A Multi-Scale Model To Investigate Gas Migrations In Clay Materials

$8^{\text {Th }}$ INTERNATIONAL CONFERENCE

G. Corman',$~ F . C o l l i n^{1}$
'University of Liège, Belgium

Context

Deep geological repository:

- Multi-barrier confinement
- Multi-physical processes (THMC)
- Interactions between processes Major issue:
Corrosion of metal components
\longrightarrow Gas release
\hookrightarrow Gas pressure build-up \hookrightarrow Potential gas migrations through the barrier

Mode of gas transport depends on:

- Gas pressure increase (Figure 1, [1])
- Investigated zones (Figure 2)
- Excavation damaged zone (I)
- Sound rock layers (II)

Gas transfers in zone II:

- Governed by the rock structure at a micro-level
- Development of a multi-scale mode Complexity and heterogeneity of the microstructure (pore network morphology and bedding planes) Hydro-mechanical effects

Application

- Modelling of a lab-scale gas injection experiment [2]

Purpose of the model

Macroscale models

- Enriched to discern local phenomena

Multiscale model

- Experimental evidences that defects govern gas flows
- Realistic microstructure including basic ingredients to reproduce macro-properties

Nanoscale models

- Refined modelling of all the pore structure complexity

Description of the model

Representative microstructure

- 1 fracture = bedding plane
- Pore network = assembly of tubes
- Bridging planes

Experimental characterisation of microstructural components

1. Macroporosity

Fitting of the pore size distribution curve
Effect of small-size pores (tortuosity)

2. Intrinsic permeability Navier-Stokes equations Effect of large-size pores 3. Relative permeability Multi-phase flow

4. Retention curve Van Genuchten $S_{r}=S_{\text {res }}+\left(S_{\text {max }}-S_{\text {res }}\left(1+\left(\frac{s}{P_{e}}\right)^{\frac{1}{1-x}}\right)\right.$ Laplace equation
$P_{e 0}=\frac{2 \text { pors } \theta}{\text { apeture }}$

5. Mechanical aperture

Function of the stress state evolution Fracture: $\Delta h=\frac{\Delta \sigma^{\prime}}{K_{n}(h)}$ with $K_{n}=\frac{K_{n}^{o}}{\left(1+\frac{h}{n_{0}}\right)^{2}}$ Tube: $\mathrm{DD}=-\frac{\mathrm{D}_{0}}{2 a}=\frac{\mathrm{a}_{n}}{\left(1+\frac{\Delta h^{\prime}}{n_{0}}\right.}$

Modelling of a gas injection experiment

Geometry - Boundary conditions - Stages of the simulation

Parameters

	Boom Clay Matrix	Zone of Fracture Development (ZFD)	Reservoirs
Mechanical		$\begin{gathered} \mathrm{E}=400 \mathrm{MPa} \\ v=0.33 \end{gathered}$	$\begin{gathered} \hline \text { Very stiff elements } \\ \mathrm{E}=10000 \mathrm{MPa} \\ v=0.3 \end{gathered}$
Hydraulic	Initial aperture $1 \cdot 10^{-7} \mathrm{~m}$	Initial aperture: $\boldsymbol{\pi}$ by 1 order of magnitude	$\begin{aligned} & \text { Highly conductive: } \\ & n=0.5 \\ & k=10^{-10} \mathrm{~m}^{2} \end{aligned}$
	Initial permeability: $\sim 4.2 \cdot 10^{-19} \mathrm{~m}^{2}$	Fracture stiffness: \boldsymbol{y} by 2 orders of magnitude	Flat retention curve: $P_{\text {entry }}=0.001 \mathrm{MPa}$
	Initial porosity: 0.363		
	$\begin{gathered} 100 \text { tubes with } \\ \mathrm{D} \in\left[10^{-9} \mathrm{~m} ; 10^{-6} \mathrm{~m}\right] \end{gathered}$		

Stage 1: Effect of tubes

Stage 2: Gas pressure evolution

Conclusion

We developed a multiscale model able to:

1. Simply idealise the microstructure of the rock with fractures and tubes
2. Reproduce mechanisms inherent to gas migrations in sound rock layers

We showed that:

1. Macropores, micropores and fractures play different roles in gas flows
2. Preferential flow paths can be generated through fractures with weaker properties

We plan to:

1. Link the air entry pressure to fracture/tube aperture
2. To investigate gas flows perpendicular to bedding planes, using bridging planes
3. Make the model general enough to cope with other kinds of host rocks
[^0]
Acknowledgements

EURAD programme has received funding from the European union's Horizon 2020 research and innovation programm EUdoropean Joint Programe
Radioctive Waste Management under grant agreement $n^{\circ} 847593$

Contact

Please contact me for any additional information gilles.corman@uliege.be

[^0]: Reference
 [1] P. Marschall et al (2005), Characterisation of Gas Transport Properties of the Opalinus Clay, a Potential Host Rock Formation for Radioactive Waste Disposal, Oil \& Gas Science and Technology.
 [2] L. Gonzalez-Blanco (2017), Gas migration in Deep Argillaceous Formations: Boom Clay and Indurated Clays, Doctoral thesis, Universitat Politècnica de Catalunya. [3] P. Gerard et al (2014), Modelling of localised gas preferential pathways in claystone, International Journal of Rock Mechanics and Mining Sciences, 67:104-114.
 [4] P. Bésuelle et al (2014), A Laboratory Experimental Study of the Hydromechanical Behavior of Boom Clay, Rock Mechanics and Rock Engineering.
 [5] G. Volckaert et al (1995), MEGAS Modelling and experiments on gas migration in repository host rocks. EUR 16235 MEGAS Final Report Phase 1, p. 464.

