# S-adic characterization of minimal dendric shifts: an example

## France Gheeraert Joint work with Julien Leroy

June 2022



## Notations

- (unidimensional) minimal shift spaces: X, Y, ...
- language of the shift space X:

$$\mathcal{L}(X) = \bigcup_{x \in X} \mathcal{L}(x)$$

image of a X under σ:

$$\sigma(X) = \left\{ S^k \sigma(x) \mid x \in X, 0 \le k < |\sigma(x_0)| \right\}$$

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

France Gheeraert

Definitions

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

## Extensions

Left and right extensions:

$$E^L_X(w) = \{ a \in \mathcal{A} \mid aw \in \mathcal{L}(X) \}, \quad E^R_X(w) = \{ b \in \mathcal{A} \mid wb \in \mathcal{L}(X) \}$$

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

## Extensions

Left and right extensions:

$$E^L_X(w) = \{ a \in \mathcal{A} \mid aw \in \mathcal{L}(X) \}, \quad E^R_X(w) = \{ b \in \mathcal{A} \mid wb \in \mathcal{L}(X) \}$$

If  $\#E_X^L(w) \ge 2$ , w is said to be *left special*. If  $\#E_X^R(w) \ge 2$ , w is said to be *right special*.

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

## Extensions

Left and right extensions:

$$E^L_X(w) = \{ a \in \mathcal{A} \mid aw \in \mathcal{L}(X) \}, \quad E^R_X(w) = \{ b \in \mathcal{A} \mid wb \in \mathcal{L}(X) \}$$

If  $\#E_X^L(w) \ge 2$ , w is said to be *left special*. If  $\#E_X^R(w) \ge 2$ , w is said to be *right special*.

**Bi-extensions**:

$$E_X(w) = \{(a,b) \in E_X^L(w) imes E_X^R(w) \mid awb \in \mathcal{L}(X)\}$$

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

# Extension graphs

### Definition

The extension graph of  $w \in \mathcal{L}(X)$  is the bipartite graph  $\mathcal{E}_X(w)$  with vertices  $E_X^L(w) \sqcup E_X^R(w)$  and edges  $E_X(w)$ .

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

# Extension graphs

### Definition

The extension graph of  $w \in \mathcal{L}(X)$  is the bipartite graph  $\mathcal{E}_X(w)$  with vertices  $E_X^L(w) \sqcup E_X^R(w)$  and edges  $E_X(w)$ .

If X is the Fibonacci shift space,

$$\mathcal{E}_{X}(\varepsilon)$$

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

# Extension graphs

### Definition

The extension graph of  $w \in \mathcal{L}(X)$  is the bipartite graph  $\mathcal{E}_X(w)$  with vertices  $E_X^L(w) \sqcup E_X^R(w)$  and edges  $E_X(w)$ .

If X is the Fibonacci shift space,



Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

## Dendric words

Definition (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone)

A word  $w \in \mathcal{L}(X)$  is *dendric* if its extension graph  $\mathcal{E}_X(w)$  is a tree.

A shift space X is *dendric* if all the words  $w \in \mathcal{L}(X)$  are.

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$ General case Dendric shifts

## Relation with other families



France Gheeraert

S-adic characterization of dendric shifts

T Dendric shifts **S**-adic representations

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

# Derived shift spaces: example

 $x = \dots 0102010102010010201\dots$ 

Dendric shifts S-adic representations

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

# Derived shift spaces: example

 $x = \dots 0102010102010010201\dots$ 

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

# Derived shift spaces: example

 $x = \dots 0 \mid 1020 \mid 10 \mid 1020 \mid 100 \mid 1020 \mid 1 \dots$ 

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

# Derived shift spaces: example

 $x = \dots 0 \mid 1020 \mid 10 \mid 1020 \mid 100 \mid 1020 \mid 1 \dots$ 

lf

$$\sigma: egin{cases} a\mapsto 10\ b\mapsto 100\ c\mapsto 1020 \end{cases}$$

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

## Derived shift spaces: example

 $x = \dots 0 \mid 1020 \mid 10 \mid 1020 \mid 100 \mid 1020 \mid 1 \dots$   $\sigma : \begin{cases} a \mapsto 10 \\ b \mapsto 100 \\ c \mapsto 1020 \end{cases}$ then  $x = S^k \sigma(y)$  where  $0 \le k < |\sigma(y_0)|$  and  $y = \dots cacbc \dots$ 

lf

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

# Derived shift spaces

### Definition

A morphism  $\sigma : \mathcal{A}^* \to \mathcal{B}^*$  is strongly left proper (slp) if there exists a letter  $\ell \in \mathcal{B}$  such that

$$\sigma(a) \in \ell(\mathcal{B} \setminus \{\ell\})^*, \quad \forall a \in \mathcal{A}.$$

### Definition

The *derived shift* of a minimal shift space  $X \subseteq \mathcal{B}^{\mathbb{Z}}$  with respect to  $\ell \in \mathcal{B}$  is 'the' shift space  $Y \subseteq \mathcal{A}^{\mathbb{Z}}$  such that  $X = \sigma(Y)$  for some injective morphism  $\sigma : \mathcal{A}^* \to \mathcal{B}^*$  slp for the letter  $\ell$ .

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

# Case of dendric shifts

If  $X \subseteq \mathcal{B}^{\mathbb{Z}}$  is a minimal dendric shift space and  $Y \subseteq \mathcal{A}^{\mathbb{Z}}$  is its derived shift with respect to  $\ell$ , then...

Theorem (Balková, Pelantová, Steiner)

 $\dots \#\mathcal{A} = \#\mathcal{B}.$ 

Theorem (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone)

... Y is also a minimal dendric shift space.

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

# S-adic representations

### Definition

A primitive *S*-adic representation of a minimal shift space X is a primitive sequence of morphisms  $(\sigma_n : \mathcal{A}_{n+1}^* \to \mathcal{A}_n^*)_n$  such that

$$\mathcal{L}(X) = \bigcup_{N} \operatorname{Fac}(\sigma_0 \dots \sigma_N(\mathcal{A}_{N+1})).$$

A sequence  $(\sigma_n : \mathcal{A}_{n+1}^* \to \mathcal{A}_n^*)_n$  is primitive if, for all N, there exists  $m \ge 0$  such that, for all  $a \in \mathcal{A}_{N+m+1}, \sigma_N \dots \sigma_{N+m}(a)$  contains all the letters of  $\mathcal{A}_N$ .

France Gheeraert

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

# S-adic representations of dendric shifts

Every minimal dendric shift over  ${\mathcal A}$  has an S-adic representation such that

• morphisms are injective and slp,

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

# S-adic representations of dendric shifts

Every minimal dendric shift over  ${\mathcal A}$  has an S-adic representation such that

- morphisms are injective and slp,
- intermediary shift spaces are dendric shifts over  $\mathcal{A}$ ,

Dendric shifts having one right special factor S-adic characterization of shifts in  $\mathcal{F}$  General case

Dendric shifts S-adic representations

# S-adic representations of dendric shifts

Every minimal dendric shift over  ${\mathcal A}$  has an  $S\mbox{-adic}$  representation such that

- morphisms are injective and slp,
- intermediary shift spaces are dendric shifts over  $\mathcal{A}$ ,
- the letter for which the k<sup>th</sup> morphism is slp is right special in the k<sup>th</sup> intermediary shift space.

# Dendric shifts having one right special factor

# Dendric shifts and right special factors

Proposition

If X is a dendric shift over A, then for all  $n \in \mathbb{N}$ ,

$$\sum_{w\in\mathcal{L}_n(X)} \left( \# E_X^R(w) - 1 \right) = \# \mathcal{A} - 1.$$

# Dendric shifts and right special factors

### Proposition

If X is a dendric shift over A, then for all  $n \in \mathbb{N}$ ,

$$\sum_{w\in\mathcal{L}_n(X)} \left( \# E_X^R(w) - 1 \right) = \# \mathcal{A} - 1.$$

### Corollary

If X is a dendric shift over A, then the following are equivalent:

- for each length, X has a unique right special factor,
- for each length, X has a right special factor w such that  $E_X^R(w) = A$ ,

• X has an infinite number of right special factors w such that  $E_X^R(w) = \mathcal{A}$ .

# Family $\mathcal{F}$

### Definition

The family  $\mathcal{F}$  is the family of minimal dendric shifts over  $\mathcal{A}_4 := \{0, 1, 2, 3\}$  satisfying the properties of the previous slide.

# Family $\mathcal{F}$

### Definition

The family  $\mathcal{F}$  is the family of minimal dendric shifts over  $\mathcal{A}_4 := \{0, 1, 2, 3\}$  satisfying the properties of the previous slide.

Every shift in  $\mathcal{F}$  has an S-adic representation such that

- morphisms are injective slp,
- intermediary shift spaces are dendric shifts over  $\mathcal{A}_4$ ,
- the letter for which the k<sup>th</sup> morphism is slp is the unique right special letter in the k<sup>th</sup> intermediary shift space.

# Family $\mathcal{F}$

### Definition

The family  $\mathcal{F}$  is the family of minimal dendric shifts over  $\mathcal{A}_4 := \{0, 1, 2, 3\}$  satisfying the properties of the previous slide.

### Every shift in $\mathcal{F}$ has an S-adic representation such that

- morphisms are injective slp,
- intermediary shift spaces are in  $\mathcal{F}$ ,
- the letter for which the k<sup>th</sup> morphism is slp is the unique right special letter in the k<sup>th</sup> intermediary shift space.

# Family $\mathcal{F}$

### Definition

The family  $\mathcal{F}$  is the family of minimal dendric shifts over  $\mathcal{A}_4 := \{0, 1, 2, 3\}$  satisfying the properties of the previous slide.

### Every shift in $\mathcal{F}$ has an S-adic representation such that

- morphisms are injective slp,
- intermediary shift spaces are in  $\mathcal{F}$ ,
- the letter for which the k<sup>th</sup> morphism is slp is the unique right special letter in the k<sup>th</sup> intermediary shift space.

$$\sigma(X) \in \mathcal{F} \stackrel{?}{\Longrightarrow} X \in \mathcal{F}$$

$$\sigma: \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 01 \\ 2 \mapsto 02 \\ 3 \mapsto 032 \end{cases} 2020010$$

$$\sigma : \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 01 \\ 2 \mapsto 02 \\ 3 \mapsto 032 \end{cases} \qquad 2 \mid 02 \mid 0 \mid 01 \mid 0$$

$$\sigma:\begin{cases} 0\mapsto 0\\ 1\mapsto 01\\ 2\mapsto 02\\ 3\mapsto 032 \end{cases} 2\mid 02\mid 0\mid 01\mid 0=2\sigma(201)0$$

## Unique antecedent: example

3

$$\sigma : \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 01 \\ 2 \mapsto 02 \\ 3 \mapsto 032 \end{cases} \qquad 2 \mid 02 \mid 0 \mid 01 \mid 0 = 2\sigma(201)0 \\ \mathcal{E}_{X}(201) \\ 0 \\ 1 \\ 2 \\ 2 \\ 0 \end{cases} \qquad \mathcal{E}_{\sigma(X)}(2020010)$$

3



## Unique antecedent: example

(001)

3

$$\sigma: \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 01 \\ 2 \mapsto 02 \\ 3 \mapsto 032 \end{cases} 2 \mid 02 \mid 0 \mid 01 \mid 0 = 2\sigma(201)0$$

$$\varphi_{2}^{L}:\begin{cases} 2\mapsto 0\\ 3\mapsto 3 \end{cases} \qquad \qquad \mathcal{E}_{\sigma(X)}(2020010)$$

2

3

$$\sigma : \begin{cases} 0 \mapsto 00 \\ 1 \mapsto 010 \\ 2 \mapsto 020 \\ 3 \mapsto 0320 \end{cases} 2 \mid 02 \mid 0 \mid 01 \mid 0 = 2\sigma(201)0$$
#### Unique antecedent: example

1

$$\sigma : \begin{cases} 0 \mapsto 00 \\ 1 \mapsto 010 \\ 2 \mapsto 020 \\ 3 \mapsto 0320 \end{cases} 2 \mid 02 \mid 0 \mid 01 \mid 0 = 2\sigma(201)0$$



#### Unique antecedent

#### Proposition (G., Lejeune, Leroy)

Let  $\sigma : \mathcal{A}^* \to \mathcal{A}^*$  be an injective slp morphism for  $\ell$ . If  $u \in \mathcal{L}(\sigma(X))$  is such that  $|u|_{\ell} \geq 1$ , it has a unique decomposition  $(s, v, p) \in \mathcal{A}^* \times \mathcal{L}(X) \times \ell \mathcal{A}^*$  such that

- $u = s\sigma(v)p$ ,
- s is a proper suffix of a word of  $\sigma(\mathcal{A})$ ,
- p is a proper prefix of a word of  $\sigma(\mathcal{A})\ell$ .

#### Unique antecedent

Proposition (G., Lejeune, Leroy)

Let  $\sigma : \mathcal{A}^* \to \mathcal{A}^*$  be an injective slp morphism for  $\ell$ . If  $u \in \mathcal{L}(\sigma(X))$  is such that  $|u|_{\ell} \geq 1$ , it has a unique decomposition  $(s, v, p) \in \mathcal{A}^* \times \mathcal{L}(X) \times \ell \mathcal{A}^*$  such that

- $u = s\sigma(v)p$ ,
- s is a proper suffix of a word of  $\sigma(\mathcal{A})$ ,
- p is a proper prefix of a word of  $\sigma(\mathcal{A})\ell$ .

We then have

$$E_{\sigma(X)}(u) = (\varphi_s^L \times \varphi_p^R) E_X(v)$$

where

$$\varphi_s^L: a\mapsto b \ st. \ \sigma(a)\in \mathcal{A}^*bs \qquad \varphi_p^R: a\mapsto b \ st. \ \sigma(a)\ell\in pb\mathcal{A}^*.$$

France Gheeraert

### S-adic representations of shifts in ${\cal F}$

Every shift in  $\mathcal{F}$  has an S-adic representation such that

- all the morphisms are injective and slp,
- all the intermediary shift spaces are in  $\mathcal{F}$ ,
- the letter for which the k<sup>th</sup> morphism is slp is the unique right special letter in the k<sup>th</sup> intermediary shift space.

### S-adic characterization of shifts in ${\cal F}$

France Gheeraert

S-adic characterization of dendric shifts

Dyadisc 5 19 / 42

### Possible extension graphs

If  $X \in \mathcal{F}$ , then the extension graph of  $\varepsilon$  is, up to a permutation, one of



#### Possible extension graphs

If  $X \in \mathcal{F}$ , then the extension graph of  $\varepsilon$  is, up to a permutation, one of



#### Possible extension graphs

If  $X \in \mathcal{F}$ , then the extension graph of  $\varepsilon$  is, up to a permutation, one of











#### Possible morphisms: example





0

#### Possible morphisms: example





0 01







#### Possible morphisms



#### Possible morphisms



lf

$$S_{\mathcal{F}} = \Sigma_4 \{ \alpha, \beta, \gamma, \delta \} \Sigma_4,$$

every shift in  $\mathcal{F}$  has an  $\mathcal{S}_{\mathcal{F}}$ -adic representation.

#### Not a characterization

If  $\sigma \in \beta \delta S_{\mathcal{F}}^{\mathbb{N}}$  is an  $S_{\mathcal{F}}$ -adic representation of X, then 0 is not dendric in X.

$$eta \circ \delta: egin{cases} 0 &\mapsto 0 \ 1 &\mapsto 001 \ 2 &\mapsto 00201 \ 3 &\mapsto 00320201 \end{cases}$$

#### Not a characterization

If  $\sigma \in \beta \delta S_{\mathcal{F}}^{\mathbb{N}}$  is an  $S_{\mathcal{F}}$ -adic representation of X, then 0 is not dendric in X.

|                                  | $\int 0 \mapsto 0$     | $\mathcal{E}_X($ | (0) |
|----------------------------------|------------------------|------------------|-----|
| $\beta \circ \delta$ : $\langle$ | $1 \mapsto 001$        | 0                | 0   |
|                                  | $2 \mapsto 00201$      | 1                | 1   |
|                                  |                        | 2                | 2   |
|                                  | $(3 \mapsto 00320201)$ |                  | 3   |

#### Not a characterization

If  $\sigma \in \beta \delta S_{\mathcal{F}}^{\mathbb{N}}$  is an  $S_{\mathcal{F}}$ -adic representation of X, then 0 is not dendric in X.

$$\beta \circ \delta : \begin{cases} 0 \mapsto 0 & \mathcal{E}_{X}(0) \\ 1 \mapsto 001 & 0 \\ 2 \mapsto 00201 & 1 \\ 3 \mapsto 00320201 & 2 \end{cases}$$

#### Not a characterization

If  $\sigma \in \beta \delta S_{\mathcal{F}}^{\mathbb{N}}$  is an  $S_{\mathcal{F}}$ -adic representation of X, then 0 is not dendric in X.

$$\beta \circ \delta : \begin{cases} 0 \mapsto 0 & \mathcal{E}_X(0) \\ 1 \mapsto 001 & 0 \\ 2 \mapsto 00201 & 1 \\ 3 \mapsto 00320201 & 2 \\ 3 \end{cases}$$

If  $\sigma$  is an  $S_{\mathcal{F}}$ -adic representation of X such that  $\sigma_n = \beta$  and  $\sigma_{n+1} = \delta$  for some *n*, then  $X \notin \mathcal{F}$ .

#### How to avoid that?

Question: given  $X \in \mathcal{F}$  and  $\sigma \in \mathcal{S}_{\mathcal{F}}$ , when is  $\sigma(X)$  in  $\mathcal{F}$ ?

#### How to avoid that?

Question: given 
$$X \in \mathcal{F}$$
 and  $\sigma \in \mathcal{S}_{\mathcal{F}}$ , when is  $\sigma(X)$  in  $\mathcal{F}$ ?

Idea: if  $u = s\sigma(v)p$  is right special, then  $p = \ell \in A$  and

$$\mathcal{E}_X(v) \xrightarrow{\text{rm. useless vertices}} \mathcal{E}_{X,s}(v) \xrightarrow{\varphi_s^L \times \varphi_\ell^R} \mathcal{E}_{\sigma(X)}(u)$$

Theorem (G., Lejeune, Leroy)

Let  $X \in \mathcal{F}$  and  $\sigma \in \mathcal{S}_{\mathcal{F}}$ . The image  $\sigma(X)$  is in  $\mathcal{F}$  if and only if, for all  $s \in \mathcal{A}_4^*$  and for all  $v \in \mathcal{L}(X)$ , the graph  $\mathcal{E}_{X,s}(v)$  is connected.

Theorem (G., Lejeune, Leroy) Let  $X \in \mathcal{F}$  and  $\sigma \in S_{\mathcal{F}}$ . The image  $\sigma(X)$  is in  $\mathcal{F}$  if and only if, for all  $s \in \mathcal{A}_4^*$  and for all  $v \in \mathcal{L}(X)$ , the graph  $\mathcal{E}_{X,s}(v)$  is connected.

• when removing the left vertices of  $\mathcal{E}_X(v)$  in

$$\mathcal{A}_{s} = \{ a \in \mathcal{A}_{4} \mid \sigma(a) 
ot\in \mathcal{A}_{4}^{*}s \}$$

the other left vertices remain connected,

Theorem (G., Lejeune, Leroy) Let  $X \in \mathcal{F}$  and  $\sigma \in S_{\mathcal{F}}$ . The image  $\sigma(X)$  is in  $\mathcal{F}$  if and only if, for all  $s \in \mathcal{A}_4^*$  and for all  $v \in \mathcal{L}(X)$ , the graph  $\mathcal{E}_{X,s}(v)$  is connected.

• when removing the left vertices of  $\mathcal{E}_X(v)$  in

$$\mathcal{A}_{s} = \{ a \in \mathcal{A}_{4} \mid \sigma(a) \not\in \mathcal{A}_{4}^{*}s \}$$

the other left vertices remain connected,

• the only 'interesting' values of s are the ones that are suffix of at least two elements of  $\sigma(A_4)$ ,

Theorem (G., Lejeune, Leroy) Let  $X \in \mathcal{F}$  and  $\sigma \in S_{\mathcal{F}}$ . The image  $\sigma(X)$  is in  $\mathcal{F}$  if and only if, for all  $s \in \mathcal{A}_4^*$  and for all  $v \in \mathcal{L}(X)$ , the graph  $\mathcal{E}_{X,s}(v)$  is connected.

• when removing the left vertices of  $\mathcal{E}_X(v)$  in

$$\mathcal{A}_{s} = \{ a \in \mathcal{A}_{4} \mid \sigma(a) \not\in \mathcal{A}_{4}^{*}s \}$$

the other left vertices remain connected,

- the only 'interesting' values of s are the ones that are suffix of at least two elements of  $\sigma(A_4)$ ,
- difficult to check...

# Graph $G_n(X)$ : example



# Graph $G_n(X)$ : example



G<sub>1</sub>(X) (0) (1) (3) (2)

# Graph $G_n(X)$ : example



 $G_1(X)$ 



# Graph $G_n(X)$ : example



 $G_1(X)$ 



# Graph $G_n(X)$ : example (II)





## Graph $G_n(X)$ : example (II)





[1]

2

# Graph $G_n(X)$ : example (II)







# Graph $G_n(X)$ : example (II)






## Graph $G_n(X)$ : example (II)



## Graph G(X)

#### Definition

If X is in  $\mathcal{F}$ ,  $G_n(X)$  is the union of the cliques given by the sets of vertices  $E_X^L(v)$  for all  $v \in \mathcal{L}(X) \cap \mathcal{A}_4^n$ .

# Graph G(X)

#### Definition

If X is in  $\mathcal{F}$ ,  $G_n(X)$  is the union of the cliques given by the sets of vertices  $E_X^L(v)$  for all  $v \in \mathcal{L}(X) \cap \mathcal{A}_4^n$ .

We define

 $G(X) = \lim_n G_n(X).$ 

 $\begin{array}{c} & \text{Definitions} \\ \text{Dendric shifts having one right special factor} \\ & \textit{S-adic characterization of shifts in $\mathcal{F}$} \\ & \text{General case} \end{array}$ 

# Graph G(X)

#### Definition

If X is in  $\mathcal{F}$ ,  $G_n(X)$  is the union of the cliques given by the sets of vertices  $E_X^L(v)$  for all  $v \in \mathcal{L}(X) \cap \mathcal{A}_4^n$ .

We define

 $G(X) = \lim_n G_n(X).$ 

#### Proposition

Let  $\mathcal{B} \subseteq \mathcal{A}_4$ . The following are equivalent.

• The graph  $G(X) \setminus \mathcal{B}$  is connected.

**②** For all  $v \in \mathcal{L}(X)$ , the subgraph of  $\mathcal{E}_X(v)$  where we removed, on the left, the vertices in  $\mathcal{B}$  (and the isolated vertices) is connected.

## Stability of images (II)

#### Theorem

Let  $X \in \mathcal{F}$  and  $\sigma \in S_{\mathcal{F}}$ . The image  $\sigma(X)$  is in  $\mathcal{F}$  if and only if  $\mathcal{C}(G(X), \sigma)$ : for all  $s \in \mathcal{A}_4^*$ , the graph  $G(X) \setminus \mathcal{A}_s$  is connected, where

$$\mathcal{A}_{m{s}} = \{m{a} \in \mathcal{A}_{m{4}} \mid \sigma(m{a}) 
ot\in \mathcal{A}_{m{4}}^* m{s}\}.$$











## Image graph

Recall that

$$E_{\sigma(X)}^{L}(s\sigma(v)\ell) = \varphi_{s}^{L}(E_{X}^{L}(v)).$$

 $\begin{array}{c} \mbox{Definitions}\\ \mbox{Dendric shifts having one right special factor}\\ \mbox{$S$-adic characterization of shifts in $\mathcal{F}$}\\ \mbox{General case} \end{array}$ 

## Image graph

#### Recall that

$$E_{\sigma(X)}^{L}(s\sigma(v)\ell) = \varphi_{s}^{L}(E_{X}^{L}(v)).$$

#### Proposition

If X and  $\sigma(X)$  are in  $\mathcal{F}$  and if G(X) is built with the cliques  $C_1, \ldots, C_k$ , then  $G(\sigma(X))$  is built with the cliques

$$\varphi_s^L(C_i)$$
  $s \in \mathcal{A}_4^*, i \leq k.$ 

For a graph G, we denote  $\sigma(G)$  the graph built with this technique.

### Image graph: example

$$\beta: \begin{cases} 0 \mapsto 0 & \varepsilon & 2 \\ 1 \mapsto 01 & \mathcal{A}_{\varepsilon}^{-} = \emptyset & \mathcal{A}_{2}^{-} = \{0, 1\} \\ 2 \mapsto 02 \\ 3 \mapsto 032 & \end{array}$$



## Image graph: example

$$\beta: \begin{cases} 0 \mapsto 0 & \varepsilon & 2 \\ 1 \mapsto 01 & \mathcal{A}_{\varepsilon}^{-} = \emptyset & \mathcal{A}_{2}^{-} = \{0, 1\} \\ 2 \mapsto 02 \\ 3 \mapsto 032 & \end{array}$$



#### Image graph: example



#### Image graph: example







#### Image graph: example







 $\begin{array}{c} \text{Definitions}\\ \text{Dendric shifts having one right special factor}\\ \textbf{S-adic characterization of shifts in }\mathcal{F}\\ \text{General case} \end{array}$ 

# Graph $\mathcal{G}(\mathcal{S}_{\mathcal{F}})$

The graph  $\mathcal{G}(\mathcal{S}_{\mathcal{F}})$  is defined as follows:

 $\begin{array}{c} \text{Definitions}\\ \text{Dendric shifts having one right special factor}\\ \textbf{S-adic characterization of shifts in }\mathcal{F}\\ \text{General case} \end{array}$ 

## Graph $\mathcal{G}(\mathcal{S}_{\mathcal{F}})$

The graph  $\mathcal{G}(\mathcal{S}_{\mathcal{F}})$  is defined as follows:

 its vertices are the graphs G for which there exists X ∈ F such that G = G(X),

## Graph $\mathcal{G}(\mathcal{S}_{\mathcal{F}})$

The graph  $\mathcal{G}(\mathcal{S}_{\mathcal{F}})$  is defined as follows:

- its vertices are the graphs G for which there exists X ∈ F such that G = G(X),
- there is an edge labeled by  $\sigma \in S_F$  from G to G' if the condition  $C(G', \sigma)$  is satisfied and if  $G = \sigma(G')$ .

## Graph $\mathcal{G}(\mathcal{S}_{\mathcal{F}})$

The graph  $\mathcal{G}(\mathcal{S}_{\mathcal{F}})$  is defined as follows:

- its vertices are the graphs G for which there exists X ∈ F such that G = G(X),
- there is an edge labeled by  $\sigma \in S_F$  from G to G' if the condition  $C(G', \sigma)$  is satisfied and if  $G = \sigma(G')$ .



 $\mathcal{S}_{\mathcal{F}}$ -adic characterization

Theorem

A shift space X is in  $\mathcal{F}$  if and only if it has a primitive  $\mathcal{S}_{\mathcal{F}}$ -adic representation labeling an infinite path in  $\mathcal{G}(\mathcal{S}_{\mathcal{F}})$ .

 $\mathcal{S}_{\mathcal{F}}$ -adic characterization

#### Theorem

A shift space X is in  $\mathcal{F}$  if and only if it has a primitive  $\mathcal{S}_{\mathcal{F}}$ -adic representation labeling an infinite path in  $\mathcal{G}(\mathcal{S}_{\mathcal{F}})$ .

The graph  $\mathcal{G}_t(\mathcal{S}_F)$  is defined as follows:

- its vertices are the trees over  $\mathcal{A}_4$ ,
- there is an edge labeled by  $\sigma \in S_F$  from G to G' if the condition  $C(G', \sigma)$  is satisfied and if  $G = \sigma(G')$ .

## $\mathcal{S}_{\mathcal{F}}\text{-}\mathsf{adic}$ characterization

#### Theorem

A shift space X is in  $\mathcal{F}$  if and only if it has a primitive  $\mathcal{S}_{\mathcal{F}}$ -adic representation labeling an infinite path in  $\mathcal{G}(\mathcal{S}_{\mathcal{F}})$ .

The graph  $\mathcal{G}_t(\mathcal{S}_F)$  is defined as follows:

- its vertices are the trees over  $\mathcal{A}_4$ ,
- there is an edge labeled by σ ∈ S<sub>F</sub> from G to G' if the condition C(G', σ) is satisfied and if G = σ(G').

#### Theorem

A shift space X is in  $\mathcal{F}$  if and only if it has a primitive  $\mathcal{S}_{\mathcal{F}}$ -adic representation labeling an infinite path in  $\mathcal{G}_t(\mathcal{S}_{\mathcal{F}})$ .

France Gheeraert

 $\begin{array}{c} \text{Definitions}\\ \text{Dendric shifts having one right special factor}\\ \textbf{S-adic characterization of shifts in }\mathcal{F}\\ \text{General case} \end{array}$ 

## Simplification of the graph

If we only take one labeling for each 'shape' of tree, it is still a characterization.

## Simplification of the graph

If we only take one labeling for each 'shape' of tree, it is still a characterization.



where

$$\beta' = \beta \pi_{23}, \quad \delta' = \delta \pi_{23}, \quad \gamma' = \gamma \pi_{12}, \quad \gamma'' = \pi_{23} \gamma \pi_{23}.$$

 $\begin{array}{c} \text{Definitions}\\ \text{Dendric shifts having one right special factor}\\ S\text{-adic characterization of shifts in }\mathcal{F}\\ \text{General case}\end{array}$ 

## General case

France Gheeraert

 $\begin{array}{c} \mbox{Definitions}\\ \mbox{Dendric shifts having one right special factor}\\ S\mbox{-adic characterization of shifts in }\mathcal{F}\\ \mbox{General case}\end{array}$ 

### What changes?

Bigger set of morphisms

 $\begin{array}{c} \text{Definitions}\\ \text{Dendric shifts having one right special factor}\\ S\text{-adic characterization of shifts in }\mathcal{F}\\ \text{General case} \end{array}$ 

### What changes?

- Bigger set of morphisms
- So far, we only had to consider the left side

$$\mathcal{E}_{X,s}$$
$$\mathcal{A}_{s}$$
$$\mathcal{G}(X)$$
$$\mathcal{C}(\mathcal{G},\sigma)$$
$$\sigma(\mathcal{G})$$

 $\begin{array}{c} \mbox{Definitions}\\ \mbox{Dendric shifts having one right special factor}\\ S\mbox{-adic characterization of shifts in $\mathcal{F}$}\\ \mbox{General case} \end{array}$ 

### What changes?

- Bigger set of morphisms
- So far, we only had to consider the left side

$$\begin{aligned} \mathcal{E}_{X,s} &\longrightarrow \mathcal{E}_{X,s}^{L} \\ \mathcal{A}_{s} &\longrightarrow \mathcal{A}_{s}^{L} \\ G(X) &\longrightarrow G^{L}(X) \\ \mathcal{C}(G,\sigma) &\longrightarrow \mathcal{C}^{L}(G,\sigma) \\ \sigma(G) &\longrightarrow \sigma^{L}(G) \end{aligned}$$

 $\begin{array}{c} & \mbox{Definitions}\\ \mbox{Dendric shifts having one right special factor}\\ S\mbox{-adic characterization of shifts in $\mathcal{F}$}\\ & \mbox{General case} \end{array}$ 

## Set of morphisms

How to find the set  $S_A$ :

- list all possible extension graphs,
- If or each extension graph, choose a letter and list the paths in the Rauzy graph of order 1,

 $\begin{array}{c} & \mbox{Definitions}\\ \mbox{Dendric shifts having one right special factor}\\ S\mbox{-adic characterization of shifts in $\mathcal{F}$}\\ & \mbox{General case} \end{array}$ 

## Set of morphisms

How to find the set  $S_A$ :

- list all possible extension graphs,
- If or each extension graph, choose a letter and list the paths in the Rauzy graph of order 1,
- problem: often too many paths (sometimes, infinite number of paths),

 $\begin{array}{c} & \mbox{Definitions}\\ \mbox{Dendric shifts having one right special factor}\\ S\mbox{-adic characterization of shifts in $\mathcal{F}$}\\ & \mbox{General case} \end{array}$ 

## Set of morphisms

How to find the set  $S_A$ :

- Iist all possible extension graphs,
- If or each extension graph, choose a letter and list the paths in the Rauzy graph of order 1,
- problem: often too many paths (sometimes, infinite number of paths),
- Ochoose all subsets of compatible paths.

### Dendric images

Theorem (G., Lejeune, Leroy)

Let X be a dendric shift over A and  $\sigma \in S_A$ . The image  $\sigma(X)$  is dendric if and only if the following conditions are satisfied:

'L' for all  $s \in A^*$  and for all  $v \in \mathcal{L}(X)$ , the graph  $\mathcal{E}^L_{X,s}(v)$  is connected,

### Dendric images

Theorem (G., Lejeune, Leroy)

Let X be a dendric shift over A and  $\sigma \in S_A$ . The image  $\sigma(X)$  is dendric if and only if the following conditions are satisfied:

- 'L' for all  $s \in A^*$  and for all  $v \in \mathcal{L}(X)$ , the graph  $\mathcal{E}^L_{X,s}(v)$  is connected,
- <sup>\*</sup>R' for all  $p \in A^*$  and for all  $v \in \mathcal{L}(X)$ , the graph  $\mathcal{E}_{X,p}^R(v)$  is connected.

where

$$\mathcal{A}_p^{\mathsf{R}} = \{ \mathsf{a} \in \mathcal{A} \mid \sigma(\mathsf{a}) \notin p\mathcal{A}^* \}$$

and  $\mathcal{E}_{X,p}^{R}(v)$  is the subgraph of  $\mathcal{E}_{X}(v)$  where we removed the right vertices in  $\mathcal{A}_{p}^{R}$  (and the isolated vertices).

 $\begin{array}{c} \mbox{Definitions}\\ \mbox{Dendric shifts having one right special factor}\\ S\mbox{-adic characterization of shifts in $\mathcal{F}$}\\ \mbox{General case} \end{array}$ 

# Graphs $G^{L}(X)$ and $G^{R}(X)$

#### Definition

If X is dendric,  $G_n^R(X)$  is the union of the cliques given by the sets of vertices  $E_X^R(v)$  for all  $v \in \mathcal{L}(X) \cap \mathcal{A}^n$  and we define

$$G^R(X) = \lim_n G^R_n(X).$$
$\begin{array}{c} \mbox{Definitions}\\ \mbox{Dendric shifts having one right special factor}\\ S\mbox{-adic characterization of shifts in $\mathcal{F}$}\\ \mbox{General case} \end{array}$ 

## Graphs $G^{L}(X)$ and $G^{R}(X)$

#### Definition

If X is dendric,  $G_n^R(X)$  is the union of the cliques given by the sets of vertices  $E_X^R(v)$  for all  $v \in \mathcal{L}(X) \cap \mathcal{A}^n$  and we define

$$G^R(X) = \lim_n G^R_n(X).$$

#### Theorem (G., Leroy)

Let X be a dendric shift over A and  $\sigma \in S_A$ . The image  $\sigma(X)$  is dendric if and only if the following conditions are satisfied:  $\mathcal{C}^L(G^L(X), \sigma)$ : for all  $s \in A^*$ , the graph  $G^L(X) \setminus A_p^S$  is connected,  $\mathcal{C}^R(G^R(X), \sigma)$ : for all  $p \in A^*$ , the graph  $G^R(X) \setminus A_p^R$  is connected.  $\begin{array}{c} & \text{Definitions} \\ \text{Dendric shifts having one right special factor} \\ S\text{-adic characterization of shifts in } \mathcal{F} \\ & \text{General case} \end{array}$ 

### S-adic characterization of dendric shifts

The graph  $\mathcal{G}_t^L(\mathcal{S}_A)$  is defined as follows:

- its vertices are the trees over  $\mathcal{A}$ ,
- there is an edge labeled by σ ∈ S<sub>A</sub> from G to G' if the condition C<sup>L</sup>(G', σ) is satisfied and if G = σ<sup>L</sup>(G').

 $\begin{array}{c} & \text{Definitions} \\ \text{Dendric shifts having one right special factor} \\ S\text{-adic characterization of shifts in } \mathcal{F} \\ & \text{General case} \end{array}$ 

### S-adic characterization of dendric shifts

The graph  $\mathcal{G}_t^R(\mathcal{S}_A)$  is defined as follows:

- its vertices are the trees over  $\mathcal{A}$ ,
- there is an edge labeled by  $\sigma \in S_A$  from G to G' if the condition  $\mathcal{C}^{\mathbf{R}}(G', \sigma)$  is satisfied and if  $G = \sigma^{\mathbf{R}}(G')$ .

 $\begin{array}{c} \text{Definitions}\\ \text{Dendric shifts having one right special factor}\\ S\text{-adic characterization of shifts in }\mathcal{F}\\ \text{General case}\end{array}$ 

### S-adic characterization of dendric shifts

The graph  $\mathcal{G}_t^R(\mathcal{S}_A)$  is defined as follows:

- its vertices are the trees over  $\mathcal{A}$ ,
- there is an edge labeled by  $\sigma \in S_A$  from G to G' if the condition  $\mathcal{C}^{R}(G', \sigma)$  is satisfied and if  $G = \sigma^{R}(G')$ .

#### Theorem (G., Leroy)

A shift space X over  $\mathcal{A}$  is minimal dendric if and only if it has a primitive  $\mathcal{S}_{\mathcal{A}}$ -adic representation labeling infinite paths in both  $\mathcal{G}_t^L(\mathcal{S}_{\mathcal{A}})$  and  $\mathcal{G}_t^R(\mathcal{S}_{\mathcal{A}})$ .

 $\begin{array}{c} & \mbox{Definitions}\\ \mbox{Dendric shifts having one right special factor}\\ S\mbox{-adic characterization of shifts in $\mathcal{F}$}\\ & \mbox{General case} \end{array}$ 

# Thank you for your attention!

France Gheeraert

S-adic characterization of dendric shifts

Dyadisc 5 42 / 42