices are variables, while in (LP-2),
they are observed. As such, variables appear at both the

numerator and denominator of the objective function in
(NLP-1). As a result, (NLP-1) is a non-linear program. We can
make (NLP-1) linear by setting the denominator (wB0

t x
B
t )

equals 1. This transformation, introduced by Charnes and
Cooper (1962), has been made popular by Charnes et al.
(1978) for nonparametric efficiency methods. The equivalent
linear program is thus given by (LP-5):

CEA;B
t ¼ max

CA;B
t 2Rþ
wB

t 2Rþ

CA;B
t

s:t:CA;B
t � wB0

t αA;Bs xAs
� �

for all s 2 1; ¼ ; nBf g : αA;Bs yAs
� � � yBt ;

wB0
t x

B
t ¼ 1:

Besides the group-specific input prices, the global input
prices wG might also be unobserved. As done previously for
the group-specific input prices, we choose the group-specific
input prices that maximize the minimal costs. The program to
evaluate GCEt for every DMU t operating at (yt,xt) is given
as follows (NLP-2):

GCEt ¼ max
GCt2Rþ
wG2RP

þ

GCt

wG0xt

s:t:GCt � wG0
αsxsð Þ for all s 2 1; ¼ ; nf g : αsysð Þ � yt:

We can make (NLP-2) linear by using the same strategy as
for (NLP-1). That is, we set wG′xt=1. In other words, we
make use of Charnes and Cooper’s transformation tailored to
the global context. The equivalent linear program is thus
given by (LP-6):

GCEt ¼ max
GCt2Rþ
wG2RP

þ

GCt

s:t:GCt � wG0
αsxsð Þ for all s 2 1; ¼ ; nf g : αsysð Þ � yt;

w
G0xt ¼ 1:

We propose a summary in Table 1 presenting which
programs use to evaluate GCMI depending whether the
group-specific and/or the global input prices are
observed or not. In this table, we also present the rela-
tionships between the indexes and their components for
the different cases.

As discussed previously, allocative efficiency mea-
sures inefficiency due to non-optimal allocation of inputs
(with respect to the cost optimization behavior). When
relying on the most favorable group-specific input prices,
no non-optimal allocation of inputs occurs at that level.
As a result, we have that there is no allocative ineffi-
ciency at the group level. In other words, the allocative
efficiency spreads in group B coincide with the spread in
group A, making AED= 1. It follows that efficiency
change based on technical and cost efficiency coincides,
i.e., TED= CED. Also, when AED= 1, we have by
construction that GAMI corresponds to BPAD.

Table 1 Linear programs and relationships: a summary

Global input prices

Group-specific Observed Not observed

input prices LPs Relationships LPs Relationships

Observed (LP-1) – (LP-6) AED=1/BPAD,
GAMI=1,

(LP-2) (LP-2) GCMI=GMI

Not observed (LP-1) AED=1, (LP-6) AED=1,
TED=CED,

(LP-5) TED=CED, (LP-5) BPAD=1,
BPD=BPCD,

GAMI=BPAD GAMI=1,
GCMI=GMI
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Next, when relying on the most favorable global input
prices, using a similar reasoning to the one done previously
for the group-specific input prices, it implies that no allo-
cative inefficient behavior is present at that level. As a
result, we have that GAMI= 1, making GCMI=GMI and
AED= 1/BPAD. That is, both definitions of the global
indexes coincide. It gives an interpretation of GMI as a
shadow GCMI, as it is defined with the most favorable (or
shadow) global input prices. Also, it is intuitive that the
equality between GMI and GCMI only depends on the
global input prices (and thus not on the group-specific input
prices) as GCMI is defined on the basis of the global setting
and not on the group-specific setting.

Finally, when we rely on both most favourable global
and group-specific input prices, we combine all the previous
results: AED= 1, TED= CED, GAMI= 1, GMI=GCMI
and AED= 1/BPAD. Therefore, we additionally have that
BPAD= 1 and BPD= BPCD.

4 Application

We apply our technique to the case of the energy sector in
China. Rapid industrialization and urbanization in China
have been accompanied by significant energy consump-
tion. As such, measuring the performances of this sector
is of crucial importance for managers, policy makers, and
regulators. Malmquist and related indexes have been
widely used for this task. See for example, for recent
works, Zhang et al. (2011), Zhang and Choi (2013), Fang
et al. (2015), Zhang et al. (2015), Emrouznejad and Yang
(2016a, 2016b), and therein references.

A particularity of our analysis is that we rely on firm-level
data. Indeed, we make use of the Chinese Annual Survey of
Industrial Firms Database of the National Bureau of Statistics
in China. Therefore, this represents a unique opportunity to
study the energy sector in China. Data are available annually
between 1998 and 2007. We choose to concentrate our
investigation on 2007 since it is the most recent time period.

We consider a very general production process: firms use
labor (measured by the annual average employed persons) and

capital (measured by the annual average balance of current
assets, in 1000 RMB) to produce output (measured in 1000
RMB).10 We choose to measure output in currency term to
make the comparison between different types of energy pos-
sible, as they are measured in different units. This is also the
choice made by the National Bureau of Statistics in China.
Also, we assume that the firms are cost minimizers. We believe
that choosing a cost minimizing behavior is more reasonable
than, for example, a profit maximizing behavior, as the output
side of the production process is rather exogenous to the plant
(in the short run at least). Therefore, given a certain output
production, firms can try to set the costs at their minimal level.

To present our empirical application, we first define the
groups. Next, we present the results of the global indexes.
Finally, we compare and decompose our global indexes.

4.1 Group selection

We naturally split firms with regard to their energy type: gas,
heat, nuclear, hydro, thermal (steam), and other (e.g., wind,
solar). The number of firms per group and the total energy
production is given in Table 2. There we also make a dis-
tinction regarding the ownership. Note that collective firms are
included in the private firms, and the Foreign category
includes both foreign partnerships and foreign-owned firms.

The largest group, in terms of number of firms and total
output production is Thermal. More than half of the firms in
that group are private, while more than one fourth are foreign.
Next, the Gas and Hydro groups have similar total output
production, but there are three times as many firms in the
Hydro group. The distribution of firms between the three
categories is more or less uniform for the Gas group, while
there are around 700 private and public firms for the Hydro
group. The Heat group has a total production equal to less than
half of the Gas group production, but contains more firms.
There are only six nuclear firms, meaning that those firms have
the largest average production (see Table 10 in Appendix A).
The smallest total production is for the Other groups, but this
group is not negligible. This also reveals the lesser importance
of alternative energy production; as for example, less polluting
production processes.

In Table 10, given in Appendix A, we present the
descriptive statistics of the two inputs and the output per
group. These descriptive statistics reveal that the size of the
firms vary (sometimes importantly) within groups. In other
words, they indicate the potential presence of outliers in our
sample. The impacts on the index results could be huge
since outliers may disproportionately and misleadingly
influence the evaluation of the firms’ performance. To
overcome this potential problem, we make our results

Table 2 Group specification

Group Number Total

Total Public Private Foreign output

Gas 559 200 178 141 95,914,589

Heat 683 299 307 36 42,501,312

Other 127 41 39 31 12,097,320

Nuclear 6 5 0 1 23,624,421

Hydro 1642 716 711 56 103,307,173

Thermal 11,716 783 6919 3751 1,529,870,706

10 See, for example, Walheer (2018c) for more discussion on how to
model energy firms.
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robust to the presence of outliers by using the order−m
(where m can be viewed as a trimming parameter) and the
order−α (analogous to traditional quantile functions) pro-
cedures (see, for example, Daraio and Simar (2007) for
discussion). Also, using these procedures ensures that our
results are not sensitive to potential data measurement
issues (see, for example, Brandt et al. (2012, 2014) for more
discussion about the challenges of using the Chinese
Annual Survey of Industrial Firms Database).

4.2 Results

Unfortunately, no data are provided for the input prices in the
Chinese Annual Survey of Industrial Firms Database. As such,
we make use of (LP-5) to compute the group-level cost effi-
ciency measurements. Nevertheless, the total wage payable is
provided. As such, we use these data to construct bounds for
the labor prices. In particular, we divide the wage payable by
the number of employees, and take a 50% centered interval to
obtain lower and upper bounds (we choose 50% to give
enough flexibility to the linear programs).11 For the global
input prices, we prefer not to specify any relationship; as such,
we make use of (LP-6) to compute the global cost efficiency
measurements. For the distance functions, we use (LP-3) and
(LP-4). At this point, we remark that no infeasibility issues
have been detected in the computation process. This is one the
advantages of our global indexes. The results for GCMI, GMI,
and GAMI are shown in Table 3.

The results have to be interpreted as follows: for exam-
ple, GCMI= 1.07 captures the (average) cost performance
between the firms in Gas and Heat; that is, it means that the
firms in the Gas group present, on average, greater cost-
performance than those in the Heat group. Also, it is worth
noting that we obtain GCMI between Heat and Gas as the
reverse of GCMI between Gas and Heat: 1

1:07 ¼ 0:93 (see
(14)), and it indicates that Heat has a worse cost-
performance than Gas.

Thermal is the best performing group for both the cost
and technical perspectives (for the allocative perspective,
improvements could be done). This group contains the
largest number of firms, and produces the highest share of
energy in China. Next, Gas performs better than all the
other groups, but it is not the case for Hydro, which presents
the worst performance. These two groups share the second
place in terms of energy production. Finally, Nuclear pre-
sents rather bad performances in terms of cost and technical
indexes, but is better in terms of allocative index.

An attractive feature of Malmquist indexes is that they can
be decomposed into different components giving the option to
better understand the performance differences observed. As
shown in Section 3.4, this is also the case for our global
indexes. GCMI can be decomposed into two parts: CED,
capturing difference in within-group cost efficiency spreads,
and BPCD, capturing difference in best practice cost gaps. In a
similar vein, GMI can be decomposed into two parts: TED,
capturing difference in within-group technical efficiency
spreads, and BPD, capturing difference in best practice tech-
nical gaps; and GAMI can be decomposed into two parts: AED,
capturing difference in within-group allocative efficiency
spreads, and BPAD, capturing best practice allocative gaps. The
decompositions are given in Tables 4, 5, and 6, respectively.

The decompositions reveal that the best performances of
Thermal are mainly due to a smaller efficiency spread in that
group with respect to the other groups. For Gas, the better
performances are mainly explained by better best practice. The
worst performances of Hydro are due to either greater spread
or worse best practice depending on which group is the
comparison partner. The relatively bad performances of
Nuclear are explained by very large spreads, but the best
practice indicators reveal good performances for this group.

4.3 Circularity

One of the advantages of our indexes is their circularity. In
other words, they provide a stable ranking of the groups. For
example, GCMI between Gas and Heat can be obtained as
multiplying GCMI between Gas and Hydro and GCMI
between Hydro and Heat: 1:13� 1

1:05 ¼ 1:07 (Table 3).
Transitivity is also confirmed. For example, GCMI= 1.07
between Gas and Heat and GCMI=1.05 between Heat and
Hydro, implies that the index should indicate that Gas pre-
sents better cost-performance than Hydro. This is the case as
GCMI between Gas and Hydro is 1.13 (Table 3).

Let us compare our results based on GCMI with those
obtained using CMI of Thanassoulis et al. (2015). Clearly,
similar comparisons could be conducted between GMI and
MI of Camanho and Dyson (2006), and between GAMI and
AMI defined in Section 3.1. The results for CMI are displayed
in Table 7.

Before interpreting the results, we point out that several
cases of infeasibility occur when computing CMI. Indeed,
contrary to our global indexes, CMI is sensitive to infeasi-
bility issues. For these cases, we set the cost efficiency
scores and the distance functions to 1. An initial observation
is that the results for CMI are rather different from those
obtained with GCMI. Next, CMI is not circular. For
example, CMI= 0.65 between Gas and Heat and CMI=
1.26 between Heat and Hydro, but CMI between Gas and
Hydro is 0.89, which is different to 0.65 × 1.26= 0.82. Note
that, for our application, transitivity is fulfilled for CMI.

11 Note that if we do not use any bounds for the prices, we obtain the
same results for GCMI and GMI. That is, in this case, GMI is inter-
preted as a shadow GCMI. It implies also that GAMI= 1 for all groups
when relying on the best input prices (see Section 3.6 for more details).
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Finally, the last issue when relying on CMI is that
it could average two disparate measurements of performance
differences. In Table 8, we present the two components: CMIA

and CMIB (see Section 3.1, and in particular (8)).
CMIA and CMIB are interpreted in a similar manner;

the only difference between these two indexes is the
referent group for the technology: group A for CMIA and
group B for CMIB. As such, the referent group has an
impact when both indexes give opposite rankings. This
occurs, for example, when comparing Heat and Thermal.
In that particular case, CMIA = 0.91 implying that
Thermal performs better than Heat, while CMIB=1.08
implying the opposite. Note that the problem of choosing
a referent group is dropped when relying on the global
indexes.

We end this part by relating GCMI and CMI. One way is
to make use, as explained in Section 3.3, of the ratio GCMI

CMI .
These ratios are given in Table 9. When these ratios are equal
(or at least close enough) to 1, we conclude that the chosen
referent group has no impact on the ranking. Clearly, for our
application, the difference between the two approaches is
quite important.

5 Conclusion

Since its initial definition, the Malmquist index (MI) has
demonstrated its usefulness as a practical decision support
tool. Initially, the MI was used for contexts of several
Decision Making Units (DMUs) observed for more than

Table 3 GCMI, GMI, and
GAMI results

GCMI Gas Heat Other Nuclear Hydro Thermal

Gas 1 1.07 1.05 1.13 1.13 0.51

Heat 1 0.98 1.05 1.05 0.91

Other 1 1.08 1.08 0.93

Nuclear 1 1.00 0.45

Hydro 1 0.45

Thermal 1

GMI Gas Heat Other Nuclear Hydro Thermal

Gas 1 1.03 1.03 1.32 1.10 0.58

Heat 1 1.00 1.27 1.07 0.98

Other 1 1.28 1.07 0.98

Nuclear 1 0.84 0.44

Hydro 1 0.52

Thermal 1

GAMI Gas Heat Other Nuclear Hydro Thermal

Gas 1 1.04 1.02 0.86 1.02 0.89

Heat 1 0.98 0.83 0.99 0.93

Other 1 0.84 1.01 0.95

Nuclear 1 1.19 1.03

Hydro 1 0.86

Thermal 1

Table 4 Decomposition
of GCMI

CED Gas Heat Other Nuclear Hydro Thermal

Gas 1 0.45 0.86 0.31 0.58 0.43

Heat 1 1.89 0.68 1.27 0.95

Other 1 0.36 0.67 0.50

Nuclear 1 1.87 1.39

Hydro 1 0.74

Thermal 1

BPCD Gas Heat Other Nuclear Hydro Thermal

Gas 1 2.37 1.22 3.65 1.96 1.19

Heat 1 0.52 1.54 0.83 0.96

Other 1 2.99 1.60 1.86

Nuclear 1 0.54 0.32

Hydro 1 0.61

Thermal 1
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two periods. Recently, it has been shown that the MI can
also be used in contexts of comparing groups of DMUs for
one period of time. In these contexts, the MI, therefore, is
used to compare group performances, instead of comparing
DMU performances.

The popularity of the MI is explained by two main
reasons: only the input and output data are required, and
the MI can be decomposed into several components; but it
also presents important drawbacks: it is based on a tech-
nical formation of efficiency; it is not circular; it averages

two possibly disparate measurements of performance
change; and infeasibility may occur in the computation
process. Recently, attention has been given to propose
solutions to overcome these drawbacks in the contexts of
DMUs. In particular, the concept of Global MI (GMI) has
been introduced. The GMI keeps the same advantages as
those of the MI, without present these drawbacks. Never-
theless, there is also a price to pay: rely on a fixed reference
technology and use a common price

In this paper, we extend the concept of GMI to the case of
groups of DMUs. That is, the new proposed index is circular,
gives only one measure of performance difference, is immune
to infeasibility issues, requires only the observation of the
inputs and outputs, and can be decomposed in different
components. We also consider the case when DMUs have an
economic optimization behavior by proposing the concept of
Global cost Malmquist index (GCMI) for the group contexts.
Contrary to the GMI, the GCMI requires the observation of the
input prices. As it may represent a strong assumption for some
settings/applications, we propose solutions when the input
prices are partially or not observed.

Table 5 Decomposition of GMI TED Gas Heat Other Nuclear Hydro Thermal

Gas 1 0.51 0.89 0.37 0.62 0.50

Heat 1 1.75 0.74 1.22 0.99

Other 1 0.42 0.70 0.57

Nuclear 1 1.65 1.35

Hydro 1 0.81

Thermal 1

BPD Gas Heat Other Nuclear Hydro Thermal

Gas 1 2.04 1.16 3.53 1.79 1.15

Heat 1 0.57 1.73 0.88 0.99

Other 1 3.03 1.54 1.73

Nuclear 1 0.51 0.32

Hydro 1 0.64

Thermal 1

Table 6 Decomposition
of GAMI

AED Gas Heat Other Nuclear Hydro Thermal

Gas 1 0.89 0.97 0.83 0.94 0.86

Heat 1 1.08 0.93 1.05 0.96

Other 1 0.86 0.97 0.88

Nuclear 1 1.13 1.03

Hydro 1 0.91

Thermal 1

BPAD Gas Heat Other Nuclear Hydro Thermal

Gas 1 1.16 1.05 1.03 1.09 1.03

Heat 1 0.91 0.89 0.94 0.97

Other 1 0.98 1.04 1.07

Nuclear 1 1.06 1.00

Hydro 1 0.95

Thermal 1

Table 7 CMI results

CMI Gas Heat Other Nuclear Hydro Thermal

Gas 1 0.65 1.56 0.34 0.89 0.71

Heat 1 2.13 0.83 1.26 0.99

Other 1 0.53 0.63 0.50

Nuclear 1 1.60 1.35

Hydro 1 0.85

Thermal 1
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We illustrate our new indexes with the case of the energy
sector in China. MI, and related indexes, have been widely
used to evaluate the performances of this sector, as rapid
industrialization and urbanization in China have made this
sector of crucial importance for managers, policy makers
and regulators. A particularity of our analysis is that we rely
on firm-level data using the Chinese Annual Survey of
Industrial Firms Database of the National Bureau of Sta-
tistics in China. We found that cost reductions are possible,
but that the reasons are different for each type of energy.
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6 Appendix A

Table 10

Table 8 CMIA and CMIB results
CMIA Gas Heat Other Nuclear Hydro Thermal

Gas 1 0.57 1.49 0.38 0.81 0.70

Heat 1 1.96 0.68 1.24 0.91

Other 1 0.36 0.62 0.41

Nuclear 1 1.35 1.30

Hydro 1 0.75

Thermal 1

CMIB Gas Heat Other Nuclear Hydro Thermal

Gas 1 0.75 1.63 0.31 0.98 0.72

Heat 1 2.32 1.01 1.27 1.08

Other 1 0.78 0.64 0.60

Nuclear 1 1.88 1.40

Hydro 1 0.97

Thermal 1

Table 9 Comparison

GCMI
CMI Gas Heat Other Nuclear Hydro Thermal

Gas 1 0.61 1.48 0.30 0.79 1.39

Heat 1 2.18 0.79 1.19 1.09

Other 1 0.49 0.58 0.53

Nuclear 1 1.60 3.00

Hydro 1 1.89

Thermal 1

Table 10 Output and inputs: descriptive statistics

Group Statistics Output Labour Capital

Gas min 1638 7 90

mean 171,582 267 87,712

median 40,802 90 20,511

max 5,873,353 4775 2,187,281

std 455,418 532 209,668

Heat min 727 3 −11,706

mean 62,227 199 58,211

median 26,650 108 16,893

max 1,287,954 4320 2,579,683

std 110,689 362 156,537

Other min 1500 4 15

mean 95,254 67 56,071

median 33,854 39 19,571

max 3,979,634 452 1,712,800

std 360,333 73 166,193

Nuclear min 740,492 10 1,145,279

mean 3,937,404 954 3,444,331

median 4,091,597 1143 2,109,562

max 6,727,616 1726 7,327,116

std 2,046,670 770 2,669,585

Hydro min 40 1 0

mean 62,915 164 47,261

median 15,646 75 10,970

max 16,153,496 10,634 10,848,232

std 433,225 381 300,018

Thermal min 10 1 0

mean 130,580 260 50,981

median 23,756 110 8494

max 18,825,752 62,378 13,561,304

std 518,861 778 235,969

Journal of Productivity Analysis



7 Appendix B

Proof of Eq. (19):
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Proof of Eq. (22):
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Proof of Eq. (24):
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Proof of Eq. (29):
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Proof of Eq. (30):
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t �DA;A
t½ �1=nA
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t¼1
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t¼1
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t �DB;A
t½ �1=nA

2
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3
7775
1=2

;

¼

QnB

t¼1
GCEt�GDt½ �1=nBQnB

t¼1
CEA;B

t �DA;B
t½ �1=nBQnA

t¼1
GCEt�GDt½ �1=nAQnA

t¼1
CEA;A

t �DA;A
t½ �1=nA

QnB

t¼1
GCEt�GDt½ �1=nBQnB

t¼1
CEB;B

t �DB;B
t½ �1=nBQnA

t¼1
GCEt�GDt½ �1=nAQnA

t¼1
CEB;A

t �DB;A
t½ �1=nA

2
6664

3
7775
1=2

;
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BPAGA;A
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