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Summary  

Background: Pancreatic ductal adenocarcinoma (PDAC) is categorized as the seventh leading cause of cancer 

mortality worldwide. Its predictive markers for long-term survival are not well known. Therefore, it is interesting to 

delineate individual-specific perturbed genes when comparing long-term (LT) and short-term (ST) PDAC survivors, 

and to exploit the integrative individual- and group-based transcriptome profiling. 

Method: Using a discovery cohort of 19 PDAC patients from CHU-Liège (Belgium), we first performed differential 

gene expression (DGE) analysis comparing LT to ST survivor. Second, we adopted unsupervised systems biology 

approaches to obtain gene modules linked to clinical features. Third, we created individual-specific perturbation 

profiles and identified key regulators across the LT patients. Furthermore, we applied two gene prioritization 

approaches: random walk-based Degree-Aware disease gene prioritizing (DADA) method to develop PDAC disease 

modules; Network-based Integration of Multi-omics Data (NetICS) to integrate group-based and individual-specific 

perturbed genes in relation to PDAC LT survival. 

Findings: We identified 173 differentially expressed genes (DEGs) in ST and LT survivors and five modules 

(including 38 DEGs) showing associations to clinical traits such as tumor size and chemotherapy. DGE analysis 

identified differences in genes involved in metabolic and cell cycle activity. Validation of DEGs in the molecular lab 

suggested a role of REG4 and TSPAN8 in PDAC survival. Individual-specific omics changes across LT survivors 

revealed biological signatures such as focal adhesion and extracellular matrix receptors, implying a potential role in 

molecular-level heterogeneity of LT PDAC survivors. Via NetICS and DADA we not only identified various known 

oncogenes such as CUL1, SCF62, EGF, FOSL1, MMP9, and TGFB1, but also highlighted novel genes (TAC1, 

KCNH7, IRS4, DKK4). 

Interpretation:  Our proposed analytic workflow shows the advantages of combining clinical and omics data as well 

as individual- and group-level transcriptome profiling. It suggested novel potential transcriptome marks of LT survival 

heterogeneity in PDAC.  

Funding: Télévie-FRS-FNRS 

Keywords: PDAC, long-term survival, RNA-seq expression, individual- versus group-level signatures 
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Introduction 

Pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of pancreatic tumors.1 It is the 4th leading cause 

of cancer-related death worldwide, while remaining the most lethal among digestive cancers.2 PDAC has a complex 

and dense tumor microenvironment that poses a significant barrier to treatment administration.3 Various factors shape 

the outcome for complex diseases leading to perturbations of a complex intracellular network.4 Disease-relevant genes 

typically do not operate on their own but may be connected to each other and known disease associated genes of 

interest.5 Network approaches that allow integration with regulatory factors are required to fully map complex 

diseases, including PDAC. 

 For PDAC, the overall survival (OS) of patients may be coupled to the mutational status of KRAS (Kirsten 

rat sarcoma viral oncogene) as well as several morphological features.6 Also, multiple miRNAs and transcription 

factors influence metastasis and OS time of PDAC patients.7,8 Due to the high lethality of PDAC, intensive research 

is needed to unravel roots of causes for PDAC survival in general and long-term (LT) versus short-term (ST) survival 

in particular. In the literature, several criteria for LT and ST survival exist : ST (resp. LT) as surviving ≤ 8 (resp.  ≥ 8 

months)9; LT survival as ≥ 10 years10; ST (<14 months) and very long-term (≥ 10 years) of survival.11 Very little 

information is available about regulatory mechanisms involved in the context of <12 months and ≥36 months of 

survival within European populations. We aim to fill this gap and to explore PDAC survival mechanisms by making 

use of genomics data and by integrating a variety of gene prioritization methods.   

Multiple questions are of interest, including ‘How do LT and ST PDAC survivors differ from each other’ 

and ‘Which survival group is most heterogeneous in terms of transcriptome signatures’. PDAC is featured with intra-

tumoral heterogeneity.12 In general, heterogeneity poses a significant challenge to personalized treatments for 

PDAC.13 Previous classification studies paved the path to a better classification of patients with PDAC based on 

molecular pathology information14, molecular features15 and defined five PDAC subtypes, showing associations with 

patient outcomes.16 The identification of subgroups by looking into a perturbed profile of each individual might be 

another interesting approach. Typically, such (molecular) subtyping analyses require relatively large sample sizes. 

Alternative and more elaborate approaches are required, better exploiting and combining individual-level and group 

level profiling, to address the aforementioned questions.   

Pathological findings with tumor cells suggest an abundance of gene regulatory networks (GRNs) in humans 

for various cancers including, breast17,18, prostate19, and PDAC cancer.20 Network biology approaches have the 

potential to identify key regulators that are responsible for molecular heterogeneity giving rise to LT and ST PDAC 

survivor subgroups. Weighted Gene Co-Expression Network Analysis (WGCNA) is such an approach and enables 

the identification of gene modules and their associations with clinical measurements21. For the identification of PDAC 

key regulators, more work is needed to exploit gene connectivity with earlier identified disease genes via the use of 

protein interaction networks (PPIs).  

 The current study teases out PDAC survival associated genes, with a focus on LT survivors ( ≥ 36 months 

survival; in contrast to ST survival defined as ≤  12 months survival) and individual-to-individual differences in whole 
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transcriptome profiles. To this end, we introduced and implemented a flexible and interpretable omics integrative 

analysis framework, involving a series of group-level and individual-level viewpoints.  

 

Methods  

The study’s analytic workflow is depicted in Figure 1 and described in more detail in appendix pp 2-5. 

 

Results 

Patients characteristics  

All patients were divided into ST (≤12 months) and LT (≥36 months) survival groups (resp. STS and LTS), as 

summarized in Figure 2A. A total of 19 patients, comprising 10 STS and 9 LTS, met our inclusion criteria (appendix 

pp 2;9-11).  

Differential gene expression analysis and functional follow-up 

RNA was extracted from FFPE tissues and a quality check was performed for paired-end sequencing. The long non-

coding gene MIR205HG was the topmost differentially down-regulated in the LTS group (p-value=0.008), while the 

protein coding gene GKN1, which encodes for gastrokine1, was the topmost differential up-regulated in LTS (p-

value=1.25E-05). The gene ontology analysis linked the genes with the highest expression levels in LTS to the 

digestive system and lowest expression levels in LTS to the carboxylic binding activity (Figure 2B). Specific domain 

structures of genes play a significant role in gene regulation and expression. The conserved domain analysis resulted 

in 112 genes containing at least one domain (Figure 2C; appendix pp 3). Sixteen genes contained an Ig domain, 

followed by a V-set domain. Later, a unique set of domains was identified in both up- (IgC, IG_like, Trypsin) and 

down-regulated genes (F-Box, IRS, PKc_MAPKK, IgV) suggesting these genes’ regulatory role in PDAC survival 

mechanisms. Fifty survival genes were identified from all DEGs. We observed 22 DEG genes containing at least one 

domain that overlapped with the survival gene set (Figure 2D). RT-qPCR confirmed the differential expression 

observed in LTS versus STS for the genes represented in appendix pp 33. Among them, DEGs REG4 and TSPAN8 

were validated in lab via RT-qPCR analysis (appendix pp 5:section 3.1).  

Group-level survival heterogeneity: Significant clinically relevant modules and their corresponding 3D 

architectures   

All 19 samples with clinical information and gene expression were included in WGCNA (appendix pp 3). Genes with 

similar expression were grouped into gene modules via average linkage hierarchal clustering. By use of a dynamic 

tree-cutting algorithm, a total of 96 distinct co-expression modules were identified. Correlated modules were merged 

with a cut-off height of 0.25, resulting in 35 modules containing 66 to 2010 genes per module. Module M34 was the 

smallest module consisting of 66 genes, whereas M8 was the largest module comprising 2010 genes (Figure 1:C; 
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Figure 3A). The identified 35 modules covered 97 percent of the 18880 input genes. For those 35 modules, we derived 

the corresponding module eigengenes (MEs).  

Association of clinical features with dysregulated genes may help to clarify genes important for disease 

development. All identified DEGs (173 in total) were distributed in 25 modules. Five modules had a significant 

correlation with clinical phenotypes (adjusted p-value <0.05): M7, M9, M15, M30, and M34 (appendix pp 34). Module 

M9 was found to be significantly associated with tumor size (r2=0.72, adjusted p-value=0.01) and T stage (r2 = 0.68, 

adjusted p-value=0.03). M9 consisted of the highest number of DEGs (27 genes). Two other modules, M7 (r2=0.73, 

adjusted p-value=0.01) and M30 (r2=0.71, adjusted p-value=0.02), were negatively associated with time between 

surgery and chemotherapy clinical traits. M30 contained 10 DEGs. Module M34 was significantly associated with 

tumor size by imagery (r2=0.67, adjusted p-value<0.05). Interestingly, two modules were significantly associated with 

chemotherapy: a positive association for M15 (r2=0.68, adjusted p-value=0.04) and a negative association for M9 (r2= 

-0.68, adjusted p-value<0.04). Gene-gene interactome networks were developed for clinically relevant modules M7, 

M15 and M34 (Figure 3B). The overlap between DEGs and genes in five modules (M7, M9, M15, M30, M34) is 

shown in a Venn-Diagram (Figure 3C), and identified 27, 10, and 1 gene as part of M9, M30, and M34, respectively. 

Group-level survival heterogeneity: Functional analysis of clinically relevant modules  

Clinically pertinent gene modules were functionally analyzed in Cytoscape with the ClueGO plug-in (appendix pp 3-

4) to visualize functionally grouped network. Module M9 was linked to 33 significant pathways (adjusted p-value 

<0.05) distributed over ten groups, such as extracellular matrix (ECM) organization (86 genes) and collagen formation 

(37 genes) (Figure 4A). Genes regulating the cell cycle and modulating ECM at molecular or cellular levels have been 

linked to cancer drug targeting and cancer cell plasticity.32 M7, also negatively associated with chemotherapy, 

contained 91 significant pathways, distributed into three groups, such as proteasome (4 genes) and the regulation of 

RAS by GAPs (5 genes) (Figure 4B). Module M15, positively associated with ‘chemotherapy’, was enriched with 11 

significant pathways distributed into five groups (Figure 4C). More detail is given in appendix (pp 5: section 3.2) 

Individual-specific survival heterogeneity: Quantification of heterogeneity between individual transcriptome 

profiles 

To assess heterogeneity in LT survival patients, we constructed individual perturbation expression profiles (PEEPs)22 

(appendix pp 4). It resulted in 6336 significantly perturbed genes across LT PDAC survivors (Figure 1:D; Figure 5A). 

The frequency of disrupted genes in each LT survivor Li (i= 1,...,9) was L1:12, L2:1412, L3:43, L4:474, L5:179, 

L6:319, L7:957, L8:150 and L9:2789 (Figure 5A). Various genes were uniquely perturbed in one LTS patient only. 

Only one group-wise DEG was shared among 3 LT survival subjects, namely TNNI3. Also, at most six DEGs (IRS4, 

KLRC3, CLDN18, NPY, CNTN6, TAC1) were common to 2 out of 9 patients. Hence, for the majority of perturbed 

genes shared among LT survivors, no evidence was found about them being differentially expressed in a group 

comparison between LT and ST survivors. Among genes other than significant DEGs, only one was common to 7 out 

of 9 individuals: NOSTRIN, associated with nitric oxide pathways. No other genes were shared by 8 or all 9 LTS. Five 

out of 9 LTS patients shared DTYMK as perturbed gene in their individual transcriptome profile or PEEP. Six genes 
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(PDXDC1, ATF7IP2, LIN7C JTB, TTL, DVL2), which regulate the ERG signal transduction pathways, were retained 

in 4 out of 9 LTS patients, were significantly involved in transcriptional mis-regulation in cancer (adjusted p-

value=0.025). There were respectively 41 and 180 genes conserved, in 3 and 2 out of 9 LT survivors (Figure 5A;  

appendix pp 5: section 3.3).   

Individual-specific survival heterogeneity: Functional pathway and domain analysis in long-term PDAC survivors  

We furthermore examined the extent to which the LT survivors reflected disruptions in KEGG and Reactome 

pathways, and identified pathways that were significantly enriched in at least one LT individual. In-depth analysis 

revealed 18 pathways in at least two LT survivors (Figure 5B; appendix pp 12-18). Thus, 175 pathways were uniquely 

perturbed in an LT PDAC survivor i.e. not shared among LT survivors (appendix pp 5: section 3.3). 

 Specific domain structures of genes play a significant role in gene regulation and expression. Hence, we also 

investigated the domain structures of perturbed genes in PEEPs of LTS to understand their potential regulatory 

mechanism in LT survival. A total of 47 enriched domains (adjusted p-value<0.05) were identified (appendix pp 19-

20). The distribution of motifs that were commonly shared by 2 out of 9 LT survivors are shown in Figure 5B. For 

each LT survivor, we constructed two hierarchal trees based on the genes potentially involved in multiple domains 

and pathways, one for each for LT survivor. Resulting trees were statistically compared to identify the common 

branches. For instance, nine genes (indicated with pink, blue and green) were involved in common branches in LT2 

(Figure 5C). More detail is given in appendix (pp 5: section 3.3). 

Exploitation of gene connectivity: systems views 

Gene connectivity via reference networks can further highlight interesting gene clusters linked to LT survivors. In a 

first approach, we developed a disease module via DADA5,23, which uses the human protein interactome network 

structure to prioritize disease genes, while at the same time removing possible biases induced by gene degree 

distributions (appendix pp 4). The disease module hypothesis proposes that disease regulatory genes should form one 

or a few large connected components in a human interactome. In this study, we restricted our seed genes (i.e., genes 

that play significant roles in PDAC according to the prior biological knowledge) to PDAC survival (SMAD4, CDKA2, 

and KRAS) and PDAC responsiveness based on a literature search and as identified from the DisGeNET database24 

(appendix pp 21-22). Only the top 1% of DADA ranked genes were retained (Figure 6A I-IV; Figure 1:J), leading to 

70 genes. Only one DADA top gene was also previously identified as DEG (DKK4), as shown in (Figure 6C). We 

also looked at the overlap between DADA-based 1% top-ranked genes and perturbed genes as highlighted by the 

PEEPs of individuals belonging to the long-term survival PDAC patient group (Figure 1:L). There were 23 genes in 

total. None of these common genes had previously been identified as DEGs. Out of 23, we identified 7 DADA top-

ranked genes in common to clinical gene modules as identified before (Figure 6C; Figure 1:K; appendix pp 24-28). 

Only a single gene was shared by at least (actually exactly) three LT subjects, namely GLI2. Three genes (RAC1, 

FOSL1, and EGF) were shared by two out of 9 LT survivor PEEPs. Furthermore, three genes (JAG2, TGFA, HDAC1) 

were uniquely perturbed in a LT survivor (Figure 6B).  
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In a second approach, we integrated individual-specific gene perturbation information (from PEEPs) with 

group-level DEG findings. For this, we used NetICS, which further allows unraveling inter- and intra-patient gene 

expression heterogeneity (appendix pp 4-5; Figure 1:E). Also in this approach a ranked list of genes was generated. 

The ranks are based on the gene scores, acquired through network diffusion algorithms (Figure 6D, appendix pp 23). 

Similar to the DADA approach, we focused on the top 1% of ranked genes for each LT survival patient, leading to 

500 genes. Those 500 genes constituted a subset of PEEP genes. Only 13 genes out of 500 were also DEGs, including 

6 genes that were additionally linked to clinical disease modules (Figure 6D). Among these 13 DEGs, TNNI3 was 

NetICS top ranked, and was shared in its significance by 3 out of 9 LT survivors. It was also associated with the M7 

module of clinical relevance (Figure 6D; Figure 1:G; appendix pp 24-28). Notably, NOSTRIN, a unique to NetICS 

gene (i.e., not highlighted by any other method shown in Figure 6D) was common to 7 out of 9 LT subjects. 

Furthermore, we found 14 genes common to DADA and NetICS gene prioritization methodologies (Figure 6E; Figure 

1:J; appendix 40), involving the pathways such GPCR, Notch signaling pathway and many others. This common gene 

set did not include TNNI3 nor NOSTRIN. The percentage of LTS PEEP genes not included in the top 1% DADA gene 

list is 27% (384/1440) and is similar to the percentage of LTS PEEP genes not included in the top 1% NetICS gene 

list (263/963). 

 

Discussion 

Identifying molecular PDAC cancer drivers is critical for implementing precision medicine in clinical 

practice. Typically, the optimization and fine tuning of gene prioritization methods require large datasets25. Despite 

the small sample size of this study, we identified genes showing associations with multiple clinical traits26, and derived 

plausible links between long-term survival of patients and genes, pathways and protein domains by exploiting multiple 

approaches, including the combination of individual-level with group-level information in integrated analysis 

workflows. Throughout the entire study, we have relied on several statistical approaches to determine statistical 

significance with small samples.  

PDAC accounts for over 90% of pancreatic cancer and is a lethal malignancy with very high mortality rates. 

The gene regulatory landscape of PDAC is defined by four mutational “mountains” (KRAS, TP53, CDKN2A, SMAD4), 

which are the main drivers of PDAC27.  Cancer diseases are heterogeneous at different scales: group level, individual 

level, tumor type, cell level. This study reports on PDAC gene expression differences in patients who survived ≥36 

months (long term LT) or <12 months (short term ST). Via advanced genomic profiling of PDAC survivors, we aimed 

to obtain more insights into LTS-relevant mechanisms that contribute to PDAC heterogeneity.  

In this work, we identified known PDAC driver genes associated with survival, including ROBO2, ZG16B, 

and PLXNA128,29 (appendix pp 2). A thorough investigation of gene expression differences between LT and ST PDAC 

survivors highlighted gene involvement in immune responses (CEACAM20, C6orf13, IRS4, CXCL17), cell cycle 

(SPDYE3, HLA-DQA2, CLDN) and metabolic pathways (GBA3, LIPN), further highlighting the importance of these 

pathways in PDAC disease sruvival30,31. All of these findings evidence that genes linked to immune responses could 

be useful in effective therapies for PDAC survival32. We also identified a downstream target of KRAS (MUC16) as 
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DEG, supporting KRAS implications in survival33. Also, we observed modifications of GKN1, KRT6, and ANKRD43 

gene expressions in LTS, known to induce apoptosis and metastasis cancer34,35. A previous study showed REG4 as a 

serological marker for PDAC36. Very little information exists though about the role of TSPAN8 in PDAC. However 

TSPAN8 promote cancer cell stemness via activation of Hedgehog signaling37. Furthermore, validation of DEGs via 

experimental work suggested a role of REG4 and TSPAN8 in PDAC survival mechanisms. Conserved domain database 

represents the curated information on conserved domain architectures of various proteins that shows implication in 

tumor initiation, tumor progression, angiogenesis and metastasis. The presence of multiple immunogenic domains 

(IGV, V-SET) in identified DEGs further supports recent activities towards cancer therapy38, and in-depth 

investigation of immunity cycles in relation to long-term survival in PDAC patients.  

            Systems biology approaches can provide immediate functional insights by revealing interactions between 

genes39. A motivation for WGCNA is that genes functioning together are regulated or co-expressed together40. Ballouz 

and cauthor41 suggested a minimal of 20 samples to predict meaningful functional connectivity. This forced us to pool 

STS and LTS together for WGCNA analysis on 19 patients and to link thus identified gene modules to clinical traits 

with non-parametric statistics whenever appropriate. Multiple studies have indicated an association of early survival 

in PDAC to tumor size42,. Additionally, multiple targets have been identified in the form of DEGs being associated 

with numerous traits such as tumor size, and the time between surgery and chemotherapy. In our study, identified 

several clinically relevant WGCNA gene modules (e.g., a gene module associated to time between surgery and 

chemotherapy with DEGs LYZ, DKK4, CA14, NASE7, TSPAN8, GKN1, GKN2, SNORD116-18, DKK4), which 

warrants further exploration on increased sample sizes in the future. Notably, TSPAN8 serves as a prognostic marker 

in other cancer types as well37. Apart from time between surgery and chemotherapy, time to surgery may play an 

important role in PDAC as well (waiting for more than 30 days for surgery after diagnosis has been associated to an 

increase in tumor size)43. DEG DKK4 (also top 1% DADA gene) is the least studied protein from the Dickkopf (DKK) 

family, which includes DKK344 and DKK144. The fact that DKK4 did not appear in NetICS’s prioritization gene list, 

nor in PEEPs of LTS, seems to suggest that DKK4 may be more promising in relation to controlling the survival of 

patients with PDAC rather than explaining individual heterogeneity among long-term PDAC survivors.  

        The identification of prognostic factors is complicated in the presence of individual-to-individual heterogeneity45. 

Detailed individual-specific omics profiling may be required to provide novel insights into LT survival in pancreatic 

cancer disease46. DEGs alone are unlikely to fully characterize individual (LT) survival, as observed for other complex 

traits22. Previous studies14,47,48 emphasized the existence of subgrouping of PDAC patients in general, based on 

expression profiling of samples. Our study showed that any LTS patient only exhibits a small fraction of group-wise 

DEGs in their PEEP profiles and shows a deep level of gene expression heterogeneity. Notably, several genes were 

uniquely perturbed in an LT survivor, which strengthens our belief that LTS patients exhibit more abundant levels of 

heterogeneity. Careful inspection of PEEPs across LT survivors highlighted biological signatures: focal adhesion49, 

and ECM receptors50. Interestingly multiple PDAC responsive pathways51 were enriched across several LT survivors 

and led to further subgrouping of LT survivors. Understanding these pathways may provide novel insight into the LT 

survival mechanism in PDAC. PEEP analysis identified FCGR3A, a potential biomarker in PDAC52. Two genes, 
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NOSTRIN and ADGRG6, were shared by 66% of LTS, and have been reported before to be associated with PDAC 

survival.40,53 

Drugs bind to their target proteins and perturb the transcriptome of a cancer cell54. In our study, analytic 

functional analysis of individual PEEPs helped to decode homogeneity patterns within LTS. Heterogeneity at the gene 

level may go hand in hand with homogeneity at the pathway level as different gene perturbations may lead to 

disruptions in the same molecular pathway. The use of network-centric approaches resulted in various oncogenes such 

as CUL1, a central component of SCF55,  EGF, FOSL156, MMP957,  and TGFB131, already known as anticancer targets. 

Different transcription factors (GLI2 and GL3) were identified, linked to the KRAS mechanism of pancreatic 

tumorigenesis58. Identified Immunogenic gene (CDON) and regulatory gene (HDAC1) targets could play significant 

roles in the future immunotherapeutic strategies in long-term PDAC survivors46. CD8 revealed in our study is in line 

with recent studies in which CD8 expression profiling was linked to an immunologic subtype of PDAC with favorable 

survival59. These results indicate the advantages of adopting integrative analysis pipeline that combining knowledge 

about network-driven disease modules with individual-specific gene perturbation profiling even for small sample 

sizes,. Unlike DEG-oriented therapeutic target selection for cancers, commonly used to date, we promote the 

exploitation of analytic frameworks in which multiple network-centric approaches are used for the identification of 

patient-specific therapeutic targets. This will boost cancer prognosis and treatment in the context of personalized 

medicine.  

 

 

Conclusion  

For the first time in PDAC patients, we demonstrated and applied an integrative analytic workflow that combines 

clinical and omics data, as well as individual- and group-level transcriptome profiling. We showed the utility of 

network-based approaches, disease modules and multi-scale functional analyses (gene, protein domain, pathway), 

leading to the identification of known oncogenes and previously unreported marks contributing to heterogeneity in 

long-term PDAC survival.  
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Figure Legends  

Figure 1: Flexible and interpretable omics integrative framework for RNA-seq data collected on two groups of 

patients, exemplified on PDAC ST/LT survival. RNA-seq quality-controlled data are inputted for A) Survival 

analysis; B) Group-based differential analysis via DESeq260; C) Weighted gene co-expression network analysis 

WGCNA21; D) Individual-based differential analysis (appendix pp 2-5);  E) Genes are ranked based on the integration 

of individual and group-based differentially expressed genes via NetICS61; F-H) NetICS specific top 1% ranked genes 

are traced back in multiple previous analyses (A through E); I) DADA5 analysis starting from disease genes; J-L) 

DADA specific top 1% ranked genes are traced back in previous analyses (A through E).  

Figure 2: Overall Kaplan–Meier survival analysis of the ST and LT PDAC cohorts: A) Patient characteristic data 

for a selection of PDAC relevant traits are shown as mixed bar and heat map plot. P1 to P13 refer to patient specific 

clinical traits analyzed in this study (selective data has been shown in plot; full details given in appendix pp 9-11). P1 

indicates Tumor stage (from 1 to 4). P3, P5, P6, P7, P12 and P13 indicate the frequency of number of nodes analyzed, 

time between surgery and chemotherapy (in days), disease free survival, OS (in months), tumor size by imagery (in 

mm) and Time between imagery and surgery, respectively. Remaining P2, P4, P8, P9, P10, P11, refers to status of N 

stage, surgical margin invaded by tumor cells, vascular resection, re-hospitalization after surgery, vascular contact, 

and artery contact, respectively. Here 0 and 1 indicate no and yes, reps. P7 clinical trait denotes overall survival and 

was used for the development of the Kaplan-Meier survival curves for short-term (ST) and long-term (LT) PDAC 

Survivors (STS:  S1 to S10; LTS: L1 to L9); B) Identification of significant gene ontology of associated up and down-

regulated DEGs and their relevant functions. Up and down-regulated genes are highlighted with red and green dots, 

respectively. The size of data points increases with increased significance (uncorrected for multiple testing – see 

appendix pp 3); C) Top-ranked conserved domains in differentially expressed gene sets; D) Venn-diagram showing 

the number of identified genes that are common to or different in multiple first-line analysis strategies (CDD: 
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conserved domain database analysis, DGE: differential gene expression analysis, SA: survival analysis (appendix pp 

3)).  

Figure 3: Clinical relevance of gene co-expression modules: A) Heatmap indicating the number of genes involved 

in each WGCNA-derived gene module; B) Network topology of three modules (M7, M15, M34), where nodes are 

genes and connections among nodes represent gene-gene interactions. In each network, the gene names are indicated 

in the circular layout as derived from Cytoscape.62; C) Venn diagram indicating the common genes between the 

identified significant DEGs and the five previously identified clinically relevant modules. 

Figure 4: Functional follow-up of clinically relevant gene expression modules: A) Ten groups for module M9 

comprising 33 significantly linked pathways; B) Three groups identified in the M7 modules; C) Depiction of the five 

groups identified in M15; For A-C, redundant groups with >50% overlap were merged. Each node in the network 

represents an enriched term; the size of each node follows the extent of enrichment significance. Connection among 

different nodes are based on kappa scores (≥0.4), as available from ClueGO.  

Figure 5: Genomic distributions of differentially expressed genes (DEGs) and PEEPs related to PDAC 

survivors using Circos plots and functional profiles of perturbation data: A) first outermost circle labeled with 

numbers represent chromosomes (same colors); the outermost track represents DEGs (up-regulated and down-

regulated DEGs as scattered points); the nine innermost circles refer to the z-score for each LT survivor (LTS: ranging 

from LT1 to LT9) as scattered points. We have indicated perturbed genes only for chromosome 1 to 22 via track 2 to 

track 10 (outer to inner); B) Enriched KEGG pathways (P1 to P19 (out of 193)) and motifs common to at least 2 out 

of 9 LT individuals, shown via Circos Table Viewer (appendix pp 12-20). Each link refers to an LT survivor and a 

significantly enriched pathway (adjusted p-value < 0.05)/enriched motif based on the perturbed gene set found in that 

individual (data for LT2, LT7 and LT9 are shown). Uniquely enriched pathways across LT survivors are given in 

appendix pp 12-18; C) Visual comparison of two dendrograms developed from genes linked to enriched pathway and 

motif profiles. Similar sub-trees are connected with lines of the same color, while tree branches leading to distinct 

sub-trees are indicated with dashed lines. 

Figure 6: Exploitation of gene connectivity for LT PDAC survivor gene prioritization: A) DADA-oriented multi-

step disease module identification: PDAC seed gene selection (I), restriction to top 1% of ranked genes (II-III) and 

intersection of retained gene list with  individual perturbation gene expression profiles for LT survivors (IV); B) 

DADA-derived top-ranked genes found in at least one, two, or three LT survivors, indicated in green, orange and pink, 

respectively; C) Common genes to DADA and other gene prioritization approaches: DEGs, clinically relevant 

WGCNA gene modules, and PEEPs; D) Same as C) but with NetICS instead of DADA; E) Venn diagram showing 

the overlap between genes prioritized via NetICS and DADA. Common genes to top 1% NetICS individual gene lists 

and top 1% DADA genes are highlighted via arrows in C) and D).  
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Appendix Method: 

Data and Methods  

1. Data and data preparation 

1.1 Patient selection, ethical statement, and criteria to maximize the definition of STS and LTS  

All aspects of the study comply with the Declaration of Helsinki. PDAC patients from Liege University Hospital were recruited on the basis of an opt-out 

methodology, from 2007 to 2014, giving to N=96 pancreas tissue. Tissues were obtained from the University of liege Biobank, Belgium. The study was approved 

by the local institutional ethical board (“Comité d’éthique hospital-faculties universities de Liège (707)) under the file number B707201627153. Among them, 36 

had OS < 12 months or > 36 months, as selected survival criteria. We performed RNA extraction from those 36 samples and processed for RNA quality check.  

1.2 RNA extraction, library preparation, sequencing 

Tumor areas were determined by a certified pathologist and were manually macro-dissected from the FFPE tissues. RNA was extracted using an All Prep 

DNA/RNA/miRNA Universal kit (Qiagen, Belgium) according to the manufacturer’s protocol. The next manipulations described in the paragraphs were performed 

by the GIGA-Genomics facility. The RNA quality (N=36) was assessed using a BioAnalyzer (Agilent, Belgium), and the proportion of RNA with a length higher 

than 200 bases (DV200) was measured. Only 19 out of 36 met a suitable RNA quality, allowed for sequencing. TruSeq® RNA Access Library Prep Kit (Cat. No. 

RS-301-2001 and RS-301-2002) (Illumina, The Netherlands) was used to prepare libraries, and next-generation sequencing was performed on a NextSeq500 

apparatus (Illumina, The Netherlands), in paired-end 2 x 75bp high output mode.   

We performed a series of transcriptome computational analyses to better understand patient heterogeneity between LT and ST survivors. After quality 

control and adaptor trimming with Trimmomatic1, sequence data were mapped to the Genome Reference Consortium GRCh38 assembly using STAR v2.5.22. Read 

counts for known genes were generated using the function HTSeq-count v0.6.1p3 and data were normalized in DESeq2 v1.20.04 as shown in Figure 1. 

1.3 Clinical features of Patients 

Various clinical and pathological parameters of patients (N=19) were included in the analysis. In particular, we collected the following pathological clinical data: 

age, sex, tumor size, number of lymph nodes evaluated, tumor grade, sugey magins invaded by tumor cells, time between surgery and chemotherapy (in days), 

time between surgery and relapse (in months), disease-free survival (DFS), vascular resection, time in hospital after surgery (in days), re-hospitalization 6 months 

after surgery, vascular contact, artery contact, and chemotherapy as shown in Figure 2A. 
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1.4 Group based DEGs analysis: Differential Gene analysis and functional follow-up  

We used DEseq24 for the identification of differentially expressed genes (DEG), with the thresholds log2 fold change ≥2 and ≤−2, to indicate up-regulation and 

down-regulation, respectively (Figure 1:B). Significance was assessed at an unadjusted p-value <0.05 in LT vs. ST group comparison5. We used the ClusterProfiler 

v3.8.16 package to predict various GO processes enriched in differentially expressed genes (DEGs). To identify the protein domain in DEGs, we used batch CD-

Search7.  Identified DEG were analyzed for detection of survival genes, with a log-rank test in a Kaplan–Meier survival model8 (Figure 1:A-B). For each gene, 

patients were classified into two groups, the high-expression group (H) and the low-expression group (L), using the expression median of the gene as a cutoff using 

the survminer9 (v. 0.4.6) R package. 

2. Methods 

The entire workflow is described in Figure 1. Specific details regarding group-level and individual-specific analyses are given in Sections 2.1 and 2.2, respectively. 

2.1 Group-level survival heterogeneity: WGCNA for gene module prediction and assessment of clinical relevance 

The minimum sample size to run weighted gene co-expression network analysis (WGCNA) is at least 15. Therefore, WGCNA v1.6310 was used on pooled ST and 

LT PDAC survival patients to generate a transcriptional network from the normalized expression data. The weighted coefficient β was selected based on scale-free 

topology criteria. The adjacency coefficient α was computed using the power to measure the correlation strength between two genes. The adjacency matrix was 

created based on α, which was subsequently transformed into a topological overlap matrix (TOM). The distance measure dissTOM = 1−TOM, served as input to 

perform average linkage hierarchical clustering (with DynamicTreeCut11), giving rise to gene co-expression modules. Gene modules were shown as branches of 

the resulting pruned tree. It was followed by the calculation of module eigengenes (MEs), which are defined as the 1st linear principal component of each co-

expression module. The hierarchical clustering of MEs was performed to study associations between modules. Approximate non-parametric association tests were 

used to investigate the association between MEs and PDAC clinical traits. In effect, we used two methods to identify modules related to clinical progression traits. 

First, within-module gene significance was identified for every module and all available clinical traits. Average gene significance for a module was defined as 

“module significance”, following recommendations of 12. Second, rank-based correlation (r) was performed among each ME with the multiple clinic pathological 

characteristics available in this study (adjusted p-value for 0.05 MEs). We used parametric (Pearson correlation coefficient) and non-parametric (Spearman rank) 

tests for each continuous and categorical data, respectively.  In order to assess the functional relevance of clinically associated modules, we used ClueGO13, a 

Cytoscape plug-in in order to visualize the non-redundant biological terms for genes in a functionally comparative network from multiple clusters. Non-redundancy 

was assessed via two-sided hypergeometric testing for enrichment/depletion (Bonferroni adjusted p-value < 0.05). Cytoscape 5.014 was used for visualizing gene 

interaction networks (Figure 1:C).  
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2.2 Individual-specific survival heterogeneity: Quantification of heterogeneity between individual transcriptome profiles, with functional and clinical relevance 

We used principles of the PEPPER15 method to construct personalized gene expression perturbation profiles for each of N=19 PDAC subjects. PEPPER requires a 

target class of individuals and a reference class (Figure 1:D).  In this study, we took LT PDAC survivors as target group and considered ST survivors as reference 

(i.e., the most abundant group in real-life). The approach captures the extent to which gene i is perturbed in subject j via a Z-score. This Z-score indicates how 

many standard deviations the individual’s gene expression is away from the mean value of the reference group. As a threshold, we used |z| =2. Positive z-scores > 

2 would indicate up-regulation, negative z-scores < -2 would indicate down-regulation. Given the small sample sizes to work with in this study, we reshuffled the 

ST/LT group labels16 500 times, and repeated the experiment. Note that under the null hypothesis, none of the individual LT survivor profiles would be markedly 

different from average ST survivor profiles and thus LT/ST survivor status would be exchangeable on the basis of individual transcriptome profiles. We used 

shinyCircos17 R package to develop circos plot for identified PEEPs. Functional follow-up analyses included checking for enrichment of KEGG pathways, and 

verifying motif enrichment via ToppGene Suite18 (multiple testing adjusted p-value < 0.05). Also, patient-specific one-way hierarchical clustering and dendrograms 

were developed on the basis of the frequency of perturbed genes in identified domains and pathways. Both dendrograms were subsequently compared using the R 

version 1.12.0 of the dendextend19 R package”. For deeper insights, two-way clustering via the superbiclust package in R (RcmdrPlugin.BiclustGUI20)  version 

1.1) was used, enabling the application of the Bimax21 algorithm  to jointly cluster LT survivors and either one of three levels of biological information, namely 

gene, pathway and motif levels. For each analysis, a higher level (super) biclustering was obtained by constructing a hierarchical tree depicting Jaccard similarity 

between Bimax clusters.  

 In the aforementioned PEEPs analyses (PEEP: an individual perturbation expression profile against a reference), no notion of gene-connectivity was used. 

However, gene connectivity via reference networks can further highlight interesting gene clusters linked to LT survivors. Here, we considered physical interaction 

data as available from ConsensusPathDB22, and obtained 373,101 links between N=19,117 genes.  Starting with genes in pathways that already have been implied 

in PDAC via 23,  and supplementing these genes with searches in the DisGeNet database24 (search term = “Pancreatic Diseases”), resulted in 53 seed genes (Figure 

1:I; appendix pp 19-20). We then used DADA’s module detection algorithm13 to augment the initial list of 53 seed genes and to identify PDAC disease modules. 

The top 1 percent highest ranked genes were considered to form a disease module. Significantly perturbed genes (in LT survivor PEEPs) were mapped on the 

identified disease module. This allowed putting LT survival individual specific genes in the context of gene connectivity and gene neighborhoods. All DADA top 

1 percent genes were checked for their retrieval in previous analyses (Figure 1:J-L). As an alternative approach to exploit gene interaction network structure, we 

adapted NetICS25, an approach initially intended to prioritize cancer genes on a directed functional interaction network. It uses an individual-specific list of genes 

via bidirectional network diffusion of two layers of information (Figure 1:E). As first layer we took the individual-specific significant genes as highlighted in the 

LT PDAC survival PEEPs analyses before (instead of mutant genes per sample in the original NetICS implementation). As second layer we took groups-specific 

DEGs (Section 2.1). Individual-specific gene ranks (for LT survivors) were aggregated via NetICS methodology into an overall ranked list of genes, with restart 
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probability of 0.4. The top 1% percent ranked genes were retained. Similar to follow-up of DADA top-ranked genes, we checked for the frequency of NetICS 

derived top-ranked genes that were also retrieved in former analyses (Figure 1: F-H).  

 

3. Results  

3.1 Potential candidate genes  

Gene XKR5, showed a significant increase in survival in long-term (LT) patients with lower expression compared to short-term survivors (appendix pp 27). We 

observed a similar pattern for the genes GATD3B, CYP27C1, and miR-765 (appendix pp 28-30). These results highlight the potential of the identified genes in 

further understanding molecular underpinnings of PDAC survival. 

3.2 Functional analysis of clinically relevant modules 

Five modules were identified as clinical relevant module via WGCNA analysis (appendix 3). In module M34, we found three significant Reactome pathways 

distributed into three groups: the effects of PIP2 hydrolysis (4 genes), the deactivation of the beta-catenin transactivating complex (3 genes) and the VEGFA-

VEGFR2 pathway (4 genes) (data not shown). In M30, we found two significant pathways: apoptotic cleavage of cell adhesion proteins (4 genes) and o-linked 

glycosylation (11 genes) (data not shown).  Individuals (LT1, LT3, LT4, LT5, LT6) did not show significant enrichment in any KEGG/Reactome pathway.  

 

3.3 Biclustering of functional profiles 

To analyses the effect of perturbed genes in PEEPs (gene is significantly perturbed or not) in LT survivor’s heterogeneity, two-way clustering (biclustering) 

highlighted 64 gene clusters (appendix pp 33-34). The largest cluster (cluster 15) consisted of 363 genes. Deeper hierarchical clustering of these identified clusters 

(appendix pp 4) grouped cluster 7, 36, 37, 42, 47,48, 50, 53, 55 into single super cluster (appendix pp 34) with overrepresentation of cancer specific pathways such 

as mTOR pathways and NOD-like signaling pathways as highlighted via orange box in appendix (pp 36).   

Two-way hierarchical clustering, based on the presence/absence of enriched pathways across LT survivors (LT2, LT7, LT8, LT9) revealed three clusters 

(appendix pp 38). First two clusters (C1 and C2) showed enriched pathways in two LTS only. C1 consisted of 14 pathways was collectively enriched in L7 and 

L9, and highlighted a strong association with cancer-related pathways. C2 showed enrichment of 13 pathways between L9 and L2 such as Proteoglycans in cancer 

and EPH-Ephrin signaling. Smallest cluster C3 consisted of 8 pathways across three LTS survivors i.e LT2, LT7, LT9. Deeper hierarchical clustering groups C2 

and C3 into single supercluster based on similar pathways profiles. Likewise, two-way hierarchical clustering (biclustering) based on motif enrichment profiles 
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(present or absent) across all LT survivors resulted in four clusters (appendix pp 39). The first cluster (C1), represented by LT7 and LT9, was enriched with six 

domains. The second cluster (C2), active in LT2 and LT7, was enriched with 7 domains. The third clusters (C3) involved enrichment of 7 domains shared two 

among LT survivors (appendix pp 17-18). The fourth cluster (C4) was largely shared by three LT survivors (LT2, LT7, and LT9). This cluster involved 5 domains: 

IPR013032, PS01186, IPR000742, PS00022, and IPR009030. Deeper hierarchical clustering groups C1 and C4 into single supercluster based on similar protein 

domains profiles. Deeper hierarchical clustering groups C1 and C4 into single supercluster based on similar protein domains profiles. More in-depth analysis 

revealed a common gene set between cluster 24 obtained from gene-level clustering and cluster 1 (C1) derived from pathway-level biclustering (appendix pp 36, 

39). Similarly, cluster 25 derived from gene level analysis showed overlap with cluster 2 (C2) derived from pathway-level biclustering. 
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Table S1. Complete list of all sample (patients) and their clinical features as considered in the present study. 

Patient ID Group* Age at the surgery (years) Sexa Tumor size (cm)b (measured after surgery) T N Number of nodes analyzed 

S1 ST 74 F 3 4 1 25 

S2 ST 71 M 3.5 3 0 12 

S3 ST 72 F 3.2 3 0 7 

S4 ST 73 M 4 3 1 7 

S5 ST 54 F 3.2 4 1 12 

S6 ST 80 M 4 3 1 8 

S7 ST 80 M 4 3 0 16 

S8 ST 63 F 3 4 1 14 

S9 ST 66 M 5 3 1B 16 

S10 ST 66 M 5 4 1 4 

L1 LT 78 F 2.5 3 1 13 

L2 LT 58 M 3.2 3 0 33 

L3 LT 71 F 2 3 0 10 

L4 LT 83 M 4 3 0 14 

L5 LT 67 M 2.2 3 1 25 

L6 LT 62 M 5 3 1 7 

L7 LT 58 M 2 1 1 8 

L8 LT 77 M 4.5 4 1b 4 

L9 LT 55 M 0.6 1 0 0 
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Complete list of all sample (patients) and their clinical features analyzed in the present study (Table S1 continue) 

Patient ID 
ratio node 

(invaded/analyzed) 

ratio node % 

(invaded/analysed) 

Sugey Magins 

invaded by 

tumor cells** 

Time between 

surgery and 

chemotherapy 

(in days) 

Time between 

surgery and relapse 

(months) (DFS)c 

Time between 

surgery and 

death (months) 

OSd 

Time between 

relapse and 

death 

(months) 

Death 
Vascular 

resection 

S1 2/25 0.08 1 82 NA 3.09 NA 1 1 

S2 0/12 0.00 0 NA 5.00 6.31 1.31 1 1 

S3 0/7 0.00 0 71 NA 7.23 NA 1 0 

S4 5/7 0.71 0 54 5.42 8.32 2.89 1 0 

S5 7/12 0.58 0 63 2.30 8.42 6.11 1 0 

S6 2/8 0.25 1 74 4.50 8.61 4.11 1 0 

S7 0/16 0.00 0 NA 6.87 9.66 2.79 1 0 

S8 4/14 0.28 1 43 4.87 9.66 4.80 1 1 

S9 10/16 0.62 0 53 7.10 9.76 2.66 1 0 

S10 0/4 0.00 0 41 9.37 10.22 0.85 1 0 

L1 4/13 0.31 0 55 25.25 NA NA 1 0 

L2 0/33 0.00 2 NA 17.16 40.70 23.54 1 1 

L3 0/10 0.00 1 NA NA NA NA 1 0 

L4 0/14 0.00 0 NA NA 48.72 NA 1 0 

L5 2/25 0.08 0 16 NA NA NA 0 0 

L6 1/7 0.14 0 71 37.71 60.52 22.81 1 0 

L7 3/8 0.37 0 NA NA NA NA 0 0 

L8 3/4 0.75 0 66 NA NA NA 0 0 

L9 0 NA 0 NA NA NA NA 0 0 
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Complete list of all sample (patients) and their clinical features analyzed in the present study (Table S1 continue) 

Patient ID 

Time in 

hospital 

after 

surgery ( in 

days) 

Re-

hospitalisation 

6 months after 

surgery** 

Vascular contact (if 

tumor contact a vein 

(often portal vein)** 

artery 

contact (if 

tumor 

contact an 

artery) ** 

Tumor size 

by imagery 

(mm)e 

Time 

between 

imagery 

and surgery 

(days) 

Chemotherapy 

(CTH)** 

CTH > 3 

months 

Number of 

CTH cures 

Dose CTH 

received in % 

of the maximal 

theoretical 

value 

S1 42 0 1 0 42 7 1 0 1 100 

S2 14 0 0 0 76 121 0 NA NA NA 

S3 16 0 NA NA NA NA 1 0 NA NA 

S4 22 3 1 0 22 6 1 0 1 100 

S5 16 0 1 0 29 6 1 0 4 100 

S6 24 0 1 1 34 5 1 0 6 80 

S7 21 1 1 1 27 3 0 NA NA NA 

S8 18 0 1 0 NA 31 1 0 7 100 

S9 24 0 1 1 19 21 1 0 3 100 

S10 17 0 1 0 NA 92 1 0 2 NA 

L1 22 0 1 0 15 9 1 0 4 100 

L2 14 1 NA NA NA NA 1 1 NA NA 

L3 11 0 1 0 28 22 0 NA NA NA 

L4 22 0 1 0 NA 27 0 NA NA NA 

L5 17 0 1 0 28 33 1 0 NA NA 

L6 17 0 0 0 NA 63 1 0 4 75 

L7 13 0 1 1 21 28 NA NA NA NA 

L8 28 0 1 0 41 28 1 0 18 100 

L9 21 0 1 0 21 28 0 NA NA NA 

 

* ST=short-term PDAC survivor (ST; death >=3 months et <12 months) ; LT= long-term PDAC survivor (LT; alive or death >=36 months) ; aF= Female ; M=Male ; bcm = centimeters ; cDFS=Disease 

free survival  ; dOS= Overall survival ; emm= millimeters ; NA =Not available; **(1=yes;0=no) 
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Table S2. Pathways enriched in LT survivors based on the Individual specific PEEPs annotated using ToppGene Suite17 (section 2.2). For all identified 

significant pathways, corresponding Bonferroni corrected p-values are shown. Identified pathways are grouped into various categories based on functional 

annotation. highlighted based on their involvement either in three LT survivors; two LT survivors or one LT survivor. 

Pathway Name LT2 LT7 LT9 Category 

Apoptosis   1.20E-02 

Cell regulation 
 

Caspase cascade in apoptosis   7.85E-03 

Cell Cycle   8.98E-03 

Cell Cycle. Mitotic   5.48E-03 

Cell junction organization   9.15E-03 

Cell surface interactions at the vascular wall   4.99E-06 

Cell-Cell communication   3.04E-06 

ECM-receptor interaction 3.53E-02 3.01E-02 3.22E-05 

Endocytosis   3.05E-02 

Mitotic Anaphase   1.06E-02 

Mitotic Metaphase and Anaphase   1.19E-02 

Mitotic Prometaphase   1.10E-03 

Programmed Cell Death   6.95E-03 

Regulation of actin dynamics for phagocytic cup formation   2.88E-03 

Semaphorin interactions   9.86E-05 

Axon guidance 2.25E-07 3.01E-02 3.92E-19 

Developmental Biology 

 

EPH-ephrin mediated repulsion of cells 3.52E-02   

L1CAM interactions   2.37E-02 

Osteoclast differentiation   1.91E-05 

Other semaphorin interactions   5.48E-03 

Scavenging by Class A Receptors  3.24E-03  

AGE-RAGE signaling pathway in diabetic complications   1.53E-06 

 

Disease 

 

Amoebiasis   1.42E-04 

Amyotrophic lateral sclerosis (ALS   4.32E-02 

Angiogenesis   1.81E-04 
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Arrhythmogenic right ventricular cardiomyopathy (ARVC   1.66E-02 

Chagas disease (American trypanosomiasis   1.96E-04 

HTLV-I infection   1.34E-04 

Hypertrophic cardiomyopathy (HCM   2.01E-04 

Inflammatory bowel disease (IBD   9.65E-04 

Influenza A   2.68E-02 

Legionellosis   1.43E-03 

Leishmaniasis   3.34E-04 

Malaria   1.29E-03 

Measles   3.05E-02 

Pathogenic Escherichia coli infection   2.10E-04 

PDGFR-beta signaling pathway   2.08E-02 

Pertussis   1.46E-07 

Primary immunodeficiency   2.30E-02 

Prolonged ERK activation events   1.99E-02 

RHO GTPases Activate Formins   2.01E-05 

Salmonella infection   1.50E-03 

SHC1 events in EGFR signaling   2.30E-02 

SRP-dependent cotranslational protein targeting to membrane  7.42E-03 

Toll-Like Receptors Cascades   1.75E-07 

TRIF-mediated TLR3/TLR4 signaling   4.72E-03 

Tuberculosis   4.00E-05 

Assembly of collagen fibrils and other multimeric structures  3.70E-04 5.76E-12 

Extracellular matrix 

organization 
 

 

 
 

Collagen biosynthesis and modifying enzymes  3.01E-04 6.80E-06 

Collagen chain trimerization  3.01E-04 3.74E-07 

Collagen degradation   1.49E-02 

Collagen formation  1.41E-03 4.36E-11 

Degradation of the extracellular matrix   3.53E-04 

ECM proteoglycans   1.03E-04 

Elastic fibre formation 8.69E-03   
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Ensemble of genes encoding core extracellular matrix including ECM glycoproteins. collagens and 

proteoglycans 3.18E-03 3.01E-02 1.47E-03 

Ensemble of genes encoding extracellular matrix and extracellular matrix-associated proteins 3.23E-03  4.51E-05 

Extracellular matrix organization 2.25E-07 1.40E-09 2.38E-19 

Genes encoding collagen proteins  2.66E-04 9.34E-08 

Genes encoding structural components of basement membranes 5.52E-03  3.51E-04 

Integrin cell surface interactions  1.16E-02 3.63E-06 

Laminin interactions   1.91E-05 

Molecules associated with elastic fibres 3.57E-02   

Non-integrin membrane-ECM interactions   8.72E-05 

Activated TLR4 signalling   1.83E-04 

Immune 

 

Adaptive Immune System   2.25E-04 

Adhesion and Diapedesis of Granulocytes   2.41E-03 

Adhesion and Diapedesis of Lymphocytes   2.93E-03 

amb2 Integrin signaling   4.70E-03 

Bacterial invasion of epithelial cells   3.46E-02 

Cells and Molecules involved in local acute inflammatory response  1.68E-02 

Chemokine signaling pathway   2.94E-06 

Classical Complement Pathway   2.41E-03 

Complement and coagulation cascades   8.27E-05 

Complement Pathway   4.69E-02 

CTL mediated immune response against target cells   5.04E-03 

CXCR4-mediated signaling events   1.67E-04 

Cytokine Signaling in Immune system   1.04E-16 

Cytokine-cytokine receptor interaction   1.43E-03 

DAP12 interactions   3.75E-06 

DAP12 signaling   2.82E-05 

Dilated cardiomyopathy   3.04E-06 

Direct p53 effectors   1.06E-03 

Diseases of signal transduction   1.94E-02 

Fc gamma R-mediated phagocytosis   1.12E-03 
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FCERI mediated MAPK activation   2.13E-03 

Fcgamma receptor (FCGR dependent phagocytosis   2.32E-03 

Hematopoietic cell lineage   1.06E-02 

IL-2 Receptor Beta Chain in T cell Activation   3.05E-02 

IL12 signaling mediated by STAT4   9.13E-04 

IL12-mediated signaling events   3.13E-04 

IL4-mediated signaling events   9.64E-03 

Inactivation of Gsk3 by AKT causes accumulation of b-catenin in Alveolar Macrophages 2.61E-02 

Inflammation mediated by chemokine and cytokine signaling pathway 8.51E-04 

Innate Immune System   1.11E-14 

Interleukin-1 signaling   8.72E-05 

Interleukin-10 signaling   6.00E-03 

Interleukin-2 signaling   9.95E-03 

Interleukin-3. 5 and GM-CSF signaling   2.13E-03 

Interleukin-4 and 13 signaling   3.30E-05 

Leukocyte transendothelial migration   2.13E-07 

Monocyte and its Surface Molecules   2.93E-03 

MyD88 dependent cascade initiated on endosome   5.48E-03 

MyD88-independent TLR3/TLR4 cascade   4.72E-03 

MyD88:Mal cascade initiated on plasma membrane   2.32E-03 

Natural killer cell mediated cytotoxicity   3.44E-03 

NCAM signaling for neurite out-growth   1.48E-03 

Neutrophil degranulation   1.26E-05 

NOD-like receptor signaling pathway   7.77E-03 

PLK1 signaling events   1.43E-03 

Regulation of actin cytoskeleton   4.33E-10 

Signaling by EGFR   1.41E-04 

Syndecan-4-mediated signaling events   6.29E-06 

T cell activation   3.74E-05 

T cell receptor signaling pathway   2.84E-03 

T Cell Signal Transduction   9.42E-03 
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T Cytotoxic Cell Surface Molecules   2.41E-03 

T Helper Cell Surface Molecules   1.64E-04 

TCR signaling in naive CD4+ T cells   4.82E-05 

Th1 and Th2 cell differentiation   1.38E-03 

Th17 cell differentiation   9.43E-06 

TNF signaling pathway   2.13E-03 

Toll Like Receptor 2 (TLR2 Cascade   2.32E-03 

Toll Like Receptor 3 (TLR3 Cascade   4.72E-03 

Toll Like Receptor 4 (TLR4 Cascade   8.90E-06 

Toll Like Receptor 7/8 (TLR7/8 Cascade   5.48E-03 

Toll Like Receptor 9 (TLR9 Cascade   1.06E-02 

Toll Like Receptor TLR1:TLR2 Cascade   2.32E-03 

Toll Like Receptor TLR6:TLR2 Cascade   2.32E-03 

Toxoplasmosis   3.52E-05 

TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 1.27E-02 

Aurora B signaling   4.13E-02 

other 

 

Binding and Uptake of Ligands by Scavenger Receptors   2.63E-02 

Chylomicron-mediated lipid transport  2.93E-02  

GPVI-mediated activation cascade   1.10E-03 

Hemostasis   2.62E-16 

ARMS-mediated activation   3.29E-02 

Signal transduction 

 

Cell adhesion molecules (CAMs   2.42E-04 

Downstream signal transduction   2.26E-04 

EGF receptor signaling pathway   1.02E-02 

EPH-Ephrin signaling 3.53E-02  6.89E-04 

Fc epsilon receptor (FCERI signaling   2.20E-04 

Focal adhesion 3.57E-02 3.24E+03 1.95E-11 

Frs2-mediated activation   1.67E-02 

Gastrin-CREB signaling pathway via PKC and MAPK   4.35E-03 

GRB2 events in EGFR signaling   2.30E-02 

Hippo signaling pathway   1.98E-02 
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HIV-I Nef: negative effector of Fas and TNF   1.25E-02 

Insulin receptor signalling cascade   2.23E-02 

integrin signaling   1.10E-03 

Integrin signaling pathway 3.57E-02 1.16E-02 6.85E-04 

Interleukin signaling pathway   4.72E-03 

MAPK family signaling cascades   1.11E-03 

MAPK1/MAPK3 signaling   8.25E-03 

MET activates PTK2 signaling   9.28E-03 

MET promotes cell motility   1.85E-02 

mTOR signaling pathway   2.41E-02 

NGF signaling via TRKA from the plasma membrane   2.16E-03 

Pathways in cancer 8.93E-01 1.95E-02 1.40E-13 

Phagosome   1.45E-05 

Phospholipase D signaling pathway   7.42E-03 

PI3K-Akt signaling pathway 9.26E-02 3.76E+03 4.13E-07 

Platelet activation   2.21E-04 

Platelet activation. signaling and aggregation   8.93E-06 

Proteoglycans in cancer 9.26E-02  7.31E-08 

RAF/MAP kinase cascade   2.30E-02 

Rap1 signaling pathway   7.70E-04 

Ras Pathway   2.68E-02 

Resolution of Sister Chromatid Cohesion   9.15E-03 

RET signaling   4.35E-03 

RHO GTPase Effectors   2.43E-06 

Separation of Sister Chromatids   1.97E-02 

Shigellosis   4.19E-05 

Signaling by Interleukins   3.53E-15 

Signaling by Leptin   9.73E-03 

Signaling by MET   1.30E-04 

Signaling by PDGF   2.80E-06 

Signaling by Rho GTPases   1.75E-07 
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Signaling by SCF-KIT   5.53E-05 

Signaling by VEGF   1.56E-03 

Signaling events mediated by focal adhesion kinase   1.10E-03 

Signaling by NGF   1.26E-05 

Signaling to ERKs   2.37E-02 

Signaling to p38 via RIT and RIN   1.51E-02 

Small cell lung cancer   2.42E-04 

SOS-mediated signaling   2.30E-02 

Staphylococcus aureus infection   5.76E-06 

Syndecan-2-mediated signaling events   3.50E-02 

Tight junction   1.34E-04 

Validated transcriptional targets of AP1 family members Fra1 and Fra2 9.02E-03 

VEGFA-VEGFR2 Pathway   7.65E-03 

VEGFR2 mediated cell proliferation   3.31E-02 
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Table S3. Protein domains enriched in LT survivors based on the Individual specific PEEPs annotated using ToppGene Suite17 (section 2.2). For all 

identified significant protein domains, corresponding Bonferroni corrected p-values are shown. Identified protein domains are ordered based on similar annotation 

profile as given below. (Only 3 LT survivors showed enriched IPR domains).  

Domain ID LT2 LT7 LT9 Description 

PS00010 0.000368     ASX_HYDROXYL 

PF12662 0.000247     cEGF 

IPR026823 0.000247     cEGF 

SM00038   2.5E-05   COLFI 

PF01410   2.5E-05   COLFI 

PF01391   0.001874 4.19E-06 Collagen 

IPR008160   0.001874 4.19E-06 Collagen 

IPR011029     0.00017 DEATH-like_dom 

SM00181 2.1E-06 7.05E-05 1.5E-06 EGF 

PF00008     9.42E-06 EGF 

PS00022 8.89E-05 5.77E-05 4.19E-06 EGF 

PS01186 9.45E-06 4.21E-06 7.02E-06 EGF 

PS50026 0.000011  0.000209 EGF 

PF07645 5.51E-05 0.000249   EGF 

SM00179 2.47E-05 0.001874   EGF 

PS01187 5.01E-05     EGF 

IPR018097 4.01E-05     EGF_Ca-bd_CS 

IPR001881 2.9E-05 0.002076   EGF-like_Ca-bd_dom 

IPR013032 2.16E-06 1.02E-05 4.79E-08 EGF-like_CS 

IPR000742 9.45E-06 4.12E-05 7.07E-04 EGF-like_dom 

IPR000152 0.000121     EGF-type_Asp/Asn_hydroxyl_site 

PD002078   2.5E-05   Fib_collagen_C 

IPR000885   2.5E-05   Fib_collagen_C 

SM00060     0.000799 FN3 

PS50853     0.004262 FN3 

IPR003961     0.000334 FN3_dom 
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IPR009030 9.37E-05 0.005339 1.59E-05 Growth_fac_rcpt_ 

PS00856 0.02688     GUANYLATE_KINASE_1 

PS50052 0.02688     GUANYLATE_KINASE_2 

IPR013783     4.15E-05 Ig-like_fold 

IPR032695     0.0002 Integrin_dom 

IPR011009 0.04356     Kinase-like_dom 

IPR001791     8.36E-05 Laminin_G 

2.60.40.10     4.19E-06 NA* 

1.10.533.10     0.000225 NA 

PS51461   2.5E-05   NC1_FIB 

PF07714 0.04519     Pkinase_Tyr 

IPR000719 0.00585     Prot_kinase_dom 

PS00107 0.001612  0.00355 PROTEIN_KINASE_ATP 

IPR017441 0.01304     Protein_kinase_ATP_BS 

PS50011 0.006695     PROTEIN_KINASE_DOM 

PS00109 0.01171     PROTEIN_KINASE_TYR 

PS50001     0.005654 SH2  

IPR008266 0.01171     Tyr_kinase_AS 

IPR020635 0.004333     Tyr_kinase_cat_dom 

SM00219 0.004333     TyrKc 

PS01208 0.04908     VWFC_1 

*NA = Not available  
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Table S4. Seed genes for the identification of a PDAC disease module with DADA13. Genes are ordered following their genetic location; genes annotation 

shown as well. 

Gene Chromosome Description 

HDAC1 1 histone deacetylase 1  

GLI2 2 GLI family zinc finger 2  

TGFA 2 transforming growth factor alpha  

IHH 2 Indian hedgehog signaling molecule  

AREG 4 amphiregulin  

HHIP 4 hedgehog interacting protein  

EGF 4 epidermal growth factor  

MAML3 4 mastermind like transcriptional coactivator 3  

APC 5 APC regulator of WNT signaling pathway  

HDAC2 6 histone deacetylase 2  

CCND3 6 cyclin D3  

EGFR 7 epidermal growth factor receptor  

RAC1 7 Rac family small GTPase 1  

SHH 7 sonic hedgehog signaling molecule  

MYC 8 MYC proto-oncogene@ bHLH transcription factor  

DKK4 8 dickkopf WNT signaling pathway inhibitor 4  

DKK1 10 dickkopf WNT signaling pathway inhibitor 1  

FRAT1 10 FRAT regulator of WNT signaling pathway 1  

CCND1 11 cyclin D1  

ATM 11 ATM serine/threonine kinase  

MMP7 11 matrix metallopeptidase 7  

FOSL1 11 FOS like 1@ AP-1 transcription factor subunit  

INHBE 12 inhibin subunit beta E  

GLI1 12 GLI family zinc finger 1  

WIF1 12 WNT inhibitory factor 1  

IFNG 12 interferon gamma  

ZIC2 13 Zic family member 2  
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JAG2 14 jagged canonical Notch ligand 2  

SMAD3 15 SMAD family member 3  

DLL4 15 delta like canonical Notch ligand 4  

MAPK3 16 mitogen-activated protein kinase 3  

SMAD4 18 SMAD family member 4  

SMAD2 18 SMAD family member 2  

SMAD7 18 SMAD family member 7  

TGFB1 19 transforming growth factor beta 1  

BMP2 20 bone morphogenetic protein 2  
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Table S5. Overlap between individual perturbation expression profile (PEEP) for LT PDAC survivors with top 1% gene list from NetICS and DADA. NetICS= 

Network-based Integration of Multi-omics Data25; DADA= Degree-Aware Algorithms for Network Based Disease Gene Prioritization13. 

Identified in NetICS 

Patient ID Nr* of PEEP genes in top 1% NetICS list Top 5 genes 

L1 1 TNNI3  

L2 143 TNNI3.IRS4.ACTN2.MAPK14.PLCG1. 

L3 5 FOSL1.MYL2.FCGR3A.USF2.NOSTRIN 

L4 38 ACTN2.PRKCA.ITGA8.AP2A1.NRAS 

L5 20  TJP2.ITGA10.SDC4.TYROBP.SPI1 

L6 26 NPY.MPDZ.CNTN6.ITGB4.TNNC1 

L7 119 TNNI3.HLA-DQA1.APOA4.IRS4.NPY. 

L8 18 GNAI3. ITGA10. KLRC3. SPI1.TNNC1 

L9 336 ACTB. ACTG1.NFKB1.ITGB1.CTNNB1 

Identified in DADA 

Patient ID Nr of PEEP genes in top 1% DADA list Top 5 genes 

L2 8 GLI2.RAC1.CUL1.ESR1.FBLN1.UBC.WNT11 

L3 1 FOSL1 

L4 3 TGFA.EGF.CDK2 

L5 2 UBC.CDON 

L7 9 ESR1.GLI2.WNT11.GLI3.HDAC1.CDK2.UBC.CDON 

L9 12 GLI2.GLI3.UBC.RAC1.ACTB.AREG.DKK1.GRB2.MMP9.TGFB1.EGF.FOSL1 

*Nr=Number 
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Table S6. Overlap between top 1% genes from NetICS /DADA and clinical modules, as defined in section 2.1 and 2.2. WGCNA = Weighted correlation 

network analysis10; NetICS= Network-based Integration of Multi-omics Data25; DADA= Degree-Aware Algorithms for Disease Gene Prioritization13 . 

 

Category 
Module 

No. 

Gene 

Symbol 
Chromosome Gene Description 

Common among NetICS AND 

WGCNA 

M30 CDH1 16 cadherin 1 

M30 CREB3L3 19 cAMP responsive element binding protein 3 like 3 

M30 NGFR 17 nerve growth factor receptor 

M30 CDON 11 cell adhesion associated oncogene regulated 

M30 KIF3B 20 kinesin family member 3B 

M30 MET 7 MET proto-oncogen receptor tyrosine kinase 

M30 PIP5K1B 9 phosphatidylinositol-4-phosphate 5-kinase type 1 beta 

M30 PRKAB1 12 protein kinase AMP-activated non-catalytic subunit beta 1 

M30 SPTBN1 2 spectrin beta non-erythrocytic 1 

M30 TJP2 9 tight junction protein 2 

M30 LDLR 19 low density lipoprotein receptor 

M30 TUBGCP2 10 tubulin gamma complex associated protein 2 

M30 RAN 12 RAN member RAS oncogene family 

M30 EPHB2 1 EPH receptor B2 

M30 ANK2 4 ankyrin 2 

M30 UBC 12 ubiquitin C 

M30 DYNLL2 17 dynein light chain LC8-type 2 

M9 TAC1 7 tachykinin precursor 1 

M9 TEAD3 6 TEA domain transcription factor 3 

M9 CLDN11 3 claudin 11 

M9 FLT4 5 fms related tyrosine kinase 4 

M9 COL11A1 1 collagen type XI alpha 1 chain 

M9 HDAC7 12 histone deacetylase 7 

M9 FGFR2 10 fibroblast growth factor receptor 2 
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M9 CLTCL1 22 clathrin heavy chain like 1 

M9 ACTN1 14 actinin alpha 1 

M9 GLI2 2 GLI family zinc finger 2 

M9 NOTCH3 19 notch receptor 3 

M9 RASAL2 1 RAS protein activator like 2 

M9 ACTB 7 actin beta 

M9 IL4R 16 interleukin 4 receptor 

M9 COL16A1 1 collagen type XVI alpha 1 chain 

M9 MMP2 16 matrix metallopeptidase 2 

M9 NOS1 12 nitric oxide synthase 1 

M9 LAMB1 7 laminin subunit beta 1 

M9 MYL9 20 myosin light chain 9 

M9 FZD3 8 frizzled class receptor 3 

M9 TGFB1 19 transforming growth factor beta 1 

M9 USF2 19 upstream transcription factor 2 c-fos interacting 

M9 SCN1B 19 sodium voltage-gated channel beta subunit 1 

M9 GLI3 7 GLI family zinc finger 3 

M9 ACTA2 10 actin alpha 2 smooth muscle 

M9 COL1A1 17 collagen type I alpha 1 chain 

M9 MAP2K6 17 mitogen-activated protein kinase kinase 6 

M9 COL12A1 6 collagen type XII alpha 1 chain 

M9 LAMA4 6 laminin subunit alpha 4 

M9 RASGRF2 5 Ras protein specific guanine nucleotide releasing factor 2 

M9 PDGFRB 5 platelet derived growth factor receptor beta 

M9 COL7A1 3 collagen type VII alpha 1 chain 

M9 GNAI2 3 G protein subunit alpha i2 

M9 CBLB 3 Cbl proto-oncogene B 

M9 GNB4 3 G protein subunit beta 4 

M9 FN1 2 fibronectin 1 

M9 TGFB3 14 transforming growth factor beta 3 

M9 NPY 7 neuropeptide Y 
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M9 CALD1 7 caldesmon 1 

M9 LRP1 12 LDL receptor related protein 1 

M9 COL10A1 6 collagen type X alpha 1 chain 

M9 PLCG1 20 phospholipase C gamma 1 

M9 C3 19 complement C3 

M9 NUP214 9 nucleoporin 214 

M9 SMO 7 smoothened frizzled class receptor 

M9 TNNI3 19 troponin I3 cardiac type 

M9 COL5A1 9 collagen type V alpha 1 chain 

M9 RAF1 3 Raf-1 proto-oncogene serine/threonine kinase 

M9 CHRM3 1 cholinergic receptor muscarinic 3 

M9 IRS4 X insulin receptor substrate 4 

M9 COL4A2 13 collagen type IV alpha 2 chain 

M9 LAMC1 1 laminin subunit gamma 1 

M9 GABBR2 9 gamma-aminobutyric acid type B receptor subunit 2 

M9 TUBB2A 6 tubulin beta 2A class IIa 

M9 ITGA11 15 integrin subunit alpha 11 

M9 LEF1 4 lymphoid enhancer binding factor 1 

M9 COL2A1 12 collagen type II alpha 1 chain 

M9 ACVRL1 12 activin A receptor like type 1 

M9 CDH13 16 cadherin 13 

M9 GNAL 18 G protein subunit alpha L 

M9 COL6A1 21 collagen type VI alpha 1 chain 

M9 COL6A2 21 collagen type VI alpha 2 chain 

M9 HSPG2 1 heparan sulfate proteoglycan 2 

M9 TPM3 1 tropomyosin 3 

M9 COL8A1 3 collagen type VIII alpha 1 chain 

M9 SERPINH1 11 serpin family H member 1 

M9 MMP3 11 matrix metallopeptidase 3 

M9 ADAM17 2 ADAM metallopeptidase domain 17 

M9 GJA1 6 gap junction protein alpha 1 
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M9 ASAP1 8 ArfGAP with SH3 domain ankyrin repeat and PH domain 1 

M9 MMP14 14 matrix metallopeptidase 14 

M9 FZD1 7 frizzled class receptor 1 

M9 SHC1 1 SHC adaptor protein 1 

M9 ITGA5 12 integrin subunit alpha 5 

M9 KCNJ3 2 potassium inwardly rectifying channel subfamily J member 3 

M9 COL6A3 2 collagen type VI alpha 3 chain 

M9 SPTA1 1 spectrin alpha erythrocytic 1 

M9 COL1A2 7 collagen type I alpha 2 chain 

M9 TUBA1A 12 tubulin alpha 1a 

M9 MLST8 16 MTOR associated protein LST8 homolog 

M9 RPSA 3 ribosomal protein SA 

M9 CTNNB1 3 catenin beta 1 

M9 COL3A1 2 collagen type III alpha 1 chain 

M9 AXIN2 17 axin 2 

M9 LIMS1 2 LIM zinc finger domain containing 1 

M9 PCDH7 4 protocadherin 7 

M9 CD14 5 CD14 molecule 

M9 FGG 4 fibrinogen gamma chain 

M9 COL8A2 1 collagen type VIII alpha 2 chain 

M9 LAMB2 3 laminin subunit beta 2 

M9 CEBPB 20 CCAAT enhancer binding protein beta 

M9 TUBB6 18 tubulin beta 6 class V 

M9 HLA-DQB1 CHR_HSCHR6_MHC_QBL_CTG

1 

major histocompatibility complex class II DQ beta 1 

M9 FZD2 17 frizzled class receptor 2 

M9 KCNH7 2 potassium voltage-gated channel subfamily H member 7 

M9 P4HB 17 prolyl 4-hydroxylase subunit beta 

M9 MYL6B 12 myosin light chain 6B 

M9 HLA-DQA1 CHR_HSCHR6_MHC_QBL_CTG
1 

major histocompatibility complexclass II DQ alpha 1 

M9 FLNA X filamin A 
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M9 MAP3K5 6 mitogen-activated protein kinase kinase kinase 5 

M9 ITGBL1 13 integrin subunit beta like 1 

M9 COL5A2 2 collagen type V alpha 2 chain 

M9 NOTCH4 CHR_HSCHR6_MHC_QBL_CTG

1 

notch receptor 4 

M9 ARPC4 3 actin related protein 2/3 complex subunit 4 

M9 UBE2V1 20 ubiquitin conjugating enzyme E2 V1 

M7 YWHAB 20 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein 
beta 

M7 NRAS 1 NRAS proto-oncogene GTPase 

M7 HSP90AA1 14 heat shock protein 90 alpha family class A member 1 

M7 HMGB1 13 high mobility group box 1 

M15 BSG 19 basigin (Ok blood group) 

Common among DADA and WGCNA 

M30 CDON 11 cell adhesion associated oncogene regulated 

M30 WNT11 11 Wnt family member 11 

M30 DKK4 8 dickkopf WNT signaling pathway inhibitor 4 

M30 BMP2 20 bone morphogenetic protein 2 

M9 DKK3 11 dickkopf WNT signaling pathway inhibitor 3 

M9 GLI2 2 GLI family zinc finger 2 

M9 SMAD7 18 SMAD family member 7 

M9 TGFB1 19 transforming growth factor beta 1 

M9 GLI3 7 GLI family zinc finger 3 

M9 GLI1 12 GLI family zinc finger 1 

M9 DLL4 15 delta like canonical Notch ligand 4 

M9 MYC 8 MYC proto-oncogene bHLH transcription factor 

M9 MMP7 11 matrix metallopeptidase 7 

M9 SMAD4 18 SMAD family member 4 

M9 WNT7A 3 Wnt family member 7A 

M34 WNT5A 3 Wnt family member 5A 
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Figure S1. Kaplan-Meier plots for significant survival genes differentially expressed between long-term (LT: alive or death >=36 months) and short-term 

(ST: death >=3 months and <12 months) survival. A) Gene XRK5, p-value = 0.00017; B) Gene GATD3B, p-value < 0.0001; C) Gene CYP27C1, p-value < 

0.0001) and D) Gene miR-765, p-value < 0.0001. Here, H and L represents the high and low expression groups identified (appendix 3). 
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B) 
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C)  
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D)  
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Figure S2. RNA-Seq supplemented with RT-PCR experiments: A) Correlation between RNA-Seq and RT-PCR expression values; B) Violin plot of TSPAN8 

(gene ID: ENSG00000127324) by ST/LT PDAC survival; C) Same as B) but for REG4 (gene id: ENSG00000134193). 
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Figure S3. Clinical profile of WGCNA modules. Correlation patterns for WGCNA derived modules with significant association to clinical measurements 

(multiple testing adjusted p-value <0.05) are shown via corrplot26  (section 2.1). The more extreme the association (+1/-1) the deeper the color (dark blue/dark red). 

The sizes of the circles are proportional to the correlation coefficients. WGCNA = Co-Expression Network Analysis. Adjusted p values are not indicated in plot. 

Complete detail of significant modules is given in section: Survival group heterogeneity 
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Figure S4. Bicluster analysis of perturbed genes in LT PDAC survivors:  Input matrix is logical with genes (not) perturbed in an individual indicated by 1 (0). 

A) Sixty-four biclusters (BC) obtained from such a logical matrix (section 2.2) indicated as heatmap. Each color in heatmap represent cluster from 1 to 64. B) 

Advanced interpretation of identified biclusters via three different approaches. (I) bicluster membership graph based on BC cluster x LTS. (II) Heatmap based 

on Jaccard similarity index computed for the identified 64 biclusters ranging from 0 (no concordance) to 1 (perfect concordance). (III) Hierarchical tree 

constructed for the identified biclusters (appendix pp 4). C) Functional annotation of 64 biclusters with clusterProfiler6.  
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Figure S5. Bicluster analysis of enriched pathways in LT PDAC survivors:  Input matrix is logical with enriched pathways (not) in an individual indicated by 

1 (0). A) Three biclusters (BC) obtained from such a logical matrix (section 2.2). B) Advanced interpretation of identified biclusters via three different approaches. 

(I) biclusters as lines of parallel coordinate graph which indicates cluster specific detailed information.  (II) bicluster membership graph based on BC cluster 

x LTS. (III) Heatmap based on Jaccard similarity index computed for the identified three biclusters ranging from 0 (no concordance) to 1 (perfect concordance). 

Hierarchical tree constructed for the identified biclusters (appendix pp 4).  
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Figure S6. Bicluster analysis of enriched protein domains in LT PDAC survivors:  Input matrix is logical with enriched protein domains (not) in an individual 

indicated by 1 (0). A) Four biclusters (BC) obtained from such a logical matrix (section 2.2). B) Advanced interpretation of identified biclusters via three different 

approaches. (I) biclusters as lines of parallel coordinate graph which indicates cluster specific detailed information.  (II) bicluster membership graph based 

on BC cluster x LTS. (III) Heatmap based on Jaccard similarity index computed for the identified 4 biclusters ranging from 0 (no concordance) to 1 (perfect 

concordance). Hierarchical tree constructed for the identified biclusters (appendix pp 4).  
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Figure S7. Superposition of PEEP induced perturbed genes to PDAC disease module derived via DADA. Individual-specific perturbed genes as identified 

by individual profiling with PEPPER15 (section 2.2) are highlighted with the same color per individual. LT2, LT3, LT4, LT5, LT7, and LT9 perturbed genes are 

indicated in red, green, light green, yellow, orange, and dark green, respectively. LT1, LT6 and LT8 specific perturbed genes showed no overlap in PDAC disease 

module derived via DADA (not shown in figure).  
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Figure S8. Aggregation of multi-level analyses. Genes present in groups BC24 and BC25 (Figure S4) were shown to be involved in pathway sets C2 and C3 

(Figure S5) as indicated by the arrow (appendix 35). 
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Figure 1: Flexible and interpretable omics integrative framework for RNA-seq data collected on two groups of patients, exemplified on PDAC ST/LT survival. RNA-seq quality-controlled data are inputted for A) Survival analysis; B) Group-based differential analysis via

DESeq260; C) Weighted gene co-expression network analysis WGCNA21; D) Individual-based differential analysis (appendix pp 2-5); E) Genes are ranked based on the integration of individual and group-based differentially expressed genes via NetICS61; F-H) NetICS specific top 1%

ranked genes are traced back in multiple previous analyses (A through E); I) DADA5 analysis starting from disease genes; J-L) DADA specific top 1% ranked genes are traced back in previous analyses (A through E).
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Figure 2: Overall Kaplan–Meier survival analysis of the ST and LT PDAC cohorts: A) Patient characteristic data for a selection of PDAC relevant traits are shown as mixed bar and heat map plot. P1 to P13 refer to patient specific clinical traits analyzed in this study (selective data

has been shown in plot; full details given in appendix pp 9-11). P1 indicates Tumor stage (from 1 to 4). P3, P5, P6, P7, P12 and P13 indicate the frequency of number of nodes analyzed, time between surgery and chemotherapy (in days), disease free survival, OS (in months), tumor size

by imagery (in mm) and Time between imagery and surgery, respectively. Remaining P2, P4, P8, P9, P10, P11, refers to status of N stage, surgical margin invaded by tumor cells, vascular resection, re-hospitalization after surgery, vascular resection, and artery contact, respectively. Here

0 and 1 indicate no and yes, reps. P7 clinical trait denotes overall survival and was used for the development of the Kaplan-Meier survival curves for short-term (ST) and long-term (LT) PDAC Survivors (STS: S1 to S10; LTS: L1 to L9); B) Identification of significant gene ontology of

associated up and down-regulated DEGs and their relevant functions. Up and down-regulated genes are highlighted with red and green dots, respectively. The size of data points increases with increased significance (uncorrected for multiple testing – see appendix pp 3); C) Top-ranked

conserved domains in differentially expressed gene sets; D) Venn-diagram showing the number of identified genes that are common to or different in multiple first-line analysis strategies (CDD: conserved domain database analysis, DGE: differential gene expression analysis, SA:

survival analysis (appendix pp 3)).
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Figure 3: Clinical relevance of gene co-expression modules: A) Heatmap indicating the number of genes involved in each WGCNA-derived gene module; B) Network topology of three modules (M7, M15, M34), where nodes are genes and connections among nodes represent gene-

gene interactions. In each network, the gene names are indicated in the circular layout as derived from Cytoscape.62 C) Venn diagram indicating the common genes between the identified significant DEGs and the five previously identified clinically relevant modules.
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Figure 4: Functional follow-up of clinically relevant gene expression modules: A) Ten groups for module M9 comprising 33 significantly linked pathways; B) Three groups identified in the M7 modules; C) Depiction of the five groups identified in M15; For A-C, redundant groups

with >50% overlap were merged. Each node in the network represents an enriched term; the size of each node follows the extent of enrichment significance. Connection among different nodes are based on kappa scores (≥0.4), as available from ClueGO.
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Figure 5: Genomic distributions of differentially expressed genes (DEGs) and PEEPs related to PDAC survivors using Circos plots and functional profiles of perturbation data: A) first outermost circle labeled with numbers represent chromosomes (same colors); the outermost track 

represents DEGs (up-regulated and down-regulated DEGs as scattered points); the nine innermost circles refer to the z-score for each LT survivor (LTS: ranging from LT1 to LT9) as scattered points. We have indicated perturbed genes only for chromosome 1 to 22 via track 2 to track 10 (outer to 

inner); B) Enriched KEGG pathways (P1 to P19 (out of 193)) and motifs common to at least 2 out of 9 LT individuals, shown via Circos Table Viewer (appendix pp 12-20). Each link refers to an LT survivor and a significantly enriched pathway (adjusted p-value < 0.05)/enriched motif based on 

the perturbed gene set found in that individual (data for LT2, LT7 and LT9 are shown). Uniquely enriched pathways across LT survivors are given in appendix pp 12-18; C) Visual comparison of two dendrograms developed from genes linked to enriched pathway and motif profiles. Similar sub-

trees are connected with lines of the same color, while tree branches leading to distinct sub-trees are indicated with dashed lines.
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Figure 6: Exploitation of gene connectivity for LT PDAC survivor gene prioritization: A) DADA-oriented multi-step disease module identification: PDAC seed gene selection (I), restriction to top 1% of ranked genes (II-III) and intersection of retained gene list with individual perturbation

gene expression profiles for LT survivors (IV); B) DADA-derived top-ranked genes found in at least one, two, or three LT survivors, indicated in green, orange and pink, respectively; C) Common genes to DADA and other gene prioritization approaches: DEGs, clinically relevant WGCNA gene

modules, and PEEPs; D) Same as C) but with NetICS instead of DADA; E) Venn diagram showing the overlap between genes prioritized via NetICS and DADA. Common genes to top 1% NetICS individual gene lists and top 1% DADA genes are highlighted via arrows in C) and D).
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