
sensors

Article

Performance Evaluation of Convolutional Neural
Network for Hand Gesture Recognition Using EMG

Ali Raza Asif 1 , Asim Waris 1,* , Syed Omer Gilani 1 , Mohsin Jamil 1,2 , Hassan Ashraf 1,
Muhammad Shafique 3 and Imran Khan Niazi 4

1 School of Mechanical and Manufacturing Engineering, National University of Sciences and
Technology (NUST), Islamabad 44000, Pakistan; araza.bmes18smme@student.nust.edu.pk (A.R.A.);
omer@smme.nust.edu.pk (S.O.G.); mohsin@smme.nust.edu.pk (M.J.);
hashraf.bmes18smme@student.nust.edu.pk (H.A.)

2 Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John’s,
P.O. Box 4200, Newfoundland, NL A1C 5S7, Canada

3 Faculty of Engineering and Applied Sciences, Riphah International University Islamabad,
Islamabad 44000, Pakistan; muhammad.shafique@riphah.edu.pk

4 Center of Chiropractic Research, New Zealand College of Chiropractic, P.O. Box 113-044, Newmarket,
Auckland 1149, New Zealand; imran.niazi@nzchiro.co.nz

* Correspondence: asim.waris@smme.nust.edu.pk

Received: 28 February 2020; Accepted: 12 March 2020; Published: 15 March 2020
����������
�������

Abstract: Electromyography (EMG) is a measure of electrical activity generated by the contraction of
muscles. Non-invasive surface EMG (sEMG)-based pattern recognition methods have shown the
potential for upper limb prosthesis control. However, it is still insufficient for natural control. Recent
advancements in deep learning have shown tremendous progress in biosignal processing. Multiple
architectures have been proposed yielding high accuracies (>95%) for offline analysis, yet the delay
caused due to optimization of the system remains a challenge for its real-time application. From
this arises a need for optimized deep learning architecture based on fine-tuned hyper-parameters.
Although the chance of achieving convergence is random, however, it is important to observe
that the performance gain made is significant enough to justify extra computation. In this study,
the convolutional neural network (CNN) was implemented to decode hand gestures from the sEMG
data recorded from 18 subjects to investigate the effect of hyper-parameters on each hand gesture.
Results showed that the learning rate set to either 0.0001 or 0.001 with 80-100 epochs significantly
outperformed (p < 0.05) other considerations. In addition, it was observed that regardless of network
configuration some motions (close hand, flex hand, extend the hand and fine grip) performed better
(83.7%± 13.5%, 71.2%± 20.2%, 82.6%± 13.9% and 74.6%± 15%, respectively) throughout the course of
study. So, a robust and stable myoelectric control can be designed on the basis of the best performing
hand motions. With improved recognition and uniform gain in performance, the deep learning-based
approach has the potential to be a more robust alternative to traditional machine learning algorithms.

Keywords: classification; deep learning; electromyography; machine learning; myoelectric control;
prostheses

1. Introduction

Electromyography (EMG) is a technique to record electrical signals from the muscles during
neuromuscular activity [1]. Apart from clinical diagnosis, EMG signals have a wide range of applications
in rehabilitation devices [2], electronically controlled chairs [3] and human-computer interactions [4].
For the control of EMG-based upper prosthetic limbs, these signals are used as the main control source
for these devices.

Sensors 2020, 20, 1642; doi:10.3390/s20061642 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0381-9460
https://orcid.org/0000-0002-0190-0700
https://orcid.org/0000-0001-5654-7863
https://orcid.org/0000-0002-8835-2451
https://orcid.org/0000-0001-8752-7224
http://dx.doi.org/10.3390/s20061642
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/6/1642?type=check_update&version=2

Sensors 2020, 20, 1642 2 of 11

Different techniques have been utilized in upper limb artificial devices in order to provide natural
and intuitive control for upper limb amputees they are: (1) on–off control, (2) proportional control,
(3) direct control, (4) finite state machine control, (5) pattern recognition-based control, (6) posture
control schemes and (7) regression control [5,6]. Although these control methods have shown great
success, they can only control one device at a time such as a wrist, hand or elbow, so they have limited
functionality. The amplitude of the EMG signals or rate of change in EMG is used as a control function
in these techniques to change the state of the device.

Machine learning techniques have evolved over time to provide natural myoelectric control to
amputees. These techniques (linear discriminant analysis (LDA), K nearest neighbor (KNN), support
vector machine (SVM), artificial neural network (ANN)) assume that each motion of the hand generates
a distinct and repeatable set of signals that can be recognized by the pattern recognition (PR) technique.
In the literature, some PR techniques are preferred over others based on their signal presentation
or feature set. Many studies have focused on optimizing feature sets to bridge the gap between the
EMG signals and prosthetic control. Though successful [7], machine learning (ML) algorithms have
two major limitations, i.e., feature extraction (features have to be explicitly computed and fed to the
network) and the inability to handle large datasets efficiently [8].

The advent of deep learning (an extension of ML) has addressed both these limitations. Deep
learning algorithms can intrinsically extract important features for classification and have shown
improved efficiency with large datasets [9]. As robustness over time of the classifier is the end goal,
deep learning algorithms can be used as an alternative to both conventional and ML algorithms. Most
recently deep learning methods have outperformed both conventional methods and ML algorithms [9].

With advancements in deep learning, many studies have explored possibilities for EMG-based
hand gesture classification based on the inherent ability of the networks to extract useful features
intrinsically. Park and Lee [10] introduced user-adaptive multi-layered CNN for classification of surface
EMG (sEMG) from the NinaPro database and concluded that it outperformed SVM by 12%–18%. Atzori
et al. [11] showed CNN’s potential compared to traditional techniques (KNN, SVM and LDA). Allard et
al. [12] showed CNN’s performance in a real-time application using a wearable sensor for EMG (MYO
armband) and achieved 97.8% classification accuracy. [13] CNN’s robustness over time was compared
to LDA and auto-encoders SSAE-f (Stacked Sparse Auto-Encoders with features) and SSAE-r (Stacked
Sparse Auto-Encoders with raw samples) for data collected over seven days and showed CNN’s
improved performance over conventional methods. Studies showed that the classification accuracies
of the system changed over time [14]. Zhai [15] proposed a self-calibrating CNN to improve stability
and performance over time on the NinaPro dataset and achieved an improvement of 10.18% on DB2
(intact, 50 motions) and 2.99% on DB3 (amputee, 10 motions) compared to an uncalibrated classifier.
Chen [16] proposed a “compact” strategy (EMGNet) to reduce the number of parameters involved in
the designing of CNN on NinaPro DB5 and achieved slightly better performance compared to classical
machine learning algorithms. Huang [17] utilized spectrogram in conjunction with a CNN-LSTM
(Long Short-Term Memory network) combination and showed improved classification (from 77.167%
to 79.329%) on the NinaPro dataset. Tsinganos [18] proposed a modified CNN and achieved an
improvement of 3% on NinaPro dataset. Pinzón-Arenas [19] used CNN to recognize six hand gestures
using a wearable EMG recording device (Myo Armband, Thalamic Labs) and achieved a validation
accuracy of 98.4% and 99% testing accuracy.

Normally, the convergence of the network and its variation across the considered range is not
discussed, often because more importance is held by the best possible performance (error reduction) of
the network. However, a network may converge at multiple points and the chance is random [20]. So,
another aspect of this study was to consider performance trends for different sets of hyper-parameters
determined by statistically analyzing the performance of each combination (p-values < 0.05 were
considered significant). Lastly, a comparison of classification results per learning rate for each individual
motion to determine a feasible control strategy (general vs. subject-specific).

Sensors 2020, 20, 1642 3 of 11

2. Materials and Methods

2.1. Subjects

The dataset used for the case study was recorded from 18 healthy male subjects (right-handed,
aged 20–35 yrs, mean age 26.2 yrs). All participating subjects had no history of neuromuscular
disease and congenital upper limb deformities. All subjects volunteered for the experiment and gave
written consent before the experiment. a reference electrode (wristband electrode) was placed on the
non-dominant hand near the carpus. The data acquisition protocol was approved by the NUST ethical
committee Ref# NUST/SMME/BMES/ETH/092019/0042.

2.2. Data Acquisition

The surface EMG (sEMG) signals were recorded from the surface with six bipolar Ag/AgCl
electrodes from the following muscles: extensor carpi radialis, extensor digitorum muscle, extensor
carpi ulnaris, flexor carpi radialis, palmaris longus, flexor digitorum superficialis. Signals were sampled
at 8 kHz, bandpass filtered (5–500Hz) and amplified (gain set to 2000 AnEMG12, OT Bioellectronica).

2.3. Experiment Protocol

The subjects were asked to perform the following 10 active upper extremity movements (hand
open, hand close), flexion (wrist), extension (wrist), pronation (forearm), supination (forearm), side
grip (gripping the object perpendicular to the forearm with all fingers flexed and thumb around the
object), fine grip, agree and pointer. The motions are displayed in Figure 1.

Sensors 2020, 20, 1642 3 of 12

2. Materials and Methods

2.1. Subjects

The dataset used for the case study was recorded from 18 healthy male subjects (right-handed,
aged 20–35 yrs, mean age 26.2 yrs). All participating subjects had no history of neuromuscular disease
and congenital upper limb deformities. All subjects volunteered for the experiment and gave written
consent before the experiment. a reference electrode (wristband electrode) was placed on the non-
dominant hand near the carpus. The data acquisition protocol was approved by the NUST ethical
committee Ref# NUST/SMME/BMES/ETH/092019/0042.

2.2. Data Acquisition

The surface EMG (sEMG) signals were recorded from the surface with six bipolar Ag/AgCl
electrodes from the following muscles: extensor carpi radialis, extensor digitorum muscle, extensor
carpi ulnaris, flexor carpi radialis, palmaris longus, flexor digitorum superficialis. Signals were
sampled at 8 kHz, bandpass filtered (5–500Hz) and amplified (gain set to 2000 AnEMG12, OT
Bioellectronica).

2.3. Experiment Protocol

The subjects were asked to perform the following 10 active upper extremity movements (hand
open, hand close), flexion (wrist), extension (wrist), pronation (forearm), supination (forearm), side
grip (gripping the object perpendicular to the forearm with all fingers flexed and thumb around the
object), fine grip, agree and pointer. The motions are displayed in Figure 1.

Figure 1. Hand gestures performed by each subject in this study the neutral or rest position are shown
in (A). The gestures are: (B) hand open, (C) hand close, (D) pronation (forearm), (E) supination
(forearm), (F) extension (wrist), (G) flexion (wrist), (H) side grip (I), fine grip (J), pointer and (K) agree.

Each session comprised of the subject performing four repetitions tasked with 6 s of contraction
for each movement, holding the contraction for three to four seconds in each repetition (with medium
intensity), as is usually the protocol for data acquisition [21,22]. The contraction time allows sufficient
interval for the subject to see the visual cue, initiate contraction, stabilize it and then release to
transition into a rest state. The subjects were visually cued for performing the specific movement via
the image of the motion through BioPatRec [22], an open-source acquisition Graphical User Interface
(GUI) for pattern recognition. The resting time between consecutive contractions was four seconds.
In each repetition, the subjects were asked to execute all motions randomly. The acquisition time for
each subject was 400 s ([6 sec contraction + 4 sec rest × 10 motions) and total acquisition time for the
complete experiment (18 subjects) was around 3 hours.

Figure 1. Hand gestures performed by each subject in this study the neutral or rest position are
shown in (A). The gestures are: (B) hand open, (C) hand close, (D) pronation (forearm), (E) supination
(forearm), (F) extension (wrist), (G) flexion (wrist), (H) side grip (I), fine grip (J), pointer and (K) agree.

Each session comprised of the subject performing four repetitions tasked with 6 s of contraction
for each movement, holding the contraction for three to four seconds in each repetition (with medium
intensity), as is usually the protocol for data acquisition [21,22]. The contraction time allows sufficient
interval for the subject to see the visual cue, initiate contraction, stabilize it and then release to transition
into a rest state. The subjects were visually cued for performing the specific movement via the image
of the motion through BioPatRec [22], an open-source acquisition Graphical User Interface (GUI) for
pattern recognition. The resting time between consecutive contractions was four seconds. In each
repetition, the subjects were asked to execute all motions randomly. The acquisition time for each
subject was 400 s ([6 s contraction + 4 s rest × 10 motions) and total acquisition time for the complete
experiment (18 subjects) was around 3 h.

Sensors 2020, 20, 1642 4 of 11

2.4. Convolutional Neural Network (CNN)

Convolutional neural networks are traditional ANNs but with a convolutional layer and dropout
layer essentially used to avoid overfitting [23]. Traditional classification and machine learning
techniques require feature extraction. These features are decided and computed explicitly and fed into
the network. CNN develops several feature detectors on its own, normally known as convolutional
layers, and during training sorts the important features required to improve accuracy. This is achieved
by convolving the filters with patches of input, creating what is called a receptive field. Receptive
fields allow individual filters to incorporate the same weights for learning for all input patches. This
field is then fed to the activation function [13].

For the network to be able to identify the input more effectively, the classifier needs what we can
refer to as “spatial variance”. This ability of the network is gained by pooling. Not only does it help to
prevent distortions, but it also reduces the dimensionality of the image reducing the parameters to
account for. In order to reduce the problem of vanishing gradient and improve training speed rectified
linear units (ReLU) were used as activation function [24].

CNN primarily uses images as input the segmented data needs to be “morphed” into a suitable
input layer for the network. Since the acquired signal was sampled at 8 kHz and recorded for 40 s,
following segmentation, matrices of 6 × 1200 were obtained, where 6 is the number of channels and
1200 is the number samples in each window of 150 ms (8000 Hz × 0.15s).

The architecture of the network comprises of 15 layers. The network has an input layer and three
convolution layers with 16, 64, 32 (3 × 3) filters, respectively. The network has three normalization
layers and two pooling layers of 2 × 2 and 3 × 3 regions with a stride of 2, respectively. The network
also has 3 ReLU layers, a fully connected layer, a SoftMax classification layer and an output layer.

The training algorithm for the network was stochastic gradient descent with momentum (sgdm).
The validation frequency was set to twice in each epoch. The minimum batch size was set to 128 since
lower batch values increased the training time. These layers and parameters were chosen empirically.

Each motion was labeled as a different class, making a total of 10 classes Figure 2.

Sensors 2020, 20, 1642 4 of 12

2.4. Convolutional Neural Network (CNN)

Convolutional neural networks are traditional ANNs but with a convolutional layer and
dropout layer essentially used to avoid overfitting [23]. Traditional classification and machine
learning techniques require feature extraction. These features are decided and computed explicitly
and fed into the network. CNN develops several feature detectors on its own, normally known as
convolutional layers, and during training sorts the important features required to improve accuracy.
This is achieved by convolving the filters with patches of input, creating what is called a receptive
field. Receptive fields allow individual filters to incorporate the same weights for learning for all
input patches. This field is then fed to the activation function [13].

For the network to be able to identify the input more effectively, the classifier needs what we
can refer to as “spatial variance”. This ability of the network is gained by pooling. Not only does it
help to prevent distortions, but it also reduces the dimensionality of the image reducing the
parameters to account for. In order to reduce the problem of vanishing gradient and improve training
speed rectified linear units (ReLU) were used as activation function [24].

CNN primarily uses images as input the segmented data needs to be “morphed” into a suitable
input layer for the network. Since the acquired signal was sampled at 8 kHz and recorded for 40 s,
following segmentation, matrices of 6 × 1200 were obtained, where 6 is the number of channels and
1200 is the number samples in each window of 150 ms (8000 Hz × 0.15s).

The architecture of the network comprises of 15 layers. The network has an input layer and three
convolution layers with 16, 64, 32 (3 × 3) filters, respectively. The network has three normalization
layers and two pooling layers of 2 × 2 and 3 × 3 regions with a stride of 2, respectively. The network
also has 3 ReLU layers, a fully connected layer, a SoftMax classification layer and an output layer.

The training algorithm for the network was stochastic gradient descent with momentum (sgdm).
The validation frequency was set to twice in each epoch. The minimum batch size was set to 128 since
lower batch values increased the training time. These layers and parameters were chosen empirically.
Each motion was labeled as a different class, making a total of 10 classes Figure 2.

Figure 2. Architecture of the convolutional neural network.

2.5. Parametric Optimization

Deep learning neural networks produce exceptional results; training a neural network requires
mostly empirical methods to tune hyper-parameters.

This can never be conclusive since the nature of the signal at hand is completely random and
greatly varies from subject to subject; therefore, a generalized set of parameters cannot be obtained.
However, the selection of these hyper-parameters greatly affects the obtained results [23].

Typically, the deep learning neural network (DLNN) updates by stochastic gradient descent and
weights are updated by parameter . Mathematically,

, (1)

where L is the loss function and is the learning rate [23].

Figure 2. Architecture of the convolutional neural network.

2.5. Parametric Optimization

Deep learning neural networks produce exceptional results; training a neural network requires
mostly empirical methods to tune hyper-parameters.

This can never be conclusive since the nature of the signal at hand is completely random and
greatly varies from subject to subject; therefore, a generalized set of parameters cannot be obtained.
However, the selection of these hyper-parameters greatly affects the obtained results [23].

Typically, the deep learning neural network (DLNN) updates by stochastic gradient descent and
weights are updated by parameter θt. Mathematically,

θt = θt−1
− εt

∂L
∂θ

, (1)

Sensors 2020, 20, 1642 5 of 11

where L is the loss function and εt is the learning rate [23].
A smaller learning rate results in the slow convergence of the network inversely, a larger learning

rate tends to cause divergence. So, to determine a suitable value, it can take many trials. For example,
for the selection of a suitable learning rate, Smith et al. have introduced a Cyclic Learning Rate (CLR)
method that tends to reduce the number of iterations required to determine a suitable learning rate.
Other methods utilize Bayesian optimization to determine hyper-parameters [24].

Another important parameter to be considered is training cycles (Epochs). Tuning of this parameter
is perhaps the easiest of all parameters. Given the principle of early stopping and provided all the other
parameters are set. As during progress, one can observe the number of cycles sufficient for the network
to train Early Stopping and Regularization minimize overfitting with early stopping being the more
efficient choice. Although grid search can take several iterations to tune hyper-parameters. It does
have one benefit compared to other methods and that it is parallelizable meaning provided enough
computing power is available it is possible to instead search for a suitable model that would essentially
meet the requirement of the analysis [25].

For this specific study, the learning rate was selected to be incremented logarithmically. Since
the learning rates are equally spaced for this range. However, in the future, the CLR method can also
be employed for the selection of learning rates to improve efficiency. Since the dataset is relatively
smaller, a parallel grid search for the suitable learning rate and adequate training cycles is possible and
can serve as a decent starting position for getting a general idea of parameter vs. performance and
help pave the way later for optimization with different methods for multiple parameters.

The algorithm will grid search through all the possible combinations at different learning rates
and different epoch values for each learning rate. Each network is then tested for classification accuracy
and the performance metric is the mean classification error (MCE). Lower scores indicate better
performance. Obtained results will then be statistically compared and analyzed.

The experiment was performed on a laptop equipped with a quad-core CPU, 16 GB RAM and
8 GB NVIDIA GTX 1070M GPU.

2.6. Hyper-Parameters

The number of training iterations can be adjusted almost freely since it is one of the more
convenient parameters to optimize [25].

The default training iterations in MATLAB are 30. So, a range of 20 to 100 training iterations with
increments of 20 is proposed to observe whether or not further training would enhance performance.
One hundred epochs were selected as the upper threshold as it does provide sufficient training time
and further training yielded negligible performance improvement if any.

In contrast, if there is only one parameter that deserves attention in terms of optimizing for
improving the overall performance of the network, it is the learning rate. The normal value for learning
rate ranges from less than 1 to greater than 10–6, with 0.01 considered as a standard value for most
networks [25]. Hence, the range of 0.00001 to 0.1 was selected.

Scanning between all of these values will require extensive computation and time and the chance
of convergence of the network is random, and multiple algorithms have been developed to optimize the
learning rate (CLR, Grid Search). The values were incremented logarithmically resulting in a learning
rate array of commonly chosen values of [0.00001, 0.0001, 0.001, 0.01, 0.1] in order to observe the
general trend of performance of a multi-layered neural network across the range of suggested values.

2.7. Analysis

For performance metrics, the mean classification error for each learning rate and mean classification
accuracy for individual subjects were considered. For statistical analysis, a two-way analysis of variance
(ANOVA) followed by multiple comparison was implemented to determine performance variation
among learning rates. Performance variations were reported significant for p-values less than 0.05.

Sensors 2020, 20, 1642 6 of 11

3. Results

3.1. Learning Rate vs. Epochs

While we made the argument that sufficient training time is a requirement to train the network
appropriately, Table 1 shows that for the learning rates of 0.0001 and 0.001 there is an almost negligible
improvement in performance (p-value of 0.58) between training iterations set to 80 and 100 for both
learning rates (MCE difference of 0.2% and 0.3%, respectively).

Table 1. Mean classification error for each learning rate vs. epochs.

Learning Rate
Epochs

20 40 60 80 100

0.00001 50.9% 40.1% 33.4% 29.5% 28.8%
0.0001 20.7% 14.1% 10.4% 10.2% 10%
0.001 14.1% 11.3% 9.8% 8.3% 8%
0.01 31.2% 25% 23.4% 20.7% 23%
0.1 68.8% 66.1% 66% 63.4% 58.8%

Table 2 shows the overall mean classification error for each learning rate along with standard
deviation. Average MCEs for each learning rate at respective epochs are shown in Figure 3.

Sensors 2020, 20, 1642 6 of 12

3. Results

3.1. Learning Rate vs. Epochs

While we made the argument that sufficient training time is a requirement to train the network
appropriately, Table 1 shows that for the learning rates of 0.0001 and 0.001 there is an almost
negligible improvement in performance (p-value of 0.58) between training iterations set to 80 and 100
for both learning rates (MCE difference of 0.2% and 0.3%, respectively).

Table 2 shows the overall mean classification error for each learning rate along with
standard deviation. Average MCEs for each learning rate at respective epochs are shown in Figure 3.

Table 1. Mean classification error for each learning rate vs. epochs.

Learning
Rate

Epochs
20 40 60 80 100

0.00001 50.9% 40.1% 33.4% 29.5% 28.8%
0.0001 20.7% 14.1% 10.4% 10.2% 10%
0.001 14.1% 11.3% 9.8% 8.3% 8%
0.01 31.2% 25% 23.4% 20.7% 23%
0.1 68.8% 66.1% 66% 63.4% 58.8%

Figure 3. Mean classification error averaged for all subjects for each learning rate across different
training iterations (lower is better).

3.2. Subject-Wise Average Performance

While assessing the performance of individual subjects (Table 2), it can be observed that Subjects
3, 4, 5, 6, 9, 12 and 18 showed improved performance yielding an average classification error of <10%
for LR set to 0.001. Multiple factors can be responsible for the other subjects not performing well. The

Figure 3. Mean classification error averaged for all subjects for each learning rate across different
training iterations (lower is better).

3.2. Subject-Wise Average Performance

While assessing the performance of individual subjects (Table 2), it can be observed that Subjects
3, 4, 5, 6, 9, 12 and 18 showed improved performance yielding an average classification error of <10%
for LR set to 0.001. Multiple factors can be responsible for the other subjects not performing well. The
amplitude of the acquired signal can be affected by anatomy, force pattern and muscle fatigue caused
during acquisition.

Sensors 2020, 20, 1642 7 of 11

Table 2. Subject-wise average performance.

Subjects
Learning Rate Average Classification Accuracy (%)

0.00001 0.0001 0.001 0.01 0.1

Subject 1 52.9 63 87.3 86.1 13.3
Subject 2 57.6 89.2 88.4 67.1 31.9
Subject 3 68.8 93.5 92.3 79.3 24.3
Subject 4 70.5 90 92.6 82.3 30.6
Subject 5 74.6 92.6 93.5 86.8 45.5
Subject 6 68.4 90 94.2 75.8 40
Subject 7 57.8 89.6 88.6 67.2 31.6
Subject 8 63.1 85.4 89.4 77.7 39
Subject 9 56 88.3 90.5 73.6 24.4

Subject 10 61 85.4 88.2 67.7 31.5
Subject 11 64 83.3 87.3 77.3 42
Subject 12 66.4 89.4 90 76.6 42.5
Subject 13 61.7 83.3 88.4 81.3 42.3
Subject 14 59 85.8 87.4 53.8 31.6
Subject 15 70.5 90.4 87.5 69.8 32.6
Subject 16 66.8 84.4 86.7 75.1 44.5
Subject 17 63.7 87.9 87.8 73.4 45.9
Subject 18 74.6 92.9 93.1 86.7 45.4

The average classification accuracy for all subjects at each learning rate for different training
iterations is given in Table 3.

Table 3. Average classification accuracy for each learning rate vs. epochs.

Learning Rate
Epochs

20 40 60 80 100

0.00001 49.1% 59.9% 66.6% 70.5% 71.2%
0.0001 79.3% 85.9% 89.6% 89.8% 90%
0.001 85.9% 88.7% 90.2% 91.7% 92%
0.01 68.8% 75% 76.6% 79.3% 77%
0.1 31.2% 33.9% 34% 36.6% 41.2%

Further comparisons can be drawn between the average performances of the network trained on
different learning rates by a visual representation for classification of each class (Figure 4).

When determining the variation in performance between different learning rates, repeated
two-way ANOVA, with the two factors being learning rates and training iterations, resulted in the
learning rate (LR) 0.0001 significantly outperforming other learning rates (p < 0.05), except 0.001, which
significantly outperformed all learning rates (p < 0.05).

From Table 4 we observe that the network on average exhibits better performance when the
learning rate is set to either 0.0001 or 0.001 yielding mean classification error ± standard deviation of
13.1% ± 4.6% and 10.4% ± 2.5%, respectively, with the network performing the best at LR set to 0.001.

Table 4. Mean classification error (learning rate).

Learning Rate Mean Classification Error

0.00001 35.7 ± 9.2%
0.0001 13.1 ± 4.6%
0.001 10.4 ± 2.5%
0.01 24.6 ± 3.9%
0.1 64.5 ± 3.8%

Sensors 2020, 20, 1642 8 of 11Sensors 2020, 20, 1642 8 of 12

Figure 4. Performance comparison of the network at different learning rates for classification of
individual gestures. Values closer to circumference indicate better performance and values closer to
origin represent poor performance.

When determining the variation in performance between different learning rates, repeated two-
way ANOVA, with the two factors being learning rates and training iterations, resulted in the

Figure 4. Performance comparison of the network at different learning rates for classification of
individual gestures. Values closer to circumference indicate better performance and values closer to
origin represent poor performance.

4. Discussion

The effect of the selection of considered parameters is crucial to the overall efficiency of the network,
a suitable method would be to automate the selection of learning rate by employing a sequential or
adaptive technique [23–25]. This study is centered around not only the achieved performance of the

Sensors 2020, 20, 1642 9 of 11

network but also its effect on each individual motion. It is observable that selecting a suitable learning
rate yields a significant change in classification accuracy. Even if the learning rate primarily dictates
the overall validation success rate and, in turn, the classification accuracy of the network, it is also
essential to determine whether if there is a possibility of obtaining an even smaller value for validation
loss (error) beyond the selected value for training cycles. This is why it is necessary to train beyond the
set number of epochs to validate this aspect.

During this study, another possible set of parameters was the learning rate set to 0.0001 and
epochs set to 100, which gave almost similar results as 0.001 with iterations set to 80 (average difference
of 1.4%) obtained p-value of 0.58 in multiple comparison test.

The trend as shown in Figure 2 clearly depicts that for a smaller learning rate value, the number
of epochs should be significantly large for the network to converge [25]. Another interesting validation
can be seen when the learning rate is larger, i.e., 0.1. Here we see that the network has completely
diverged from learning, resulting in larger values for validation loss and poor training performance.
An alternative is the use of random sampling for tuning hyper-parameters, due to the inherent scaling
issues of grid search for multiple parameters [25–27].

Higher accuracies have been achieved for multiple degrees of freedom through multiple techniques.
However, primarily, the need here is to develop patient-specific control strategies. Since it is difficult
to obtain a generalized solution for multiple subjects simultaneously (due to the limited number of
subjects for testing), the use of adaptive control schemes based on deep learning architectures has
become a more viable solution.

Current studies mostly deal with pattern recognition (PR) using different feature sets or
proportional control non-invasively using sEMG for improved myoelectric control. However, the
increased number of classes results in performance degradation [27]. CNN eliminates the need for
traditional feature extraction but at the same time requires multi-layered data as a valid input which
requires extra computation for conversion. A suitable substitute method for biosignals would be to
implement similarly layered architecture, which utilizes one-dimensional signals as input to reduce
computational cost. Since the performance of DLNNs depends on the architecture and optimum
parameter selection, an adequate method would either be sequential optimization algorithms [28] or
adaptive algorithms to intuitively select optimum parameters.

An extended study could include the selection of multiple hyper-parameters through some
sequential or adaptive methods.

For real-time (myoelectric) control, the true limiting variable is time, more specifically the response
time of the control system. The response time needs to be adequately small, roughly 300 ms [29], to be
unperceivable to the user. As far as time complexity is concerned, it has a 3:1 ratio for training vs.
testing time per image due to one forward and two backward propagations [30]. Multiple architectures
can have the same time complexity and the run-times are greatly influenced by the GPU’s computing
ability. This, in turn, greatly depends on the hardware and application. An attempt [21] at a real-time
convolutional neural network discussed its potential. Although the study showed that the CNN
potential rivaled that of the standard SVM algorithm, the robustness of CNN over time in comparison
to standard pattern recognition methods, and with respect to changes in limb or electrode placement,
still needs to be explored. The true limiting factor to make it portable, however, still remains due to the
limited processing power available in wearable embedded systems. Currently, wearable embedded
systems are not powerful enough to reproduce the same results as a dedicated GPU, but faster learning
neural networks with optimized parameters can be used in order to reduce the computational time,
which can allow complex models to be implemented on low power devices.

The aim of this study was to observe performance variation of a multi-layered neural network
for raw acquired data of several hand motions and observe that whether the network shows similar
improvement for all motions or does it prefer some motions over others. The results have shown
that the network does tend to perform better when classifying certain motion; however, further
investigation is possible by increasing the number of subjects. The aim here is to see the behavior and

Sensors 2020, 20, 1642 10 of 11

then in the future make a workaround strategy for improving performance relatively uniformly across
all motions.

The study here was constructed around one network architecture and dataset. Further studies
may include multiple architectures and performance can be analyzed among various networks across
multiple datasets.

5. Conclusions

The results exhibit that the network clearly preferred some motions on average across all tested
cases. In addition, the network performed similarly at 0.0001 (p > 0.05) against the best guess 0.001
which supports the randomness of convergence. Further analysis can incorporate multiple architectures
trained and tested for larger datasets for further validation.

Author Contributions: Conceptualization, A.R.A., A.W., S.O.G. and M.J.; methodology, A.R.A., A.W., S.O.G. and
H.A.; data collection, A.R.A. and A.W.; validation, A.R.A., A.W. and H.A.; formal analysis, A.R.A.; data curation,
A.R.A. and A.W.; writing—original draft preparation, A.R.A.; writing—review and editing, A.W., S.O.G. and M.J.;
supervision, M.J., M.S. and I.K.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Scheme, E.; Englehart, K. Electromyogram pattern recognition for control of powered upper-limb prostheses:
State of the art and challenges for clinical use. J. Rehabil. Res. Dev. 2011, 48, 643–659. [CrossRef] [PubMed]

2. Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. A review of control methods for electric power wheelchairs
based on electromyography signals with special emphasis on pattern recognition. Iete Tech. Rev. 2011, 28,
316–326. [CrossRef]

3. Saponas, T.S.; Tan, D.S.; Morris, D.; Balakrishnan, R.; Turner, J.; Landay, J.A. Enabling always-available input
with muscle-computer interfaces. In Proceedings of the 22nd Annual ACM Symposium on User Interface
Software and Technology, Victoria, BC, Canada, 4 October 2009; pp. 167–176.

4. Yousefi, J.; Hamilton-Wright, A. Characterizing EMG data using machine-learning tools. Comput. Biol. Med.
2014, 51, 1–13. [CrossRef] [PubMed]

5. Geethanjali, P. Myoelectric control of prosthetic hands: State-of-the-art review. Med Devices 2016, 9, 247.
[CrossRef] [PubMed]

6. Roche, A.D.; Rehbaum, H.; Farina, D.; Aszmann, O.C. Prosthetic myoelectric control strategies: A clinical
perspective. Curr. Surg. Rep. 2014, 2, 44. [CrossRef]

7. Waris, A.; Niazi, I.K.; Jamil, M.; Englehart, K.; Jensen, W.; Kamavuako, E.N. Multiday evaluation of techniques
for EMG based classification of hand motions. IEEE J. Biomed. Health Inform. 2018, 23, 1526–1534. [CrossRef]
[PubMed]

8. Qiu, J.; Wu, Q.; Ding, G.; Xu, Y.; Feng, S. A survey of machine learning for big data processing. Eurasip J. Adv.
Signal Process. 2016, 2016, 67. [CrossRef]

9. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
[PubMed]

10. Park, K.-H.; Lee, S.-W. Movement intention decoding based on deep learning for multiuser myoelectric
interfaces. In Proceedings of the 2016 4th International Winter Conference on Brain-Computer Interface
(BCI), Gangwon-do, Korea, 22–24 February 2016; pp. 1–2.

11. Atzori, M.; Cognolato, M.; Müller, H. Deep learning with convolutional neural networks applied
to electromyography data: A resource for the classification of movements for prosthetic hands.
Front. Neurorobotics 2016, 10, 9. [CrossRef] [PubMed]

12. Cote-Allard, U.; Fall, C.L.; Campeau-Lecours, A.; Gosselin, C.; Laviolette, F.; Gosselin, B. Transfer learning
for sEMG hand gestures recognition using convolutional neural networks. In Proceedings of the 2017 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017;
pp. 1663–1668.

http://dx.doi.org/10.1682/JRRD.2010.09.0177
http://www.ncbi.nlm.nih.gov/pubmed/21938652
http://dx.doi.org/10.4103/0256-4602.83552
http://dx.doi.org/10.1016/j.compbiomed.2014.04.018
http://www.ncbi.nlm.nih.gov/pubmed/24857941
http://dx.doi.org/10.2147/MDER.S91102
http://www.ncbi.nlm.nih.gov/pubmed/27555799
http://dx.doi.org/10.1007/s40137-013-0044-8
http://dx.doi.org/10.1109/JBHI.2018.2864335
http://www.ncbi.nlm.nih.gov/pubmed/30106701
http://dx.doi.org/10.1186/s13634-016-0355-x
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
http://dx.doi.org/10.3389/fnbot.2016.00009
http://www.ncbi.nlm.nih.gov/pubmed/27656140

Sensors 2020, 20, 1642 11 of 11

13. Zia ur Rehman, M.; Waris, A.; Gilani, S.; Jochumsen, M.; Niazi, I.; Jamil, M.; Farina, D.; Kamavuako, E.
Multiday EMG-based classification of hand motions with deep learning techniques. Sensors 2018, 18, 2497.
[CrossRef] [PubMed]

14. Waris, A.; Niazi, I.K.; Jamil, M.; Gilani, O.; Englehart, K.; Jensen, W.; Shafique, M.; Kamavuako, E.N. The
effect of time on EMG classification of hand motions in able-bodied and transradial amputees. J. Electromyogr.
Kinesiol. 2018, 40, 72–80. [CrossRef] [PubMed]

15. Zhai, X.; Jelfs, B.; Chan, R.H.; Tin, C. Self-recalibrating surface EMG pattern recognition for neuroprosthesis
control based on convolutional neural network. Front. Neurosci. 2017, 11, 379. [CrossRef] [PubMed]

16. Chen, L.; Fu, J.; Wu, Y.; Li, H.; Zheng, B. Hand Gesture Recognition Using Compact CNN Via Surface
Electromyography Signals. Sensors 2020, 20, 672. [CrossRef] [PubMed]

17. Huang, D.; Chen, B. Surface EMG Decoding for Hand Gestures Based on Spectrogram and CNN-LSTM.
Proceedings of 2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI), Xi’an,
China, 21–22 September 2019; pp. 123–126.

18. Tsinganos, P.; Cornelis, B.; Cornelis, J.; Jansen, B.; Skodras, A. Deep Learning in EMG-based Gesture
Recognition. In Proceedings of the PhyCS, Seville, Spain, 19–21 September 2018; pp. 107–114.

19. Pinzón-Arenas, J.O.; Jiménez-Moreno, R.; Herrera-Benavides, J.E. Convolutional Neural Network for Hand
Gesture Recognition using 8 different EMG Signals. In Proceedings of the 2019 XXII Symposium on Image,
Signal Processing and Artificial Vision (STSIVA), Bucaramanga, Colombia, 24–26 April 2019; pp. 1–5.

20. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13,
281–305.

21. Ameri, A.; Akhaee, M.A.; Scheme, E.; Englehart, K. Real-time, simultaneous myoelectric control using
a convolutional neural network. PLoS ONE 2018, 13, e0203835. [CrossRef] [PubMed]

22. Ortiz-Catalan, M.; Brånemark, R.; Håkansson, B. BioPatRec: A modular research platform for the control
of artificial limbs based on pattern recognition algorithms. Source Code Biol. Med. 2013, 8, 11. [CrossRef]
[PubMed]

23. Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE Winter
Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017;
pp. 464–472.

24. Smith, S.L.; Le, Q.V. A bayesian perspective on generalization and stochastic gradient descent. arXiv 2017,
arXiv:1710.06451.

25. Bengio, Y. Practical recommendations for gradient-based training of deep architectures. In Neural Networks:
Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012; pp. 437–478.

26. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, Lauderdale, FL, USA, 11–13 April 2011;
pp. 315–323.

27. Cho, K.; Raiko, T.; Ihler, A.T. Enhanced gradient and adaptive learning rate for training restricted Boltzmann
machines. In Proceedings of the 28th international conference on machine learning (ICML-11), Washington,
DC, USA, 28 June–2 July 2011; pp. 105–112.

28. Bordes, A.; Bottou, L.; Gallinari, P. SGD-QN: Careful quasi-Newton stochastic gradient descent. J. Mach.
Learn. Res. 2009, 10, 1737–1754.

29. Englehart, K.; Hudgins, B. A robust, real-time control scheme for multifunction myoelectric control. Ieee
Trans. Bio-Med Eng. 2003, 50, 848–854. [CrossRef] [PubMed]

30. He, K.; Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of the IEEE conference
on computer vision and pattern recognition, Boston, MA, USA, 7–12 June 2015; pp. 5353–5360.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s18082497
http://www.ncbi.nlm.nih.gov/pubmed/30071617
http://dx.doi.org/10.1016/j.jelekin.2018.04.004
http://www.ncbi.nlm.nih.gov/pubmed/29689443
http://dx.doi.org/10.3389/fnins.2017.00379
http://www.ncbi.nlm.nih.gov/pubmed/28744189
http://dx.doi.org/10.3390/s20030672
http://www.ncbi.nlm.nih.gov/pubmed/31991849
http://dx.doi.org/10.1371/journal.pone.0203835
http://www.ncbi.nlm.nih.gov/pubmed/30212573
http://dx.doi.org/10.1186/1751-0473-8-11
http://www.ncbi.nlm.nih.gov/pubmed/23597283
http://dx.doi.org/10.1109/TBME.2003.813539
http://www.ncbi.nlm.nih.gov/pubmed/12848352
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Subjects
	Data Acquisition
	Experiment Protocol
	Convolutional Neural Network (CNN)
	Parametric Optimization
	Hyper-Parameters
	Analysis

	Results
	Learning Rate vs. Epochs
	Subject-Wise Average Performance

	Discussion
	Conclusions
	References

