
Robotic throwing controller for accelerating a recycling line

Norman Marlier1,2 , Olivier Brüls1, Godefroid Dislaire3 and Gilles Louppe2
1Department of Aerospace and Mechanical Engineering, University of Liège, Belgium

2Department of Electrical Engineering and Computer Science, University of Liège, Belgium
3Department of Architecture, Geology, Environment and Civil Engineering, University of Liège, Belgium

{norman.marlier, o.bruls, godefroid.dislaire, g.louppe}@uliege.be

Abstract— Recycling is a promising way to prevent the use of
raw material and reduce energy consumption, air pollution and
waste. However, the process of recycling has to be economically
efficient in order to be adopted by industrial manufacturers.
One way to achieve this goal is to improve the recycling rate.
We propose a novel method to design a machine learning-
based controller to improve the efficiency of a recycling line by
throwing waste into buckets instead of picking and dropping
them. Our proof-of-concept is demonstrated on stones, because
of their simple and uniform shapes. The method enables an
ABB IRB 340 robot to throw objects to buckets with an
empirical success rate of 99%.

I. INTRODUCTION

Automation and robotics are popular methods to improve
the efficiency of production lines. Industrial robots perform
quickly and with high accuracy simple tasks to manufac-
ture objects. However, they suffer from several drawbacks.
First, they are very task-specific and evolve in a controlled
and structured environment. If the environment or the task
slightly changes, they need to be reprogrammed. This mean
they cannot deal with uncertainty. This lack of flexibility can
be quite expensive for industrial manufacturers. Second, they
cannot achieve complex tasks due to the implementation of
explicit instructions in their programs. This can be problem-
atic for future developments of industrial processes.

Machine learning techniques, especially reinforcement
learning [1], are becoming more and more popular in the
domain of artificial intelligence and robotics. They can
achieve super-human performances on certain tasks, such as
video games [2]. With these techniques, robots can interact
with an unstructured environment and progressively learn
how to act in a given situation. They are not preprogrammed
anymore, but their programs evolve over time to perform
better and better.

Recycling lines need to deal with the problem of sorting.
The recycling line used in this study is as follows. Waste
comes from a vibrating platform and is distributed over
a conveyor. Waste passes through a set of sensors, a 1D
camera, a hyperspectral camera, X-ray sensor and a LIBS,
in order to determine the nature of the matter (aluminum,
copper, zinc, lead, etc.) and the precise composition of alloys
[3]. Moreover, the position on the conveyor and the mass are
also determined. Waste is then sorted in different buckets in
order to be recycled, which is the main goal of the line.
Because of the large variety of waste, robots are employed
to sort them. The current sorting method is a pick-and-drop

operation. That is often inefficient when dealing with a high
speed conveyor (>1m/s).

Contribution Our main contribution is the design of
a robotic controller guided by a neural network classifier
for throwing waste into buckets in order to save time and
improve the recycling rate.

II. METHOD

A. Problem statement

The problem of throwing objects into buckets is formalised
as the problem of finding the action a∗ in state s which
maximizes the probability of success of the throw. It is
equivalent to minimizing the probability of failure, P (r =
0|s, a), where

r =

{
1 if the throw succeeds,
0 otherwise.

The problem is an optimization problem defined as follows,

a∗ = min
a

P (r = 0|s, a). (1)

We define the action space A = {(t, y, z) ∈ R3}, where the
three action variables {t, y, z} correspond to the time t to
wait before opening the gripper, the horizontal displacement
y and the vertical displacement z (Fig. 1).

These variables are bounded as t ∈ [60, 110], y ∈
[0.04, 0.1], z ∈ [0.04, 0.09], where t is in [ms] and y, z are
in [m]. We also define the state space S = {s ∈ R|s =
[−0.2, 0.2]}, where s is the distance of an object from the
center of the conveyor, in [m].

The probability P (r|s, a) is unknown but can be approx-
imated from observed data using machine learning. The
resulting approximation P̂ (r|s, a) leads to an approximate
solution of the action a∗. The final problem is thus

â∗ = min
a

P̂ (r = 0|s, a). (2)

This problem requires only a one-step prediction which
simplifies strongly the computation time and the complexity.
The optimization method uses the L-BFGS algorithm [4] to
converge quickly to a solution. The optimization procedure
is repeated 20 times by starting from different points in order
to avoid getting stuck into a local minimum.

We measure the score of our approach by the empirical
success rate (ESR), which is the number of successful throws
over the total number of throws.



Fig. 1: The ABB robot with it pneumatic gripper on the
recycling line. The buckets are located on the sides of the
conveyor.

B. Model

The model used to approximate P (r|s, a) is a neural net-
work. Because r is a binary variable, this is a regular binary
classification problem. The inputs of our neural network are
the state and the actions, (s, a) and its output is r. We train
a neural network to fit at best the relation r = f(s, a) to
compute P̂ (r = 0|s, a). The hyper-parameters of the model,
i.e, the number of hidden layers and the number of neurons
by layers, are chosen by cross-validation [5] with the ROC-
AUC metric [6] (see Table. I). The final choice is a neural
network with two hidden layers with respectively seventy
and eighty neurons.

Table I: ROC-AUC obtained by cross-validation (cv=5) with
different hyper-parameters.

Number of neurons Mean score Std score
10 0.892 0.14
30 0.905 0.12
50 0.904 0.124
70 0.907 0.118

100 0.903 0.12
10, 10 0.891 0.13
40, 30 0.9 0.097
70, 80 0.91 0.081

The choice of a neural network is also motivated by
the time constraint. In fact, our small neural network is
approximately an order of magnitude less time-consuming
to compute the probability in contrast to ensemble trees
methods, such as Extremely randomized trees [7].

The neural network was implemented with the open source
library Scikit-Learn [8], as a MLPClassifier with Adam
optimizer [9].

C. Training procedure

The training procedure is the key to quickly succeed in
the task of throwing objects into buckets. The procedure

needs to converge to the best action and yet to explore
enough situations to generalize well. This is known as the
exploration/exploitation dilemma. For practical reasons and
its simplicity, the ε-greedy method [1] is chosen to solve this
dilemma. This method consists in taking the best action with
a probability 1 − ε and a random action with a probability
ε. The training procedure is defined as follow:

1) At step i, 50 samples are generated by the ε-greedy
method and constitute the dataset Di.

2) 50 more samples are generated without the ε-greedy
method to compute the ESR.

3) The neural network is trained by using the dataset Di.
4) Repeat 1-3 N times.
This process will be repeated ten times and random actions

are taken to initialize the training process.

III. EXPERIMENTS

A. Simulation

The use of a simulator is a common practice in the
reinforcement learning community [10, 11] because of its
advantages: data are freely and quickly available, no expen-
sive damages occur on real hardware. However, a simulator
is a simplified version of the real world. A policy learnt in
a simulator can fail in the real world.

Our simulator is based on several assumptions:
1) The simulator implements the equations of projectile

motion with no air friction.
2) The gripper opening time is bounded between the two

experimental values 80[ms] and 90[ms].
3) Velocity and acceleration are constrained due to the

hardware constraints.
The simulator has two purposes. First, one can verify if

the task can be achieved or not. Second, it gives an idea of
how much data is needed to learn the task. It can be seen in
Fig. 2 that the task is nearly perfectly learnt and only about
one hundred samples are needed to learn the task. In order
to choose the right value for the ε-greedy method in the real
setup, four values are tested in the simulator. Because it exists
few differences between these values, the value ε = 0.1 was
chosen for the real setup.

B. Data acquisition

Learning in the simulator shows that one hundred samples
of (s, a, r) are needed to achieve a good ESR, i.e, ∼ 90%.
This is obviously a lower bound, because the simulator does
not model the real-world complexity of the task. Because of
the setup, acquiring data by hand is a tedious and error prone
process. Therefore, the process was automated by using a
camera to detect whether the throw is a successful by looking
at the bucket. The detection method, called Background
subtraction, compares the background, which is basically the
stationary part of the image (Fig. 3b), and the foreground,
which is the change in the image (Fig. 3a). We can detect
if a object is in the bucket or not (Fig. 3). The algorithm
is implemented in OpenCV [12] and runs on an Odroid X4
plateform.



0 2 4 6 8 10

Number of dataset [-]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
S
R

[-
]

ε = 0.1

ε = 0.3

ε = 0.5

ε = 0.8

ε = 1

Fig. 2: ESR comparison between several values for ε-greedy
policy in the simulator. One dataset corresponds to 50
samples.

(a) With an object. (b) Without.

Fig. 3: Object detection by using background subtraction
method.

C. Real-life problem

Compared to the simulator, the neural network will learn
more slowly in the real world setup. Indeed, as it can be seen
in Fig. 4, the model needs about 250 samples to achieve a
good ESR (∼ 90%).

Concerning the probability of success as a function of the
distance from the bucket, it can be seen in Fig. 5 that the
neural network is confident along the width of the conveyor.
The probability quickly drops outside the range of possible
throws. But it is not relevant for this application.

A last experiment was conducted in order to compute to
final score when the neural network was trained on the entire
dataset. The robot throws 34 stones and succeeds in throwing
all, achieving an ESR of 100%.

IV. CONCLUSION

Controllers based on machine learning techniques enable
robots to achieve more and more complex tasks without
explicit programming, as it is usually the case for industrial
applications. Despite a very simple architecture, the neural
network performs very well on the throwing task, achieving
nearly an ESR of 99% with time constraints.

0 2 4 6 8 10 12

Number of dataset [-]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
S
R

[-
]

Fig. 4: ESR in real setup for ε = 0.1. One dataset corre-
sponds to 50 samples.

−200 −100 0 100 200
Distance along y [mm]

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ilit

ie
s

Fig. 5: The probability of success from a distance y of the
bucket while taking the best action.

Furthermore, the use of a simulator was very helpful to
estimate how much data is needed to learn. The limitations
of the simulator were also shown: the dynamic behavior of
the pneumatic gripper is very difficult to simulate.

Future work may investigate if adding more steps in the
decision-making process and taking into account more sensor
information, such as geometrical parameters, can improve
the ESR for complex shape objects and thus get a better
recycling rate.

ACKNOWLEDGEMENT

The first author would like to acknowledge the Belgian
Fund for Research training in Industry and Agriculture for
its financial support (FRIA grant).

REFERENCES

[1] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. 2011.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.



[3] Pierre Barnabé, Godefroid Dislaire, Sophie Leroy, and Eric Pirard.
Design and calibration of a two-camera (visible to near-infrared
and short-wave infrared) hyperspectral acquisition system for the
characterization of metallic alloys from the recycling industry. Journal
of Electronic Imaging, 24(6):061115, 2015.

[4] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal.
Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-
constrained optimization. ACM Transactions on Mathematical Soft-
ware (TOMS), 23(4):550–560, 1997.

[5] Ron Kohavi et al. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In Ijcai, volume 14, pages
1137–1145. Montreal, Canada, 1995.

[6] Andrew P Bradley. The use of the area under the roc curve in
the evaluation of machine learning algorithms. Pattern recognition,
30(7):1145–1159, 1997.

[7] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely ran-
domized trees. Machine learning, 63(1):3–42, 2006.

[8] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter
Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Ma-
chine learning in python. Journal of machine learning research,
12(Oct):2825–2830, 2011.

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[10] Mark Cutler, Thomas J Walsh, and Jonathan P How. Real-world
reinforcement learning via multifidelity simulators. IEEE Transactions
on Robotics, 31(3):655–671, 2015.

[11] Andrei A Rusu, Mel Vecerik, Thomas Rothörl, Nicolas Heess, Razvan
Pascanu, and Raia Hadsell. Sim-to-real robot learning from pixels with
progressive nets. arXiv preprint arXiv:1610.04286, 2016.

[12] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000.


