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Figure 3: Embedded fracture model, from [3]
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Description of the model

transport in Representative microstructure

Mode of gas transport depends on: | | | Bridging planes

» Gas pressure increase (Figure 1, [1])
» Investigated zones (Figure 2)
» Excavation damaged zone (l)

» Sound rock layers (1)
Gas transfers in zone ll:

micro-level

» Development of a multi-scale model
» Complexity and heterogeneity of
the microstructure (pore network
morphology and bedding planes)
» Hydro-mechanical effects

Application

» Modelling of a lab-scale gas
injection experiment [2]

Modelling of a gas injection experiment

Geometry - Boundary conditions - Stages of the simulation
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Figure 5: FESEM images [2] Figure 6: conceptual scheme

We developed a multiscale model able to:

1. Simply idealise the microstructure of the rock with

fractures and tubes

in sound rock layers

Reference
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2. Reproduce mechanisms inherent to gas migrations
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1. Macropores, micropores and fractures

play different roles in gas flows

2. Preferential flow paths can be generated
through fractures with weaker properties
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We plan to:

1. Link the air entry pressure to fracture/tube aperture

2. To investigate gas flows perpendicular to bedding
planes, using bridging planes

3. Make the model general enough to cope with other
kinds of host rocks
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