
S2. Fine-tuning phase

S2.1 Overall summary

Table 1 shows the encoder, pre-training, and hyper-parameter settings used by
the different experiments performed. In this study, a ResNet-101 [1] encoder
was adopted as the feature extractor for all models. To prevent overfitting and
to reduce the amount of time needed for training, the parameter values obtained
through pre-training with ImageNet [2] or MS COCO 2017 [3] were transferred
to the encoder and used for fine-tuning.

In the fine-tuning stage, the model predicted 10 mask patches at a time
and compared those predictions to the corresponding 10 ground truth patches.
After that, the model parameters were updated using the average value of the
10 losses. A mini-batch size of 10 was found to be the maximum value for which
the available GPU memory capacity (8GB) was not exceeded.

The TR-based deep learning models gradually reduce the training loss that
occurs in the fine-tuning CVFs by performing multiple epochs. In each epoch,
mini-batches were fed to a model until every patch in the fine-tuning CVFs was
used once. At the end of every epoch, the validation CVF was used to obtain
the validation loss and validation effectiveness of the model under consideration.

At the end of an epoch, the parameters of each model were only kept if the
validation loss of the current epoch was less than the lowest validation loss found
during the previous epochs. For U-Net, TTA U-Net, and Nested U-Net, this
process was repeated for 20 epochs; for FCN and DeepLabv3, only 10 epochs
were used since the optimization time for these models was more than double
that of the others. The stored parameters were then used to calculate the final
model performance for the test set.

More details about the models used in our experiments can be found in
Supporting information S2.2. Furthermore, information about the loss func-
tions and the optimizers used can be found in Supporting information S2.3
and Supporting information S2.4, respectively. Finally, transfer leaning using
pre-trained parameters is explained in Supporting information S2.5.

Table 1: Encoder, pre-training, and hyper-parameter settings used by the experiments performed.

Model Encoder
Dataset for
pre-training

Loss Optimizer
Type Positive weight Type Learning rate Momentum

U-Net (1) ResNet-101 ImageNet BCE With Logits 9 SGD 0.001 0.9
U-Net (2) ResNet-101 ImageNet Dice BCE - Adam 0.001 -
U-Net (3) ResNet-101 ImageNet Dice - Adam 0.001 -
U-Net (4) ResNet-101 ImageNet Dice - SGD 0.001 0.9

TTA U-Net (3) ResNet-101 ImageNet Dice - Adam 0.001 -
TTA U-Net (4) ResNet-101 ImageNet Dice - SGD 0.001 0.9

FCN ResNet-101 MS COCO 2017 Dice - SGD 0.001 0.9
DeepLabv3 ResNet-101 MS COCO 2017 Dice - Adam 0.001 -

Nested U-Net ResNet-101 ImageNet BCE With Logits 9 Adam 0.001 -

1



S2.2 TR-based deep learning models for segmentation

S2.2.1 U-Net

We used U-Net [4], a popular convolutional neural network, as our basic seg-
mentation model M. In particular, U-Net is an encoder-decoder model that
was initially developed for medical image segmentation. However, this model is
currently also widely used outside the medical field [5].

The architecture of U-Net, as shown in Figure 1, consists of a contracting
and an expansive path. The contracting path is composed of a series of con-
volutional layers that extract context from the input image. The final feature
map obtained from the contracting path is deconvoluted in the expansive path.
The deconvoluted feature map is then concatenated with a corresponding fea-
ture map from the contracting path through skip connections (grey arrows in
Figure 1) for more precise localization in the image to be segmented.

For our experiments, we chose a U-Net model with a ResNet-101 [1] encoder,
pre-trained on ImageNet [2]. A high-level Application Programming Interface
(API) [6] has been used to build our segmentation models.

Figure 1: U-Net architecture [4]
.

S2.2.2 Other segmentation networks

Fully Convolutional Network (FCN) [7] proposed FCN, a CNN-based
segmentation model. The defining characteristic of this model is that it consists
only of convolutional layers and that it uses up-sampling. Furthermore, FCN
does not divide an input image into small patches, but takes the whole image
as input. However, for the sake of comparability, our FCN-based model was
fine-tuned on a patch basis in our study. In addition, our FCN-based model
used a ResNet-101 encoder with parameters pre-trained on MS COCO 2017 [3].

DeepLabv3 The DeepLab segmentation models collectively refer to models
that use atrous convolution for dense feature extraction. Compared to former
versions [8], DeepLabv3 [9] is inspired by ResNet [1], adopting the concept of

2



a residual block and deepening the feature extraction layers. In addition, the
effectiveness of segmentation was improved by applying Atrous Spatial Pyramid
Pooling, which explores convolutional features for various resolutions. Similar to
our FCN-based model, our DeepLabv3-based model used a ResNet-101 encoder,
applying fine-tuning to parameter values that have been pre-trained on MS
COCO 2017 [3].

Nested U-Net (U-Net++) [10] proposed Nested U-Net (U-Net++), a neu-
ral network inspired by the dense block concept of DenseNet [11], improving
upon U-Net by changing its structure. In particular, compared to U-Net, Nested
U-Net has three major differences. The first difference is the use of convolutional
skip connections, which aim at learning the semantic gap between encoder and
decoder feature maps. The second difference is the use of dense skip connections,
which improve the flow of gradients. Finally, by applying deep supervision, the
model can be trained either (1) by using the entire model structure (better ef-
fectiveness) or (2) by pruning some layers (faster prediction speed). We used a
pre-defined Nested U-Net architecture, as available from Yakubovskiy [6]

S2.3 Loss functions

In our experiments, the three loss functions discussed below were used. For
this section, M refers to a mini-batch of ground truth masks and M̂ refers to
a mini-batch of predicted masks. On the other hand, Ml pertains to a single
ground truth mask while M̂l refers to a single predicted mask.

Binary cross-entropy (BCE) with logits loss BCE with logits loss is a
modification of the regular BCE loss function [12], combining the sigmoid acti-
vation function and the BCE loss function into a single layer. The use of BCE
with logits loss is numerically more stable than the independent use of the sig-
moid activation function and the BCE loss function. Besides, a hyperparameter
ϱ, called the positive weight, is introduced, making it possible to weight the
positive samples in order to mitigate severe class imbalance. BCE with logits
loss is defined as follows:

LBCE−L(M̂,M) = − 1

N

N∑
l=1

(
ϱ ·Ml · log(σ(M̂l))

+(1−Ml) · log(1− σ(M̂l))
)
,

(1)

whereN represents the size of the mini-batch of images, ϱ represents the positive
weight (set to 9), and σ represents the sigmoid activation function.

Dice loss The Dice coefficient is a measure for the overlap between a predicted
segmentation mask and a ground truth segmentation mask, and is widely used
for evaluating the effectiveness of segmentation models [13]. This measure was

3



used as a loss function, where this loss function is insensitive to data imbal-
ance [14]. The Dice loss function is defined as follows:

LDice(M̂,M) =
1

N

N∑
l=1

(
1− (2 ·Ml · M̂l) + ε

Ml + M̂l + ε

)
, (2)

where ε allows avoidance of numerical issues when Ml = M̂l = 0. In our case, ε
was set to 1.

BCE with Dice loss As discussed in [15], BCE with logits loss and Dice loss
can be combined. The Dice loss focuses on the similarity between the prediction
and the ground truth at the image level, whereas the BCE loss focuses on the
pixel-wise differences between the prediction and the ground truth. BCE with
Dice loss is defined as follows:

LBCE−D(M̂,M) =
1

N

N∑
l=1

(
LBCE−L(M̂l,Ml)

+LDice(M̂l,Ml)
)
.

(3)

S2.4 Optimization methods

Gradient descent is used to update the parameters θ of our segmentation models
in the negative direction of the gradient of an objective function ∇θJ(θ), with
the goal of minimizing the objective function J(θ). Two different optimization
methods were used: (1) Stochastic Gradient Descent (SGD) and (2) Adaptive
Moment Estimation (Adam).

Stochastic Gradient Descent SGD [16] allows optimizing model parame-
ters by obtaining the loss for a mini-batch of images. Although this loss of-
ten substantially fluctuates from mini-batch to mini-batch, it can typically be
minimized much faster thanks to a reduction in the number of calculations per-
formed. Furthermore, the significant fluctuations in loss possibly also prevent
SGD from getting stuck in a local minimum. The mathematical form of SGD
using momentum1 can be found below:

vt = λ · vt−1 + gt ,

θt = θt−1 − α · vt ,
(4)

where vt represents the velocity, gt represents the gradient, λ represents the
momentum, and α represents the learning rate.

When making use of SGD, values for two hyperparameters need to be deter-
mined, namely for the momentum λ and the learning rate α. These hyperpa-
rameters were set to 0.9 and 0.001, respectively. The use of λ allows accelerating

1https://pytorch.org/docs/stable/optim.html

4



the optimization performed by SGD with less fluctuation. This is accomplished
by multiplying the previous velocity with λ and adding the result to the current
gradient gt in order to obtain the current velocity vt. The obtained current
velocity is then used to update the parameters. The learning rate determines
the step size made when updating the parameters in each iteration. It is impor-
tant to set the learning rate adequately: an α-value that is too small leads to
a slow convergence, whereas an α-value that is too large may cause divergence
(overshoot).

Adaptive Moment Estimation Adam [17] is an adaptive learning rate op-
timizer, adopting the strengths of AdaGrad and RMSProp. When making use
of Adam, the learning rate is computed individually for each parameter. Unlike
SGD, which uses gradients directly, Adam utilizes exponentially moving aver-
ages of the gradient and the squared gradient. In particular, mt is defined as
the moving average of the gradient, which is an estimate of the first moment,
whereas the current velocity of the Adam, ut, is defined as the moving average
of the squared gradient, which is an estimate of the second raw moment:

mt = β1 ·mt−1 + (1− β1) · gt , (5)

ut = β2 · ut−1 + (1− β2) · g2t . (6)

In the above equations, β1 and β2 are the exponential decay rates for the
first moment estimate and the second moment estimate, respectively (the default
values β1 = 0.9 and β2 = 0.999 were used).

Both vectors of moving averages were initially set to 0. As training pro-
gresses, the contribution of the previous gradients to the moving average re-
duces, causing mt and ut to be biased towards zero. To avoid this bias, both
mt and ut were corrected:

m̂t =
mt

1− βt
1

, (7)

ût =
ut

1− βt
2

. (8)

The parameters were then updated by re-scaling the learning rate using the
bias-corrected estimators of the first and the second moment:

θt = θt−1 −
α · m̂t

(
√
ût + ε)

. (9)

The learning rate α was set to its default value of 0.001. Furthermore, ε,
which allows avoidance of numerical issues, was set to 10−8.

S2.5 Transfer learning

Deep neural network models consist of a large number of parameters that are
trainable, and where training is achieved by using one or more datasets. The

5



trained parameters encode features that are meaningful for addressing a specific
task such as image segmentation. The major drawbacks in training a deep
neural network model are that it requires a significant amount of computational
power and a substantial amount of data. Transfer learning [18] is a method for
transferring the pre-trained parameters from a source model to a target model,
where these parameters were previously used by the source model to perform
a task that is similar to the task to be performed by the target model. In
this context, the transferred parameters are typically fine-tuned with another
dataset to learn features that are more relevant to the task to be addressed by
the target model (in this study: MP segmentation from fluorescence microscopy
images). By making use of transfer learning, the time needed to train a model
can be reduced as the model does not have to be trained from scratch anymore.

In our study, transfer learning was utilized for constructing all TR-based
deep learning models: the different U-Net variations and Nested U-Net were
pre-trained with ImageNet [19], whereas FCN and DeepLabv3 were pre-trained
with MS COCO 2017 [3].

References

[1] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recogni-
tion. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR); 2016. p. 770–778.

[2] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z,
Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV). 2015;115(3):211–252. doi:10.1007/s11263-015-0816-y.

[3] Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollr P,
Zitnick CL. Microsoft COCO: Common Objects in Context. In: Fleet D,
Pajdla T, Schiele B, Tuytelaars T, editors. Computer Vision – ECCV 2014.
Cham: Springer International Publishing; 2014. p. 740–755.

[4] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for
Biomedical Image Segmentation. In: Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015. Springer International
Publishing; 2015. p. 234–241.

[5] Minaee S, Boykov YY, Porikli F, Plaza AJ, Kehtarnavaz N, Terzopou-
los D. Image Segmentation Using Deep Learning: A Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 2021; p. 1–1.
doi:10.1109/TPAMI.2021.3059968.

[6] Yakubovskiy P. Segmentation Models; 2019. https://github.com/

qubvel/segmentation_models.

6



[7] Shelhamer E, Long J, Darrell T. Fully Convolutional Networks for Seman-
tic Segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 2017;39(4):640–651. doi:10.1109/TPAMI.2016.2572683.

[8] Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL.
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence. 2018;40(4):834–848.
doi:10.1109/TPAMI.2017.2699184.

[9] Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-Decoder with
Atrous Separable Convolution for Semantic Image Segmentation. Com-
puter Vision – ECCV 2018 Lecture Notes in Computer Science. 2018; p.
833–851. doi:10.1007/978-3-030-01234-2 49.

[10] Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. UNet++: A
Nested U-Net Architecture for Medical Image Segmentation. In: Stoyanov
D, Taylor Z, Carneiro G, Syeda-Mahmood T, Martel A, Maier-Hein L,
Tavares JMRS, Bradley A, Papa JP, Belagiannis V, Nascimento JC, Lu Z,
Conjeti S, Moradi M, Greenspan H, Madabhushi A, editors. Deep Learning
in Medical Image Analysis and Multimodal Learning for Clinical Decision
Support. Cham: Springer International Publishing; 2018. p. 3–11.

[11] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely Connected
Convolutional Networks. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR); 2017. p. 2261–2269.

[12] Jadon S. A survey of loss functions for semantic segmentation. 2020 IEEE
Conference on Computational Intelligence in Bioinformatics and Compu-
tational Biology (CIBCB). 2020;doi:10.1109/cibcb48159.2020.9277638.

[13] Sudre CH, Li W, Vercauteren T, Ourselin S, Cardoso MJ. Generalised Dice
Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmen-
tations. In: Deep Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support. Springer; 2017. p. 240–248.

[14] Milletari F, Navab N, Ahmadi SA. V-Net: Fully Convolutional Neural
Networks for Volumetric Medical Image Segmentation. In: 2016 Fourth
International Conference on 3D Vision (3DV. IEEE; 2016. p. 565–571.

[15] Deng R, Shen C, Liu S, Wang H, Liu X. Learning to Predict Crisp Bound-
aries. Computer Vision – ECCV 2018 Lecture Notes in Computer Science.
2018; p. 570–586. doi:10.1007/978-3-030-01231-1 35.

[16] Ruder S. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:160904747. 2016;.

[17] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv
preprint arXiv:14126980. 2014;.

7



[18] Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C. A Survey on Deep
Transfer Learning. In: International conference on artificial neural networks
(ICANN). Springer International Publishing; 2018. p. 270–279.

[19] Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with
Deep Convolutional Neural Networks. Commun ACM. 2017;60(6):84–90.
doi:10.1145/3065386.

8


