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Abstract 

Here we describe the results of a genome-wide study conducted in 11,939 COVID-19 positive 

cases with an extensive clinical information that were recruited from 34 hospitals across Spain 

(SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 

hospitalization, genome-wide significance (p<5x10
-8

) was crossed for variants in 3p21.31 and 

21q22.11 loci only among males (p=1.3x10
-22

 and p=8.1x10
-12

, respectively), and for variants 

in 9q21.32 near TLE1 only among females (p=4.4x10
-8

). In a second phase, results were 

combined with an independent Spanish cohort (1,598 COVID-19 cases and 1,068 population 

controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with 

fine-mapping prioritized variants functionally associated with AQP3 (p=2.7x10
-8

) and 

ARHGAP33 (p=1.3x10
-8

), respectively. The meta-analysis of both phases with four European 

studies stratified by sex from the Host Genetics Initiative confirmed the association of the 

3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 

11p13 (ELF5, p=4.1x10
-8

). Six of the COVID-19 HGI discovered loci were replicated and an 

HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more 
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SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than 

among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also 

showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect 

was stronger among older males. In summary, new candidate genes for COVID-19 severity and 

evidence supporting genetic disparities among sexes are provided. 

 

 

 

 

 

 

 

Introduction 

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), develops with wide clinical variability, ranging from 

asymptomatic infection to a life-threatening condition [1]. Advanced age and the presence of 

comorbidities are well-known major risk factors of COVID-19 severity [2,3]. In addition, male 

sex is another risk factor associated with COVID-19 severity, regardless of comorbidities [4].  

International genetic studies based on genome-wide association studies (GWAS) and/or 

comparative genome sequencing analyses have been conducted to identify genetic variants 

associated with COVID-19 severity [5,6]. These studies have revealed the role of genes of the 

type-I interferon (IFN) signalling pathway as key players underlying disease severity [7-9]. 

Besides, they have also identified other potential loci previously linked to lung function and 

diseases and autoimmunity [9]. Regarding COVID-19 severity in males, sex-disaggregated 

genetic analyses have received limited attention despite the importance of sex disparities in 
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clinical severity [10]. Early studies suggested immune deficits presumably due to pre-existing 

neutralizing autoantibodies against type-I IFN in older male patients [11]. 

The effects of autozygosity, measured as the change of the mean value of a complex trait due to 

inbreeding, have been useful to identify alternative genetic risk explanations and effects that 

traditionally are not captured by GWAS [12]. By analysing the contribution of the inbreeding 

depression (ID) through the lens of the runs of homozygosity (ROH: genomic tracts where 

homozygous markers occur in an uninterrupted sequence), it is possible to assess the 

importance of directional dominance or overdominance in the genetic architecture of complex 

traits [13]. Even though this is a relatively modern approach, different studies have shown the 

importance of homozygosity in a large range of complex phenotypes, including anthropometric, 

cardiometabolic, and mental traits [14-16].  

Through diverse nested sub-studies, the Spanish Coalition to Unlock Research on Host 

Genetics on COVID-19 (SCOURGE) consortium was launched in May 2020 aiming to find 

biomarkers of evolution and prognosis that can have an immediate impact on clinical 

management and therapeutic decisions in SARS-CoV-2 infections. This consortium has 

recruited patients from hospitals across Spain and Latin America in close collaboration with the 

STOP-Coronavirus initiative (https://www.scourge-covid.org). Here we describe the results of 

the first SCOURGE genome-wide studies of COVID-19 conducted in patients recruited in 

Spain. This dataset has not been used in any previous GWAS of COVID-19 that has been 

published to date. To the best of our knowledge, this is the first time that the impact of 

homozygosity is considered in COVID-19 studies, serving as a complement to the traditional 

GWAS to assess both the additive and dominant components of the genetic architecture of 

COVID-19 severity. Likewise, the ID analysis could also help to explain the strong effect of 

age in COVID-19 severity.  
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Results 

Discovery phase 

In the SCOURGE study, 11,939 COVID-19 positive cases were recruited from 34 centres 

(Supplementary Material, Table S1) between March and December 2020. All diagnosed 

cases were classified in a five-level severity scale (Table 1). Two untested Spanish sample 

collections were used as general population controls in some analyses: 3,437 samples from the 

Spanish DNA biobank (https://www.bancoadn.org) and 2,506 samples from the GR@CE 

consortium [17]. The discovery phase samples were genotyped with the Axiom Spain Biobank 

Array (Thermo Fisher Scientific). Details of quality control, ancestry inference and imputation 

are shown in the Material and Methods section. Individuals with inferred European ancestry 

were used for association testing. After post-imputation filtering, 15,045 individuals (9,371 

COVID-19 positive cases and 5,674 population controls) and 8,933,154 genetic markers 

remained in the SCOURGE European study (discovery). Clinical and demographic 

characteristics of European patients from SCOURGE included in the analysis are shown in 

Table 2. Population controls were 46.3% females with a mean age of 55.5 years (SD=16.2) and 

53.7% males, with a mean age of 51 years (SD=13.04). 

The discovery phase of the GWAS was carried out with infection susceptibility and three 

severity outcomes (hospitalization, severe illness, and critical illness) which were tested using 

three different control definitions (see Table S2).  

- A1 analysis: COVID-19 positive not satisfying the case condition and control samples 

from the general population (COVID-19 untested). 

- A2 analysis: control samples from the general population.  

- C analysis: COVID-19 positive not satisfying the case condition. 
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The GWAS was carried on by fitting logistic mixed regression models adjusting for age, sex, 

and the first 10 Principal Components (PCs) (Material and Methods). Summary statistics can 

be accessed from https://github.com/CIBERER/Scourge-COVID19. The SCOURGE Board of 

Directors has agreed to aggregate the GWAS summaries with those from the COVID-19 Host 

Genetics Initiative (HGI) in the data freeze 7 that has not been used for any published article to 

date. Table S3 (Supplementary Material) shows the independent significant associated loci 

for hospitalization, severity, critical illness, and infection susceptibility risk, for global and sex-

stratified analysis in the SCOURGE dataset. However, considering the overlap between the 

findings for these analyses, only the main results for the A1 analysis are presented.  

All analyses support the association of two known loci, i.e. 3p21.31 and 21q22.11. However, 

other suggestive associations were also found (Fig. 1 and Supplementary Material, Fig. S1). 

Strikingly, the leading signals found in the global (sex-aggregated) analysis were genome-wide 

significant in the analyses among males but not among females. Association in 3p21.31 was 

also found in the C analyses (rs10490770, p=3.8x10
-12

) and once again, association was 

genome-wide significant only among males (males: p=3.9x10
-9

, females: p=4.6x10
-5

). 

However, the leading variant of 9q21.32 (near TLE1 gene) reached genome-wide significance 

among females only (similarly, in the C analysis for females, rs140152223, p=2.11x10
-6

). 

Several variants (rs17763742 near LZTFL1, rs2834164 in IFNAR2, and rs1826292621 near 

TLE1) showed a significant difference in effect sizes (SNP*sex interaction p<0.0031, adjusted 

probability for 16 comparisons) linked not only to hospitalization, but also to critical illness and 

infection risk. The A2 and C analyses did not reveal any additional significant loci 

(Supplementary Material, Fig. S2). While fine-mapping studies in 3p21.31 and 21q22.11 

have led to gene and variant prioritization within these loci (Supplementary Material, Fig. 

S3), a Bayesian fine-mapping on the 9q21.32 did not allow to prioritize variants by their role as 

expression quantitative trait loci (eQTLs) or anticipate the function (Fig. 2). To assess if a 
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higher prevalence of comorbidities in males may underlie these differential findings, we 

performed an additional C analysis in which the presence of comorbidities was tested for 

association within hospitalized patients. No significant association was found in either males or 

females (Supplementary Material, Fig. S4). Further explorations of the genetic associations 

with comorbidities are presented in the Supplementary Note. 

This GWAS phase was also performed disaggregated by age (<60/≥60 years old), and by age 

and sex simultaneously. Differences in effect sizes between both age groups were tested for the 

SNPs shown in the Supplementary Material, Table S3, in global and sex-specific analysis 

(Supplementary Material, Table S4). Significant findings were only found in the subgroup of 

males with <60 years old. This was also found in the C analysis for hospitalization where 

association in 3p21.31 was significant only in males <60 years old (p=3.32x10
-9

). Differences 

in effect size (significant age-interaction) were significant at 3p21.31 for severity and critical 

illness, and suggestive in hospitalization. 

Lookup of previously found COVID-19 host risk factors in the SCOURGE study 

Known significant loci for COVID-19 severity in 3p21.31 (near SLC6A20 and LZTFL1) and 

21q22.11 (in IFNAR2) were clearly replicated at genome-wide significance in this study, 

specifically for risk of infection, hospitalization, and severity. Three other loci, in 9q34.2 (in 

ABO), 12q24.13 (in OAS1), and 19p13.2 (near RAVER1 and TYK2), did not reach the genome-

wide significance threshold but they were significant after correcting for the 390 tests 

performed in a lookup (13 SNPs and 30 analyses, significance threshold p<1.3x10
-4

). In 

agreement with previous results, ABO was mainly associated with the risk of infection. 

However, other loci as those in 3q12.3 (near RPL24) and 19p13.3 (near DPP9), previously 

found associated with COVID-19 severity, were not replicated in the SCOURGE Europeans. 

The complete list of results for the list of COVID-19 HGI significant loci [9] is shown in Fig. 3 
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and in the Supplementary Material, Table S5. Fig. 3 also reinforces the clear sex differences 

found in this study. 

Genetic risk score and the COVID-19 severity scale  

We developed a GRS combining the 13 leading variants associated with infection risk, 

hospitalization, or severity in the meta-analysis performed by the COVID-19 HGI [9]. This 

GRS predicted the severity scale in SCOURGE but supporting the differentiation in three 

classes: 1) controls/asymptomatic/mild cases; 2) moderate and severe cases; and 3) critical 

cases. (Supplementary Material, Fig. S5). Simultaneously disaggregating by age (<60/≥60 

years old) and sex, we identify the three severity classes in the subgroup of males with <60 

years old, supporting the importance of this group in the overall findings (Supplementary 

Material, Fig. S5). Details of this analysis can be found in Supplementary Note.  

Second study phase and meta-analysis with the discovery 

Results for hospitalization risk were meta-analysed with a second Spanish cohort, the CNIO 

study (Materials and Methods). This study was filtered following the same quality control and 

imputation procedures. The final dataset of the CNIO study included 2,446 European 

individuals (1,378 COVID-19 positive cases and 1,068 population controls) and 8,895,721 

markers. 

Table 3 shows the results that were genome-wide significant either in global or sex-stratified 

meta-analysis with SCOURGE. Besides the widely replicated loci at 3p21.31 and 21q22.11, 

three additional signals were found: chr9:33426577:A:G (intergenic to AQP7 and AQP3), 

chr17:45422978:G:C (intronic to ARHGAP27), and chr19:35687796:G:A (intergenic to UPK1A 

and ZBTB32). Bayesian fine-mapping around chr17:45422978:G:C failed to prioritize a 

credible set of variants, hindering functional links of the locus. Functional assessments of the 

prioritized variants by the Bayesian fine-mapping analysis in the other two regions supported 
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that they were eQTLs of the AQP3 and ARGAP33 genes, including whole blood and lung 

tissues (Fig. 4). 

These variants were also associated with the three severity groups previously outlined in 

SCOURGE by the GRS under a multinomial model (Supplementary Material, Table S6).  

Meta-analysis in independent European studies 

Hospitalization risk was meta-analysed with other European studies combining both Spanish 

cohorts (SCOURGE and CNIO) with other four sex-disaggregated studies from the COVID-19 

HGI consortium, namely: BelCOVID, GenCOVID, Hostage-Spain, and Hostage-Italy (Table 

4). Once again, the most outstanding significant loci were found at 3p21.31 and 21q22.11 (in 

global and male-specific analyses), and three additional loci reached genome-wide significance 

in the meta-analysis of males: chr12:11292383:A:G (in OAS1), chr19:35687796:G:A 

(intergenic to UPK1A and ZBTB32), and chr11:34482745:G:A (in ELF5). The 3p21.31 variants 

reached genome-wide significance in females, although at significantly lower level than in 

males despite the similar sample sizes (Z=3.33, p=5x10
-4

).  

Significance of two interesting loci revealed in the Spanish studies was reduced in the meta-

analysis with other European studies, although still showed suggestive associations: that of 

9q21.32 near TLE1 previously found only in females (female meta-analysis p=5.4x10
-7

), and 

that of 9p13.3 near AQP3 (global meta-analysis, p=1.23x10
-7

). 

Heritability of COVID-19 hospitalization 

In the hospitalization risk analysis, we found that common variants (MAF >1%) explain 27.1% 

(95%CI: 19.0-35.3%) of heritability on the observed scale (corresponding to 13.1% [95%CI: 

9.2-17.0%] on the liability scale, assuming a prevalence of 0.5%) (Fig. 5). We observed less 

heritability among females than males (2.9% [95%CI: 0.00-10.6%] in females and 17.0% 

[95%CI: 9.2-24.9%] in males on the liability scale). In agreement with observations suggesting 
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an accumulation of non-genetic risk factors with age, especially among males [11, 18], we 

observed larger heritability differences by age groups among males (40.2% [95%CI: 22.8-

57.5%] in <60 years vs. 17.6% [95%CI: 0.00-38.0%] in ≥60 years on the liability scale) than 

among females (9.1% [0.00-31.3%] in <60 years vs. 13.7% [0.00-29.6%] in ≥60 years on the 

liability scale). 

Inbreeding depression and COVID-19 outcomes 

ROH calling was performed in the European QC-ed genotyped dataset. Inbreeding depression 

(ID) analyses are described in Material and Methods section and Supplemental Note. 

The median genomic inbreeding coefficient, FROH, for the entire SCOURGE study was 0.0048 

(IQR = 0.004). No differences were detected between males (FROH = 0.004, IQR = 0.0035) and 

females (FROH = 0.0056, IQR = 0.0038), or between younger and older individuals (FROH 

individuals < 60 years old = 0.004, IQR = 0.0035; FROH individuals ≥ 60 years old = 0.0052, IQR = 0.0047, 

respectively) (Supplementary Material, Fig. S6). Regarding the ID in COVID-19 outcomes, 

we detected a positive association of the FROH in COVID-19 hospitalization risk (Fig. 6), 

severity risk, and risk for critical illness (Supplementary Material, Table S7). Our results 

showed that the hospitalization odds for COVID-19 patients with an FROH = 0.0039 were 380% 

higher than individuals with FROH = 0. No effect of the genomic relationship matrix (FGRM) was 

found. 

To assess whether ID in COVID-19 hospitalization in SCOURGE was different between sexes, 

we first tested the interaction between FROH and biological sex. FROH, sex and the interaction of 

both (FROH:Sex) were significant (FROH = 4.7x10
-3

, Sex = 1.0x10
-112

, FROH:Sex = 1.2x10
-3

). This 

interaction was significant when comparing the hospitalized COVID-19 patients with different 

controls (A2 and C analyses, see Supplementary Material, Table S8). This interaction was 

also found significant with severity, but not with critical illness (Supplementary Material, 
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Table S8). In sex-disaggregated analyses, we observed a sex-specific effect of inbreeding. FROH 

was significant in hospitalized males but not in females (Fig. 6 and Supplementary Material, 

Table S8). This sex-specific effect was also observed with severity and for critical illness 

(Supplementary Material, Table S8). We then assessed whether ID in COVID-19 

hospitalization was different by age. We detected a significant interaction between age and 

FROH for the three outcomes considered (hospitalization, severity, and critical illness) 

(Supplementary Material, Table S9). After disaggregating SCOURGE by sex and age (<60, 

≥60), we found that the ID for hospitalization and severity were significant mainly in older 

males (Fig. 6 and Supplementary Material, Table S9). We detected significant ID for 

hospitalization and severity in males ≥ 60 years old, but it was marginally significant in females 

(Fig. 6 and Supplementary Material, Table S9). Age and sex-specific effects in 

hospitalization and severity were robust across different experimental designs using different 

control groups (Supplementary Material, Fig. S7).  

Finally, we then aimed to replicate the ID results with hospitalization, assessing sex and age-

specific effects, in a 4,418 case-enriched European cohort made of 16 studies from nine 

countries. Median FROH in this other European cohort was slightly higher than that of 

SCOURGE, 0.05 (0.009 – 0.0577). A positive and significant ID in COVID-19 hospitalization 

was detected in this other European cohort when the entire cohort was considered (FROH Beta = 

18.22, p = 3.33x10
-3

). FGRM was not significant (FGRM Beta = -7.34, p = 0.240). ID was also 

detected in hospitalized COVID-19 males but not in females (Male FROH Beta = 16.22, p = 

3.31x10
-3

; Female FROH Beta = 15.65, p =0.269). FGRM was not significant in males or in female 

analyses. When disaggregating by age, it was possible to detect significant ID in hospitalization 

only in males ≥60 years old (FROH Beta = 36.16, p = 3.34x10
-3

) (Supplementary Material, 

Table S10). 
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No evidence was found of major loci that may be exerting large effects. Rather, polygenicity 

seems to underlie the ID association. Different islands of ROH (ROHi) and regions of 

heterozygosity (RHZ) were found to be unique for hospitalized COVID-19 individuals (males 

and females) and non-hospitalized males, respectively (Supplementary Material, 

Supplementary Note, Table S11). Enrichment analysis of pathways based on the protein 

coding genes present in ROH islands were also different between sexes (Supplementary 

Material, Supplementary Note, Table S12), revealing links with coagulation and complement 

pathways in males. 

 

Discussion 

Here we report the replication of six COVID-19 loci across analyses and provide evidence 

supporting three additional loci, one of them specifically detected among females. Besides, our 

analyses provide new insights into disease severity disparities by sex and age and support the 

necessity of similarly stratified studies to increase the possibility of detecting additional risk 

variants. Our GWAS constitutes the largest study on COVID-19 genetic risk factors conducted 

in Spain, with an intrinsic design benefit that SCOURGE includes detailed clinical and genetic 

information gathered homogeneously across the country. Besides, the study included patients 

from the whole spectrum of COVID-19 severity covering from asymptomatic to life-

threatening disease. To date, most research on COVID-19 disease has focused on respiratory 

failure. However, the inclusion of a severity scale provided a unique opportunity to assess 

whether previously reported loci combined into a GRS model were associated with differential 

risk by strata. We warn, however, that the GRS model findings should be interpreted with 

caution as sex and age-differential results in some of the severity strata needs appropriate 

replication. Association was tested for four main variables: infection, hospitalization, severe 
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illness, and critical illness, and using different definitions of controls to align with the COVID-

19 HGI. Irrespective of the tested outcomes or the definition of controls, the results were very 

similar, supporting the use of population controls to increase power in these studies and the 

utility of using hospitalization as a proxy of severity. However, our results from the GRS 

analysis reported a need to maintain separated categories for medium-severe and critical illness. 

We observed larger heritability differences by age groups among males than among females for 

COVID-19 hospitalization, which have diverse support from the literature. On the one hand, 

there is robust evidence supporting that the presence of X-linked deleterious variants in the 

TLR7 gene are causal for life-threatening COVID-19 only affecting males [19-21]. Of note, 

most of these severe COVID-19 male patients were younger than 60 years [21]. On the other 

hand, autoantibodies impairing type-I interferon signalling, which are supported to be strong 

determinants of critical COVID-19 pneumonia, are preferentially found among males older than 

65 years [11,18]. Taken together, this reconciles with the idea that non-genetic factors involved 

in severe COVID-19 are expected among older males. 

We clearly replicated previously reported associations at 3p21.31 (near SLC6A20 and LZTFL1-

FYCO1) [7, 9, 22,23] and 21q22.11 (in IFNAR2) [7, 9], and other findings in ABO, OAS1, 

TYK2, and ARHGAP27. We also found a differential effect between males and females for 

SNPs in 3p21.31 and 21q22.11. While in the meta-analysis with other European studies the 

leading variants of 3p21.31 reached genome-wide significance in females, there was still a 

difference in effect size that, considering its magnitude, should not be disregarded.  It is 

important to remark that these association signals found in males were not associated with the 

presence of comorbidities (see Supplementary Material, Fig. S4). In fact, genetic effects were 

only found for younger males (<60 years old), consistent with other studies [25] and strongly 
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supporting those comorbidities outweigh genetic effects in disease outcomes in the older 

patients.   

Some novel genome-wide significant signals were found in our study, one in chromosome 

19q13.12 (intergenic to UPK1A and ZBTB32, and also linked to the transcriptional regulation of 

ARHGAP33), and another in chromosome 9p13.3 (intergenic to AQP7 and AQP3). 

Interestingly, we also found two sex-specific signals: ELF5 in males and TLE1 in females. 

ELF5 has been recently reported as a new locus associated with critical illness in Europeans 

[26]. Variants of this locus reached genome-wide significance in our male meta-analysis of 

European cohorts (p=4.1x10
-8

). As regards of TLE1, this locus should be taken as speculative 

as the signal did not reach the standard genome-wide significance in the study. However, given 

that the meta-analysis involved a low number of studies (and the top marker was not imputed in 

one of them), this result should be taken with caution as further sex-specific studies will be 

needed to validate this finding.  

TLE1 encodes for the transducin-like enhancer of split 1, a co-repressor of other transcription 

factors and signalling pathways. Besides repressing the transcriptional activity of FOXA2 and 

of the Wnt signalling, TLE1 has been shown to negatively regulate NF-kB, which is 

fundamental in controlling inflammation and the immune response. The deficiency of TLE1 

activity in mice results in enhancement of the NF-B-mediated inflammatory response in 

diverse tissues including the lung [27].  Interestingly, TLE1 is one of the 332 high-confidence 

SARS-CoV-2 protein–human protein interactions identified so far [28]. Taken together, SARS-

CoV-2 would be directly targeting the innate immunity and inflammation signalling pathways 

by interfering with the NF-B activity. Thus, it is not surprising that TLE1 is a top-ranking 

regulator of inflammation that allows to transcriptionally distinguish mild from severe COVID-

19 [29]. 
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In the 19q13.12 locus, the most biologically plausible genes are ARHGAP33 (also showing the 

best functional support based on the fine mapping variants) and ZBTB32. ARHGAP33 is 

transcriptionally regulated by IRF1, a prominent antiviral effector and IFN-stimulated gene 

[30]. It also harbours NF-B binding sites that modifies its expression in human lymphoblastoid 

cell lines by the presence of genetic variants in the binding site linked to many inflammatory 

and immune-related diseases including sepsis, and bacterial and viral infection [31]. Its 

expression is also altered in human induced pluripotent stem cells-derived pancreatic cultures in 

response to SARS-CoV-2 infection [32]. ARHGAP33 was identified in an unbiased genome-

wide CRISPR-based knockout screen in human Huh7.5.1 hepatoma cells infected by 

coronaviruses including SARS-CoV-2 and further interactome studies [33]. With respect to the 

transcription factor ZBTB32, it has been shown to impair antiviral immune responses by 

affecting cytokine production and the proliferation of natural killer and T cells, and the 

generation of memory cells [34]. In single cell studies, transcripts of ZBTB32 were enriched in 

T follicular helper cells and were also expressed at significantly higher levels in hospitalized 

COVID-19 patients [35]. 

AQP3 is expressed most strongly in the kidney collecting duct, the gastrointestinal tract, large 

airways (in basal epithelial cells and the nasopharynx), skin, and the urinary bladder; while 

AQP7 is expressed primarily in the testis, fat cells and, to a lesser extent in a subsegment of the 

kidney proximal tubule [36]. In addition, AQP3 is upregulated in the lung tissues during viral or 

bacterial-induced diffuse alveolar damage [37]. Based on this, in the fact that SARS-CoV-2 

interacts with host proteins with the highest expression in lung tissues [38], and the functional 

evidence linking the fine mapped variants with eQTLs in lung tissues, our data supports AQP3 

as the most likely 9p13.3 gene driving the association with COVID-19 hospitalization. Many 

patients develop acute respiratory distress syndrome (ARDS) during severe COVID-19 [39], 

and one of the hallmarks of ARDS is the increase of fluid volume (oedema) in the airspaces of 
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the lung because of an increase in the alveolo-capillary membrane permeability. Some of the 

aquaporins, including AQP3, essentially function as water transport pores between the airways 

and the pulmonary capillaries [40], are key in lung fluid clearance and the formation of this 

lung oedema as a consequence of the lung injury [36]. In fact, the use of aquaporin modulators 

in lung inflammation and oedema has been proposed for potential use for the treatment of 

COVID-19 respiratory comorbidity [41].   

We have also shown for the first time that COVID-19 severity risk suffers from ID, where 

individuals with higher levels of homozygosity associate with higher risk of being hospitalized 

and of developing severe COVID-19. Our results also suggested that autozygous rare recessive 

variants found in ROH across the genome, rather than homozygous common variants in strong 

LD, are underlying the ID. Furthermore, the ID is stronger in males than in females suffering 

from COVID-19 hospitalizations, especially in males ≥60 years old. Although these results may 

be found counterintuitive with the rest of findings, they are supported by the mutation 

accumulation senescence theory. Under this theory, alleles with detrimental effects that act in 

late life are expected to accumulate and cause senescence, thus increasing the ID [42]. We 

detected further sex-specific effects of homozygosity through ROHi. In hospitalized males, 

coagulation and complement pathways, which have been previously associated with severe 

COVID-19 [43], were enriched among the protein coding genes located in ROHi, highlighting 

the role of homozygosity whereas the Lectin pathway of complement activation is reported to 

be involved in the response to SARS-CoV-2 infection [44-46]. In hospitalized females, PI3K-

Akt signalling genes were found to be enriched in ROH islands, whose networks are affected by 

a great variety of viruses [47]. 

Given that the effect of the genetic variants in SARS-CoV-2 severity is clearer among males 

and previous evidence on this regard, we elucubrate on the role of androgens in COVID-19 
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severity. Androgenic hormones have been suggested to be responsible of the excess male 

mortality observed in COVID-19 patients [48], and several lines of evidence suggest that the 

androgen receptor (AR) pathway is involved in the severity of SARS-CoV-2 infection: (1) A 

higher mortality rate among men has been established [49]; (2) A substantial proportion of 

individuals, both males and females, hospitalized for severe COVID-19 have androgenetic 

alopecia (AGA) [49]; (3) Most of the genes on COVID-19 severity in this study have been 

identified in male-only analyses, and these genes have been shown to interact with the AR. The 

following lines of evidence suggest the AR pathway is a mechanism responsible for some 

identified genes-COVID-19 severity relationship: (1) FYCO1 is regulated by the AR [50], and 

binding sites between the sex hormone receptor AR and FYCO1 have been demonstrated 

[50,51]; (2) There is a cross-talk between the IFN pathways and the androgen signalling 

pathways [52], and androgens are regulated by IFNs in human prostate cells [53]; (3) 

TMPRSS2, another gene associated with COVID-19 severity in other studies, is induced by 

androgens through a distal AR binding enhancer [54]; (4) AR induces the expression of 

chemokine receptors such as CCR1; (5) Variants of LZTFL1 gene are likely pathogenic for 

male reproductive system diseases [55]; (6) Genetic polymorphisms in the AR (long polyQ 

alleles ≥23) and higher testosterone levels in subjects with AR long-polyQ appear to predispose 

some men to develop more severe disease [56]. Thus, it is not unexpected to find that 

antiandrogen treatments are under the focus as treatment options and prophylaxis of severe 

COVID-19 [49] and that randomized controlled clinical trials with bicalutamide 

(NCT04374279), degarelix (NCT04397718), and spironolactone (NCT04345887) are currently 

underway.  

 

Material and Methods 

Recruitment of cases and phenotype definitions for the discovery phase 
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In Spain, 11,939 COVID-19 positive cases were recruited as part of SCOURGE study from 34 

centres in 25 cities between March and December 2020. The complete list of hospitals or 

research centers and the number of samples that each contributed to the study is shown in 

Supplementary Material, Table S1. Study samples and data were collected by the 

participating centers, through their respective biobanks after informed consent, with the 

approval of the respective Ethic and Scientific Committees. The whole project was approved by 

the Galician Ethical Committee Ref 2020/197. All samples and data were processed following 

normalized procedures. Study data were collected and managed using REDCap electronic data 

capture tools hosted at Centro de Investigación Biomédica en Red (CIBER) [56, 57] 

(Supplementary Material, Supplemental Note). Individuals were diagnosed as COVID-19 

positive through a PCR-based test (81.7% of cases) or according to local clinical (3.4%) and 

laboratory procedures (antibody test: 14.2%; other microbiological tests: 0.7%). All cases were 

classified in a five-level severity scale (Table 1).  

Two Spanish sample collections with unknown COVID-19 status were included as general 

population controls in some analyses: 3,437 samples from the Spanish DNA biobank 

(https://www.bancoadn.org) and 2,506 samples from the GR@CE consortium [17]. General 

population controls were collected from branches of the National Blood Service from adult 

unrelated individuals self-reporting Spanish origin and absence of personal and familial history 

of diseases including infectious, cancerous, blood and circulatory, endocrine, mental or 

behavioral, nervous, vision, hearing, respiratory, immunological, bone, congenital, skin and 

digestive. 

Second phase: the CNIO study 

A total of 1,598 COVID-19 cases from six different Spanish Biobanks (Biobanco CNIO, 

Biobanco Vasco, Biobanco Hospital Ramón y Cajal, Biobanco Hospital Puerta de Hierro, 
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Biobanco Hospital San Carlos, and Banco Nacional de ADN) were obtained according to the 

ethical committee approval CEI PI 34_2020-v2. Additionally, 1,068 individuals from Spanish 

DNA biobank with unknown COVID-19 status were included as healthy controls in the 

analysis whenever necessary. Classification as healthy was based on self-reported absence of 

cardiovascular, renal, pulmonary, hepatic, hematological illnesses or any other chronic 

conditions which require continuous treatment, hepatitis B, C infections or acquired 

immunodeficiency syndrome (AIDS). No clinical characterization was performed on any 

subject, no information from medical record was incorporated, and no medical testing was 

performed on these individuals. We will refer to these cases and controls as the Centro Nacional 

de Investigaciones Oncológicas (CNIO) study.  

Genotyping 

The discovery phase samples were genotyped with the Axiom Spain Biobank Array (Thermo 

Fisher Scientific) following the manufacturer’s instructions in the Santiago de Compostela 

Node of the National Genotyping Center (CeGen-ISCIII; http://www.usc.es/cegen). This array 

contains 757,836 markers, including rare variants selected in the Spanish population. Genomic 

DNA was obtained from peripheral blood and isolated using the Chemagic DNA Blood100 kit 

(PerkinElmer Chemagen Technologies GmbH), following the manufacturer's recommendations. 

For the second phase study samples, a total of 250 ng of DNA was processed according to the 

Infinium HTS assay Protocol (Part # 15045738 Rev. A, Illumina), including amplification, 

fragmentation and hybridization using the Global Screening Array Multi-disease v3.0. This 

array contains a total of 730,059 markers and was scanned on an iScan platform (Illumina, 

Inc.). Clustering and genotype calling were performed using Genome Studio v2.0.4 (Illumina, 

Inc.). 
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Quality control 

A quality control (QC) procedure was carried out for the SCOURGE study samples and control 

datasets. First, a list of probe sets was removed based on poor cluster separation or excessive 

minor allele frequency (MAF) difference from The 1000 Genomes Project data (1KGP) [58]. 

Then, the following QC steps were applied using PLINK 1.9 [59] and a custom R script. We 

excluded variants with MAF<1%, call rate <98%, a difference in missing rate between cases 

and controls >0.02, or deviating from Hardy-Weinberg equilibrium (HWE) expectations 

(p<1x10
-6

 in controls, p<1x10
-10

 in cases, with a mid-p adjustment [60]). Samples with a call 

rate <98% and those in which heterozygosity rate deviated more than 5 SD from the mean 

heterozygosity of the study were also removed. 

To assess kinship and assign ancestries, autosomal SNPs (MAF>5%) were pruned with PLINK 

using a window of 1,000 markers, a step size of 80 and a r
2
 of 0.1. Additionally, high-linkage 

disequilibrium (LD) regions described in Price et al. [61] were also excluded. A subset of 

131,937 independent SNPs was used to evaluate kinship (IBD estimation) in PLINK. Given the 

possible confusion between relatedness and ancestry, we removed only one individual from 

each pair of individuals with PI_HAT>0.25 (second-degree relatives) that showed a Z0, Z1, and 

Z2 coherent pattern (according to theoretical expected values for each relatedness level). The 

unrelated SCOURGE individuals were merged with samples from 1KGP and the common 

SNPs were LD-pruned as previously indicated. Ancestry was then inferred with Admixture [62] 

using the defined 1KGP superpopulations. Those individuals with an estimated probability 

>80% of pertaining to European ancestry were defined as European (N=15,571). 

Genomic principal components (PCs) were also computed using a LD-pruned (r
2
 < 0.1 with a 

window size of 1,000 markers) subset of genotyped SNPs passing quality check for controlling 

the population structure in the GWAS. 
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The CNIO study data was filtered following the same QC procedures, where 220 individuals 

were identified as non-European and, therefore, were excluded from further analysis.  

Variant imputation 

Imputation was conducted based on the TOPMed version r2 reference panel (GRCh38) [63] in 

the TOPMed Imputation Server. After post-imputation filtering (Rsq>0.3, HWE p>1x10
-6

, 

MAF>1%), 15,045 individuals (9,371 COVID-19 positive cases and 5,674 population controls) 

and 8,933,154 genetic markers remained in the SCOURGE European study (discovery). The 

final dataset of the CNIO study (replication) included 2,446 individuals (1,378 COVID-19 

positive cases and 1,068 population controls) and 8,895,721 markers. For directly genotyped 

variants, the original genotype was maintained in place of the imputed data. 

Statistical analysis 

Association testing was computed by fitting logistic mixed regression models adjusting for age, 

sex, and the first 10 ancestry-specific PCs. SNPRelate [64] was used for prior LD-pruning and 

data management. Association analyses were performed in SAIGEgds [65], which implements 

the SAIGE [66] two-step mixed model methodology and the SPA test while using more 

efficient objects for genotype storage. A null model was fitted in the first step using the LD-

pruned genotyped variants (MAF >0.5%, missing rate <98%) to estimate variance components 

and the genetic relationship matrix. Then, in a second step, association analyses were performed 

for both genotyped and imputed SNPs. Significance was established at p<5x10
-8 

after meta-

analysis of the discovery and the second study phases. 

To align the results with those from the COVID-19 HGI, three outcomes were evaluated in 

relation to severity: hospitalization, severe COVID-19 (severity 3), and very severe COVID-

19 (severity=4, critical illness). For each comparison, three control definitions (A1, A2 and C) 

were used (Supplementary Material, Table S2).  
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Additionally, the risk to COVID-19 infection was also analysed by comparing all COVID-19 

positive cases with control samples from the general population. 

All analyses were conducted for each complete dataset and stratified by sex and age (<60 years, 

≥60 years). The SNP*sex and SNP*age interaction terms were tested for each SNP in the subset 

of clumped signals, adjusting the models for the same covariates.   

Then, the main results of both Spanish cohorts (SCOURGE and CNIO) for the overall and sex-

stratified analyses were meta-analysed assuming a fixed-effects model using METAL [67].  

Because of the similarity of both the SCOURGE and CNIO studies in the clinical variables 

recorded and, more importantly, in the definition of the severity scale, the leading variants from 

the significant and validated loci in the hospitalization analysis were also analysed under a 

multinomial model (Supplementary Material, Supplemental Note).  

Meta-analysis in independent European studies 

In order to validate the findings in independent study samples of European ancestry, a meta-

analysis of hospitalization risk was performed for the overall and sex-stratified summary 

statistics of both Spanish cohorts (SCOURGE and CNIO) and other four sex-stratified 

Europeans studies from the COVID-19 HGI consortium (BelCOVID, GenCOVID, Hostage-

Spain, and Hostage-Italy). 

Bayesian fine-mapping of GWAS findings 

Credible sets were calculated for the GWAS loci to identify a subset of variants most likely 

containing the causal variant at 95% confidence level, assuming that there is a single causal 

variant and that it has been tested. We used corrcoverage for R [68] to calculate the posterior 

probabilities of the variant being causal for all variants with r
2
>0.1 with the leading SNP and 

within 1 Mb. Variants were added to the credible set until the sum of the posterior probabilities 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddac132/6607933 by guest on 17 June 2022



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

36 
 

was ≥0.95. VEP (https://www.ensembl.org/info/docs/tools/vep/index.html) and the V2G 

aggregate scoring from Open Targets Genetics (https://genetics.opentargets.org) were used to 

annotate the most prominent biological effects of the variants in the credible sets. 

Genetic risk score 

A genetic risk score (GRS) was created for the SCOURGE cohort individuals and population 

controls using the list of SNPs associated with hospitalization, severity, or risk in the meta-

analysis performed by the COVID-19 HGI (see Supp Table 2 in [9]) to appraise its prediction 

power of the severity scale in SCOURGE. Details of this analysis can be found in 

Supplementary Note.   

SNP heritability of COVID-19 severity  

We relied on GCTA-GREML 1.93.2beta [69] to assess the heritability of severe COVID-19 

symptoms among SCOURGE patients, excluding those with cryptic relatedness or with missing 

genotypes above 0.5% and assuming a prevalence of COVID-19 hospitalization of 0.5%. This 

analysis considered all patients (modelling for age, sex, sex*age, and the 10 first PCs), and 

males and females separately (modelling for age and the 10 first PCs). We also partitioned the 

variance to assess the heritability changes among the patients <60 or ≥60 years old. We focused 

on the 547,206 autosomal variants with MAF>1% and missingness <0.5%. Assuming 0.5% of 

prevalence of severe COVID-19, and at least 1,500 cases and 1,500 controls per stratum, we 

estimate >97.9% power to detect a heritability >0.2. 

ROH calling 

The ROH segments longer than 300 Kb were called in SCOURGE using PLINK 1.9 in the 

European QC-ed genotyped dataset (before imputation) with the following parameters: 

homozyg-snp 30, homozyg-kb 300, homozyg-density 30, homozyg-window-sn 30, homozyg-gap 
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1000, homozyg-window-het 1, homozyg-window-missing 5, homozyg-window-threshold 0.05. 

No LD pruning was performed.   

Calculating genomic inbreeding coefficients 

Different genomic inbreeding coefficients were calculated [70]:  

FROH measures the actual proportion of the autosomal genome that is autozygous above 

a specific threshold of minimum ROH length. 

𝐹𝑅𝑂𝐻 =
∑ 𝑅𝑂𝐻 > 1.5𝑀𝑏𝑛

𝑖=1

3 𝐺𝑏
 

 

FGRM is an alternative genomic inbreeding coefficient that was obtained using PLINK’s 

parameter -ibc (Fhat3). This coefficient is described by Yang et al. 2011 [31] where N is 

the number of SNPs, pi is the reference allele frequency of the ith SNP, and xi is the 

number of copies of the reference allele. The reference allele frequencies were site-

specific and included only variants with MAF >0.05. 

𝐹𝐺𝑅𝑀 =  
1

𝑁
∑

(𝑥𝑖
2 − (1 + 2𝑝𝑖)𝑥𝑖 + 2𝑝𝑖

2)

2𝑝𝑖(1 − 𝑝𝑖)

𝑛

𝑖

  

Testing and replicating the inbreeding depression 

Inbreeding depression (ID) is defined as the change in the mean phenotypic value in a 

population because of inbreeding [12, 13]. The ID was modelled in SCOURGE by a multiple 

logistic regression. The covariables used in this study were sex, age, and the first ten PCs. 

The results were replicated in a cohort gathered by Tomoko et al. 2021 [25]. This consists of 

clinical and genomic data from 4,418 individuals of European ancestry (3,946 hospitalized 

COVID-19 cases and 422 controls): 2,597 males (1,072 males <60 years old, 1,525 males ≥60 

years old) and 1,821 females (808 females<60 years old, 1,013 females ≥60 years old). The 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddac132/6607933 by guest on 17 June 2022



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

38 
 

cohort was built by harmonizing individual-level data from 16 different studies [33]. The FROH 

and FGRM coefficients were obtained following the procedure explained above. The model 

described above with the same covariables (age, sex, and the first then PCs) was applied in this 

cohort. 

Genome-specific effects on COVID-19 severity and hospitalization were tested through ID in 

genomic windows, ROH islands (ROHi) and regions of heterozygosity (RHZ) (Supplementary 

Material, Supplemental Note). 
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Fig. 1. Association results of SCOURGE for global and sex-disaggregated A1 

hospitalization analysis. a) Manhattan plot of results from global analysis. A quantile-quantile 

plot of the global analysis is also shown as an inset. b) Miami plot of results from sex-

disaggregated analyses (top panel: males, bottom panel: females). 
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Fig. 2. Regional plot of a novel association at 9q21.32 found among females from the 

SCOURGE study. The x axis reflect the chromosomal position, and the y axis the -log(p-

value). The sentinel variant is indicated by a diamond and all other variants are colour coded by 

their degree of linkage disequilibrium with the sentinel variant in Europeans. Credible set for 

this signal is shown within a dashed square. The horizontal dotted blue line corresponds to the 

threshold for genome-wide significance (p=5x10
-8

). 
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Fig. 3. Lookup of previously found COVID-19 host risk factors in the SCOURGE study. 

Heatmap illustrating the results in all analyses performed in this study (rows) for the 13 leading 

variants in the COVID-19 HGI study (columns). Each box illustrates the top associated variant 

within the focal region. The colour (grey to dark red) indicates the strength (significance level) 

of the association in SCOURGE. Note: In three cases (chr12: 112919388, chr19: 4719431 and 

chr21: 33242905), the imputed variants did not pass QC filters in SCOURGE and they were 

replaced by the nearest QC-ed imputed variant (chr12:112919404, chr19:4719822, and 

chr21:33241950, respectively). 
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Fig. 4. Regional plots of novel association signals found from the meta-analysis between 

the SCOURGE and CNIO studies. Regional plots of novel association signals found in 

9p13.3 (a-c), 17q21.31 (d-f), and 19q13.12 (g-i). The x axes reflect the chromosomal position, 

and the y axes the -log(p-value) of the SCOURGE-CNIO meta-analysis. On panels a, d, and g 

the sentinel variant is indicated by a diamond and all other variants are colour coded by their 

degree of linkage disequilibrium with the sentinel variant in Europeans. Whenever a concise set 

of variants was prioritized, a credible set is shown within a dashed square. The horizontal 
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dotted blue line corresponds to the threshold for genome-wide significance (p=5x10
-8

). In the 

rest of panels, the x axes reflect the chromosomal position, and the y axes the -log(p-value) 

resulting from the eQTL analyses in whole blood (b, e, and h) and in the lung (c, f, and i) 

whenever a significant finding is available from GTEx v8. 
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Fig. 5. Forest plot of the SNP heritability estimates for the COVID-19 hospitalization risk 

analysis on the liability scale. 
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Fig. 6. Effect of the inbreeding depression on COVID-19 hospitalization in the SCOURGE 

cohort. Forest plots are shown for global analyses as well as for sex and age-disaggregated 

analyses. 
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Table 1. Five-level severity scale used to classify SCOURGE patients. 

Level Clinical findings 

Severity 0 

(asymptomatic) 

Asymptomatic 

Severity 1 (mild) With symptoms, but without pulmonary infiltrates or need of 

oxygen therapy 

Severity 2 (moderate) With pulmonary infiltrates affecting <50% of the lungs or need of 

supplemental oxygen therapy 

Severity 3 (severe) Hospitalized with any of the following criteria:  

● PaO2 < 65 mmHg or SaO2 < 90%  

● PaO2/FiO2 <300  

● SaO2/FiO2 <440  

● Dyspnoea  

● Respiratory frequency ≥ 22 rpm 

● Infiltrates affecting >50% of the lungs 

Severity 4 (critical) Admission to the ICU or need of mechanical ventilation (invasive 

or non-invasive)  

PaO2: Partial pressure of oxygen in arterial blood; SaO2: Saturation of oxygen in arterial 

blood; FiO2: Fraction of inspired oxygen. 
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Table 2. Baseline characteristics of European patients from SCOURGE included in 

the analysis. 

     

Variable 

Global 

N = 9,371 

males 

N = 4,343  

females 

N = 5,028 

Age – mean years (SD) 62.6 (17.9) 64.3 (16.3) 61.1 (19.1) 

Severity - N (%) 

 

  

 

0 - asymptomatic 582 (6.6) 161 (3.9) 421 (8.9) 

 

1 – mild 2,689 (30.3) 748 (18.2) 1,941 (40.8) 

 

2 - intermediate 2,099 (23.6) 1,093 (26.5) 1,006 (21.1) 

 

3 – severe 2,379 (26.8) 1,300 (31.6) 1,079 (22.7) 

 

4 - critical illness 1,128 (12.7) 817 (19.8) 311 (6.5) 

Hospitalization - N (%) 5,966 (63.8) 3,436 (79.3) 2,530 (50.5) 

Severe COVID-19 - N (%) 3,507 (39.2) 2,117 (51.2) 1,390 (28.9) 

Critical illness - N (%) 1,128 (12.6) 817 (19.8) 311 (6.5) 

Comorbidities - N (%) 

 

  

 

Vascular/endocrinological 4,099 (43.7) 2,207 (50.8) 1,892 (37.6) 

 

Cardiac 1,057 (11.3) 634 (14.6) 423 (8.4) 

 

Nervous 773 (8.3) 341 (7.9) 432 (8.6) 

 

Digestive 264 (2.8) 153 (3.5) 111 (2.2) 

 

Onco-hematological 647 (6.9) 411 (9.5) 236 (4.7) 

  Respiratory 905 (9.7) 565 (13.0) 340 (6.8) 
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Table 3. Genome-wide significant variants in global or sex-stratified meta-analysis between the 

SCOURGE and CNIO studies. Representative SNPs were selected using the clump function of 

PLINK 1.9 (clumping parameters r
2
=0.5, pval=5x10

-8
 and pval2=0.05). 

    Meta-ALL Meta-males Meta-females  

SNP chr:position EA NEA 

beta SE p-

value 

beta SE p-

value 

beta SE p-

value 

Nearest gene 

rs115679256 3:45587795 G A 0.43 0.08 1.1E-

08 

0.48 0.10 2.3E-

06 

0.40 0.11 2.9E-

04 

LIMD1 

rs17763742 3:45805277 A G 0.60 0.05 4.1E-

29 

0.74 0.07 3.3E-

25 

0.43 0.08 4.5E-

08 

LZTFL1 

rs35477280 3:45932600 G A 0.39 0.05 1.4E-

17 

0.48 0.06 6.3E-

15 

0.28 0.07 1.6E-

05 

FYCO1 

rs4443214 3:46136372 T C 0.25 0.04 9.0E-

09 

0.26 0.06 1.4E-

05 

0.26 0.06 4.4E-

05 

XCR1 

rs115102354 3:46180545 A G 0.41 0.07 1.6E-

08 

0.52 0.10 2.1E-

07 

0.32 0.10 2.0E-

03 

CCR3 

rs10813976 9:33426577 A G 0.18 0.03 2.7E-

08 

0.16 0.04 2.5E-

04 

0.19 0.05 3.5E-

05 

AQP3 

rs1230082 17:45422978 C G 0.16 0.03 2.1E-

08 

0.17 0.04 2.8E-

05 

-

0.15 

0.04 2.5E-

04 

ARHGAP27 

rs77127536 19:35687796 G A -

0.22 

0.04 1.3E-

08 

-

0.25 

0.05 2.1E-

06 

-

0.19 

0.05 4.3E-

04 

UPK1A/ZTBT32 

rs17860169 21:33240996 A G 0.19 0.03 2.3E-

11 

0.27 0.04 1.4E-

11 

0.12 0.04 3.7E-

03 

IFNAR2 

EA=Effect Allele; NEA=Non-Effect Allele; beta=Effect coefficient; SE=Standard Error 
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Table 4. Results of European meta-analysis for hospitalization risk. Summary statistics of 

both phases (SCOURGE and CNIO) were meta-analysed with four additional sex-

disaggregated European studies from the COVID-19 HGI consortium. 

    Meta-all Meta-males Meta-females  

SNP chr:position E

A 

NE

A 

beta SE p-

valu

e 

beta SE p-

valu

e 

beta SE p-

valu

e 

Nearest gene 

rs11567925

6 

3:45587795 G A 0.3

7 

0.0

6 

1.3E

-08 

0.4

1 

0.0

8 

5.6E

-07 

0.3

6 

0.0

9 

1.6E

-04 

LIMD1 

rs13078854 3:45820440 G A 0.5

3 

0.0

4 

6.7E

-34 

0.6

4 

0.0

5 

2.7E

-33 

0.3

8 

0.0

6 

1.0E

-09 

LZTFL1 

rs41289622 3:45973053 T G 0.3

6 

0.0

4 

3.6E

-21 

0.4

4 

0.0

5 

3.4E

-20 

0.2

7 

0.0

5 

7.2E

-07 

FYCO1 

rs11510235

4 

3:46180545 A G 0.4

0 

0.0

6 

8.9E

-12 

0.4

8 

0.0

7 

6.8E

-11 

0.2

6 

0.0

8 

1.8E

-03 

XCR1 

rs61882275 11:34482745 G A -

0.1

2 

0.0

2 

1.0E

-06 

-

0.1

7 

0.0

3 

4.1E

-08 

-

0.0

8 

0.0

3 

1.3E

-02 

ELF5 

rs4767028 12:11292138

3 

A G -

0.1

6 

0.0

2 

1.6E

-10 

-

0.1

9 

0.0

3 

2.5E

-09 

-

0.1

1 

0.0

4 

8.7E

-04 

OAS1 

rs12609134 19:35687796 G A -

0.1

9 

0.0

3 

2.3E

-08 

-

0.2

2 

0.0

4 

9.5E

-08 

-

0.1

3 

0.0

5 

6.0E

-03 

UPK1A/ZBTB3

2 

rs17860169 21:33240996 A G 0.1

8 

0.0

3 

3.9E

-12 

0.2

1 

0.0

3 

1.6E

-10 

0.1

5 

0.0

4 

2.9E

-05 

IFNAR2 

EA=Effect Allele; NEA=Non-Effect Allele; beta=Effect coefficient; SE=Standard Error 
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List of abbreviations 

COVID-19: Coronavirus disease 2019; SCOURGE: Spanish Coalition to Unlock Research on 

Host Genetics on COVID-19; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; 

GWAS: genome-wide association studies; IFN: interferon; ROH: runs of homozygosity; 

REDCap: research electronic data capture; CIBER: Centro de Investigación Biomédica en Red; 

CNIO: Centro Nacional de Investigaciones Oncológicas; QC: quality control; MAF: minor 

allele frequency; 1KGP: The 1000 Genomes Project data; HWE: Hardy-Weinberg equilibrium 

(HWE); LD: linkage disequilibrium; PCs: principal components; HGI: Host Genetics Initiative; 

GRS: genetic risk score; ID: Inbreeding depression; ROHi: ROH islands; RHZ: regions of 

heterozygosity; eQTLs: expression quantitative trait loci; AR: androgen receptor; AGA: 

androgenetic alopecia 
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