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• Space Shuttle Columbia disaster
• Insulation foam failure 
• NASA: NDT of insulation foam at 0.2 THz
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Context

(Georges et al., 2012)

(Redo-Sanchez et al., 2006)

• Imaging with THz radiation

-Seeing through the opaque

• CSL: Digital holography in visible/IR wavelengths for NDT applications

-Phase imaging reveals more information 

THz digital holography for composite NDT applications? 

ERDF/Wallonia region project TERA4ALL: 

-implementing innovative THz imaging techniques 

-promoting THz technologies for industrial applications



My thesis=Our very first experience with THz radiation in CSL

• Understand different THz science and technology (Chapter 2)

• Evaluate the feasibility of our THz system for composite NDT applications (Chapter 2)

• Developing coherent lensless imaging techniques with THz radiation (Chapter 3)

― Interferometric method: digital holography (Chapter 4)

― Other non-interferometric methods: such as iterative phase retrieval and ptychography (Chapter 5-6)
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Objective of this thesis



Part 1: Overview of the THz technologies

― Key points about THz radiation

― THz generation and detection

― Material characterization with THz-TDS

Part 2: Overview of coherent lensless imaging techniques

Part 3: Developing THz digital holography

Part 4: Developing THz ptychography 

Part 5: Conclusions and perspectives
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Plan of presentation



Electronics photonics

Key points about THz radiation

Terahertz wave range:

• Frequency: 0.1-10 THz (1THz=1012 Hz)

• Wavelength: 30-3000 µm

• 1 THz↔33.3 cm-1↔300 µm↔4.1 meV

Subdivision of THz band: 

Millimeter wave (MMW)
Sub-millimeter wave (SMMW)
Far-infrared (FIR)
Sub-THz

Similar behavior to their neighboring band

0.1 0.3 1 (THz)103
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THz Gap:

• Lack of generating and detecting technologies

• Least explored 
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Key points about THz radiation
Unique characteristics

Material penetration  Non ionizing Spectroscopic  fingerprints         Water absorption  

Various applications

Planck and the cosmic microwave background,
HFI : 100 and 857 GHz (www.esa.int)

(Redo-Sanchez et al., 2006) (Kawase et al. ,2003)

(El-Shenawee et al., 2019) (Hernandez-Cardoso et al., 2017)

(Kramer, 2020)
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Continuous-wave (CW) THz generation

• Gunn diodes, IMPATT diodes and Frequency Multipliers 

(http://terasense.com)

Vacuum electronics and solid state electronics photonics

• Quantum cascade lasers (QCL)

(https://lytid.com)

• Optically pumped FIR lasers :
The source at CSL 
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THz source at CSL: Optically pumped FIR lasers 

(https://www.edinst.com)
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CW THz Room Temperature Detectors and Arrays (Incoherent detection)

• Other single-point detectors

Diode detectorsGolay cells FET-based THz detector

• Focal plane arrays (FPA):  Uncooled thermal detectors (mainly for > 1 THz) 

• VOx
• 320x240
• Pitch 50 μm
• NEP < 30pW @ 

2.5 THz

• SiN
• 320x240
• Pitch 23.5 μm
• NEP < 100 pW

@ 3 THz

Uncooled Microbolometers

• VOx
• 160 × 120
• Pitch 25 μm
• NEP <1.5 pW @ 4.6 THz 
(Zolliker et al, 2021)

• a-Si, LWIR camera
• 640 x 480
• Pitch 17 μm

• VOx
• 384x288
• Pitch 35 μm
• NEP < 35 pW @ 

2.5 THz
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Can we see through the composites with our systems? 

LASER
𝜆=118 µ𝑚

2.52 THz, 500 mW

Very first experiment: 

No signal detected  

GFRP THz cam
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• Most materials are absorbent when the working frequency > 1 THz

• Good transparency at deep sub-THz: 0.1 up to 0.6 THz

• Transparent materials at >1 THz: 

polypropylene (PP), polyethylene (PE), dehydrated tissues

(Naftaly, 2007)

(Strom, 1977)

Measurement with THz-TDS + literature review: FIR band cannot see through the composite 
materials. 



FIR band: 

+ : Higher TRL for imaging application

+ : Higher resolution

+ : Equipment at CSL  

- : Very selective penetration ability

Sub-THz band: 

+: Penetration ability

-: Lack of large array detectors

-: large wavelength

-: No equipment in our lab

0.1 0.3 1 (THz)103
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Conclusions on the overview of the THz technologies 
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Expectation

Reality

THz sees through everything

NDT applications

NDT applications

Conclusions on the overview of the THz technologies 
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Part 1: Overview of the THz technologies

Part 2: Overview of coherent lensless imaging techniques

― General concept of coherent lensless imaging

― holography

― phase retrieval

Part 3: Developing THz digital holography

Part 4: Developing THz ptychography 

Part 5: Conclusions and perspectives
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Plan of presentation



General concept of coherent lensless imaging

Imaging with a lens

F F

Diffraction pattern

Coherent lensless imaging

𝜆
Numerical reconstruction 
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General concept of coherent lensless imaging

Coherent lensless imaging ↔ the phase problem

Measured diffraction pattern: Intensity

෩Ψ 𝑥, 𝑦, 𝑑
2

Phase information is lost! 

𝜆

෩Ψ 𝑥, 𝑦, 0
FFT

෩Ψ 𝑥, 𝑦, 𝑑Diffraction formula: 

• Optics communities: retrieving the phase information of the object field 

• Electron, X-ray communities: imaging without optics 

Solutions

Interferometric method:

holography

Non-interferometric 
method:

Mathematics
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Holography

𝐻 = 𝑅 + 𝑂 2 = 𝑂 2 + 𝑅 2 + 𝑅∗𝑂 + 𝑂∗𝑅

R: reference wave (known wavefront)

0 order +1 order -1 order
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Holo: whole 
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• Object : 𝑀2pixels, 2𝑀2 unknown values (amplitude+ phase )

• Measured intensity: 𝑁2 pixels

• Oversampling ratio 𝜎:

𝜎 =
total number of measured pixels

total number of unknown pixels to solve
=
𝑁2

𝑀2

𝜎 ≥ 2 for a unique solution  (with the presence of noise, 𝜎 ≫ 2)

• How to get 𝜎 > 2?

Non-interferometric methods

(Miao, 1998)

known
unknown
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- Reduce 𝑀2 ↔ A priori support constraint of object.

- Increase 𝑁2 ↔ More intensity measurements (different z, 𝜆… etc.), ptychography. 



Iterative phase retrieval: basic routine (1/3)
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Iterative phase retrieval: basic routine (2/3)
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Object plane Detector plane

3. intensity constraints
(measured intensity)

𝐼0

2. Propagation
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Iterative phase retrieval: basic routine (3/3) 

Object plane Detector plane

3. intensity constraints
(measured intensity) 

𝐼0

4. Back-propagation

• Support 
• Positive absorption
• Sparsity
• … 

5. Update the object estimation
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2. Propagation

Am

Ph

Am

Ph
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Plan of presentation

Part 1: Overview of the THz technologies

Part 2: Overview of coherent lensless imaging techniques

Part 3: Developing THz digital holography

― Experiment of off-axis digital holography at 2.52 THz

― Phase retrieval-assisted off-axis digital holography reconstruction

― Experiment of off-axis digital holography at 280 GHz

Part 4: Developing THz ptychography 

Part 5: Conclusions and perspectives
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Experimental setup at 2.52 THz

• Camera: Gobi LWIR camera, 640 x 480, pitch 17 μm

• Working wavelength: 118.83 µm

• Minimize object-detector distance: 9.5 mm 

(pursue 𝜆 level resolution) 

• Off-axis angle: 45°

• Sample: PP slab with patterns

Zhao, Y., Vandenrijt, J. F., Kirkove, M., & Georges, M. (2019). Iterative phase-retrieval-assisted off-axis terahertz 
digital holography. Applied Optics, 58(33), 9208-9216.
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Recording the object intensity to help the reconstruction

Recording hologram 𝐼𝐻 Recording object intensity 𝐼𝑂

ℱ 𝐼𝐻 ℱ 𝐼𝑂 ℱ 𝐼𝐻 − 𝐼𝑂 Filtered +1 order
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Phase retrieval assisted off-axis DH reconstruction

Off-axis reconstruction  

Off-axis +PR reconstruction (Apodized object intensity)  

PhaseAmplitude Fourier spectrumHologram

PhaseAmplitude Fourier spectrumApodized object intensity
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Phase retrieval assisted off-axis DH reconstruction

Zone Depth 
(µm)

Calculated phase 
(rad)

measured phase 
(rad)

Measurement std
(rad)

Pattern 1 44 1.14 1.13 0.21

Pattern 2 72 1.87 1.88 0.14

Pattern 3 105 2.72 2.95 0.14

Lateral resolution:  
Pattern 6 resolvable ↔ 140 µm (1.17 𝜆)

Off-axis +PR reconstruction  Unwrapped phaseWrapped phase
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Experimental setup at 280 GHz

Wavelength: 1.07 mm (280 GHz)
Scanning step: 0.25 mm
Off-axis angle: 35°
Scanning area: 10 × 10 cm2

One image =4 hrs

Zhao Y, But D, Georges M, et al. “Terahertz digital holography using field-effect transistor detectors,”44th International 
Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019: 1-2.
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Phase retrieval assisted reconstruction: poor contrast hologram

Hologram Object intensity
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Phase retrieval assisted reconstruction: poor contrast hologram

Off-axis reconstruction Off-axis +PR
Am Am
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Conclusions on the development of THz digital holography

• THz off-axis DH @ 2.52 THz and 280 GHz

• Phase-retrieval method with object intensity improves the DH reconstruction quality

- When suppressing the border artifact using apodization

- When the off-axis hologram has poor contrast 

• Limitations and difficulties:

- Very short working distance for reference beam injection 

- Limited imaging area = min Dcam,Dbeam

Ptychography: reference wave-free, large imaging area, decouple illumination beam 
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Plan of presentation

Part 1: Overview of the THz technologies

Part 2: Overview of coherent lensless imaging techniques

Part 3: Developing THz digital holography

Part 4: Developing THz ptychography 

― Principle of ptychography

― THz reflective ptychography

― Further improvement of THz ptychography

Part 5: Conclusions and perspectives
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Ptychography: a special phase retrieval scheme

Ptycho: to fold

redundancy
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Extended ptychographic iterative engine (ePIE) for ptychography 
reconstruction
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Terahertz Reflective Ptychography :Experimental setup

Wavelength: 96.5 µm

Object distance: 18 mm

Scanning position: 8 × 8

Probe size: 3 mm

Scanning step: 0.7 mm

Rong, L., Tang, C., Zhao, Y., Tan, F., Wang, Y., Zhao, J., Wang, D. and Georges, M., “Continuous-wave terahertz reflective 
ptychography by oblique illumination,” Opt. Lett. 45(16), 4412 (2020).
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Data pre-processing
1. Dark offset removal: 

2. Tilted plane correction 

𝐼corrected = 𝑅 𝜃 𝐼recorded



Results

Without tilted plane correction

After tilted plane correction

Without tilted plane correction

After tilted plane correction

Sample 2Sample 1
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Am Ph Am Ph

Am PhAm Ph



Results
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Polish 1 Grosz coin Stainless Steel ruler

Actual height
[µm]

60 (±1.0) -15 (±1.0)

Theoretical phase value 
[rad]

5.5 ( ±0.1) -1.4 ( ±0.1)

Measured phase value 
[rad]

5.5 ( ±0.1) -1.1 ( ±0.1)

Measured height
[µm]

59 (±1.1) -11 (±1.1)
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Limitations of current THz reflective ptychography

1. ePIE gets stagnated only after 15 iterations. Better image quality is expected.

2. Limited FOV: larger samples require more scanning positions, time consuming.  
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Improvement towards biomedical sample imaging (1/3):
background noise removal

First trial 

After removing the background noise residual

Am Ph

background noise residual
Diffraction pattern

Am PhDiffraction pattern
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Solution: Enlarge proportionally the radius of probe and the scanning step
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Improvement towards biomedical sample imaging (2/3):
enlarging the FOV

probe diameter: 6.6 mm; 
step: 1.4 mm;
64 scanning positions;
theoretical FOV: 19.88 × 23.24 mm2

probe diameter: 3.3 mm; 
step: 0.7 mm;
64 scanning positions;
theoretical FOV: 14.98 × 18.34 mm2

Simulation:
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1. More flux on the border of detector

Improvement towards biomedical sample imaging (3/3): 
The benefit of diffuser

plane wave probe

speckled probe

ReconstructionDiffraction pattern
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2. Higher effective overlap ratio on the object plane

Improvement towards biomedical sample imaging (3/3): 
The benefit of diffuser

Simulated object

Plane wave probe

Speckled probe
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Improved THz ptychography setup

Homemade THz Diffuser
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Experimental results: an amplitude contrast object

177.3 μm 
(1.49 λ)

140.4 µm
(1.18𝜆)

Wavelength: 118.83 µm
Scanned grid: 13 x 13 positions 
distance:10.8 mm 
50 iterations

Plane-wave probe: 

Speckled probe: 
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Experimental results: phase contrast object

HDPE slab:

Wavelength: 118.83 µm
Scanned grid: 20 x 20 positions 
distance:14 mm 
100 iterations

Plane-wave probe: 

Speckled probe: 

Amplitude Phase



Experimental results: paraffin-embedded breast cancer tissue sample

Wavelength: 118.83 µm
Scanned grid: 20 x 20 positions 
Distance:14.8 mm 
200 iterations

Phase map Vs. Reflective THz-TDS analysisPtychography

Amplitude Phase
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Amplitude at 1.12 THz using 
THz-TDS

Zhao, Y., Cerica, D., Boutaayamou, M., Verly, J. G., & Georges, M. P. (2022, May). Terahertz ptychography with efficient FOV for 
breast cancer tissue imaging. In Unconventional Optical Imaging III (Vol. 12136, pp. 48-56). SPIE.



46

Conclusions of the optimized THz ptychography setup

Noise residual removal

Larger probe, larger FOV

Diffuser illumination

Three improvements Performances

~2𝜆 in Valzania et al., 2018

Lateral resolution

~ 140.4 µm (1.18 𝝀)
Phase resolution

0.1 rad
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Plan of presentation

Part 1: Overview of the THz technologies

Part 2: Overview of coherent lensless imaging techniques

Part 3: Developing THz digital holography

Part 4: Developing THz ptychography 

Part 5: Conclusions and perspectives
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General Conclusions

1. A detailed study of THz technology and their readiness for THz imaging applications 

2. Built a THz DH system and THz ptychography system, proposed further improvements
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Perspectives: THz lensless imaging towards industry

1. Developing THz ptychography at 280 GHz for NDT of composite with linear camera

2. Application of FIR DH and ptychography towards plastic industry

-Black plastic recycling

Nüßler et al. (2014)

+

Merola et al (2018)

Transparent Microplastic under visible DH Black plastics under sub-THz imaging
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