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Deep geological repository:

► Multi-barrier confinement
► Multi-physical processes

( )
► Interactions between processes

Major issue:

Corrosion of metal components
 Gas release
 Gas pressure build-up
 Potential gas migrations 

through the barrier

Advection and diffusion

of dissolved gas

Two-phase flow

Dilatancy-controlled 

gas flow

Gas transport in 

fractures

Mode of gas transport depends on:

► Gas pressure increase (Figure 1, [1])
► Investigated zones (Figure 2)

 Excavation damaged zone (I)
 Sound rock layers (II)

Gas transfers in zone II:

► Governed by the rock structure at a 
micro-level

► Development of a multi-scale model
 Complexity and heterogeneity of 

the microstructure (pore network 
morphology and bedding planes)

 Hydro-mechanical effects

Application

► Modelling of a lab-scale gas 
injection experiment [2]

Purpose of the model

Description of the model

Modelling of a gas injection experiment

Conclusion

Reference

Figure 6: conceptual scheme 

of microstructure

Nanoscale models

► Refined modelling of all the 
pore structure complexity

Multiscale model

► Experimental evidences 
that defects govern            
gas flows

► Realistic microstructure 
including basic 
ingredients to reproduce 
macro-properties

Macroscale models

► Enriched to discern 
local phenomena

Representative microstructure

► 1 fracture = bedding plane
► Pore network = assembly of tubes
► Bridging planes

Figure 5: FESEM images [2]

We developed a multiscale model able to:

1. Simply idealise the microstructure of the rock with 
fractures and tubes

2. Reproduce mechanisms inherent to gas migrations 
in sound rock layers 

We showed that:

1. Macropores, micropores and fractures 
play different roles in gas flows

2. Preferential flow paths can be generated 
through fractures with weaker properties

We plan to:

1. Link the air entry pressure to fracture/tube aperture
2. To investigate gas flows perpendicular to bedding 

planes, using bridging planes
3. Make the model general enough to cope with other 

kinds of host rocks

Experimental characterisation of microstructural components

1. Macroporosity

Fitting of the pore size 
distribution curve

Effect of small-size 
pores (tortuosity)

2. Intrinsic permeability

Navier-Stokes equations
Effect of large-size pores 

3. Relative permeability

Multi-phase flow

4. Retention curve

Van Genuchten

Laplace equation

5. Mechanical aperture

Function of the stress 
state evolution

Pe,0 =
2σ cos θ

aperture

Fracture: Δh =
Δσ′

Kn(h)
with Kn =

𝐊𝐧
𝟎
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Δh
h0
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Geometry – Boundary conditions – Stages of the simulation 

Stage 1: Effect of tubes
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Stage 2: Gas pressure evolution
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Figure 1: gas transport in clay materials, from [1]Figure 2: conceptual scheme of a deep 

geological repository
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Figure 4: from pore network to molecular modelFigure 3: Embedded fracture model, from [3]

Boom Clay Matrix Zone of Fracture Development (ZFD) Reservoirs

Mechanical E = 400MPa
ν = 0.33

Very stiff elements
E = 10000MPa

ν = 0.3

Hydraulic Initial aperture: 
1 ∙ 10−7m

Initial aperture: 

 by 1 order of magnitude
Highly conductive: 

n = 0.5
k = 10−10m2

Initial permeability: 

~4.2 ∙ 10−19m2

Fracture stiffness: 
 by 2 orders of magnitude

Flat retention curve: 

Pentry = 0.001MPa

Initial porosity:
0.363

100 tubes with                             
D ∈ 10−9m ; 10−6m
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