A MULTI-SCALE MODEL TO INVESTIGATE GAS MIGRATIONS IN CLAY MATERIALS

G. Corman¹, F. Collin¹

¹University of Liège, Belgium

8TH INTERNATIONAL CONFERENCE

13-16 June 2022 - Nancy (France)

ON CLAYS IN NATURAL AND ENGINEERED BARRIERS FOR RADIOACTIVE WASTE CONFINEMENT

Context

Deep geological repository:

- Multi-barrier confinement
- Multi-physical processes (THMC)
- Interactions between processes

Major issue:

- Corrosion of metal components \hookrightarrow Gas release

Advection and diffusion of dissolved gas

Gas transport in fractures

~ 1µm

Purpose of the model

Macroscale models -

► Enriched to discern local phenomena

Figure 3: Embedded fracture model, from [3]

- Multiscale model Experimental evidences
- that defects govern gas flows
- ► Realistic microstructure including basic ingredients to reproduce macro-properties

Nanoscale models

► Refined modelling of all the pore structure complexity

Figure 4: from pore network to molecular mode

10⁰

- \hookrightarrow Gas pressure build-up
 - \rightarrow Potential gas migrations through the barrier

radiation

damaged zone

Figure 2: conceptual scheme of a deep geological repository

dry-out

(re)saturation

Dilatancy-controlled gas flow

Figure 1: gas transport in clay materials, from [1]

Mode of gas transport depends on:

- ► Gas pressure increase (Figure 1, [1])
- ► Investigated zones (Figure 2)
 - Excavation damaged zone (I)
 - Sound rock layers (II)

Gas transfers in zone II:

- Governed by the rock structure at a micro-level
- Development of a multi-scale model Complexity and heterogeneity of the microstructure (pore network morphology and bedding planes)
 - Hydro-mechanical effects

Application

► Modelling of a lab-scale gas injection experiment [2]

Representative microstructure

- ► 1 fracture = bedding plane
- Pore network = assembly of tubes
- Bridging planes

∑₁₀₀

distribution ⁸
⁸

rosity

bo

Cumulative

20

Modelling of a gas injection experiment Geometry – Boundary conditions – Stages of the simulation

Parameters

	Boom Clay Matrix	Zone of Fracture Development (ZFD)	Reservoirs
Mechanical	$E = 400MPa$ $\nu = 0.33$		Very stiff elements E = 10000MPa $\nu = 0.3$
Hydraulic	Initial aperture: 1 · 10 ⁻⁷ m	Initial aperture: Initial aperture: Initial aperture: Initial aperture:	Highly conductive: n = 0.5 $k = 10^{-10}m^2$
	Initial permeability: $\sim 4.2 \cdot 10^{-19} \text{m}^2$	Fracture stiffness: by 2 orders of magnitude	Flat retention curve: $P_{entry} = 0.001MPa$
	Initial porosity: 0.363		
	100 tubes with $D \in [10^{-9}m ; 10^{-6}m]$		

Stage 1: Effect of tubes

Stage 2: Gas pressure evolution

Conclusion

We **developed** a multiscale model able to:

- Simply idealise the microstructure of the rock with fractures and tubes
- 2. Reproduce mechanisms inherent to gas migrations in sound rock layers

We **showed** that:

- 1. Macropores, micropores and fractures play different roles in gas flows
- 2. Preferential flow paths can be generated through fractures with weaker properties

We **plan** to:

1. Link the air entry pressure to fracture/tube aperture

- 2. To investigate gas flows perpendicular to bedding planes, using bridging planes
- 3. Make the model general enough to cope with other kinds of host rocks

université

[1] P. Marschall et al (2005), Characterisation of Gas Transport Properties of the Opalinus Clay, a Potential Host Rock Formation for Radioactive Waste Disposal, Oil & Gas Science and Technology. Reference [2] L. Gonzalez-Blanco (2017), Gas migration in Deep Argillaceous Formations: Boom Clay and Indurated Clays, Doctoral thesis, Universitat Politècnica de Catalunya. [3] P. Gerard et al (2014), Modelling of localised gas preferential pathways in claystone, International Journal of Rock Mechanics and Mining Sciences, 67:104–114. [4] P. Bésuelle et al (2014), A Laboratory Experimental Study of the Hydromechanical Behavior of Boom Clay, Rock Mechanics and Rock Engineering. [5] G. Volckaert et al (1995), MEGAS Modelling and experiments on gas migration in repository host rocks. EUR 16235 MEGAS Final Report Phase 1, p.464.

Acknowledgements EURAD programme has received funding from the European union's Horizon 2020 research and innovation programme **European Joint Programm** under grant agreement n°847593. on Radioactive Waste Management

Contact

Please contact me for any additional information gilles.corman@uliege.be