

CURRENT STATUS OF CCU TECHNOLOGIES & ROLE OF HYDROGEN

Deepak PANT (<u>deepak.pant@vito.be</u>)

Grégoire LEONARD (g.leonard@uliege.be)

23/05/2022 ©VITO – Not for distri<u>bution</u>

- ➤The global challenges
- ➢ Possible solutions
- >CO₂ conversion pathways
 - Electrochemical
 - Biological
- >CO₂ to Fuel (Thermochemical)
- ➤Technology comparison
- ➢Global CCUS status

Carbon neutrality by 2050: the most urgent mission in the world

https://www.motive-power.com/npuc-resource/carbon-neutral-goals-by-country/

The energy transition is on-going but it won't be easy... revolution

2 objectives in contradiction:

- Limit GHG emissions
- Meet the worldwide increasing energy demand!

www.carbontracker.org

Meeting the increasing demand is already a challenge in itself!

BP Statistical Review of World Energy 2020.

Budget by 2050 for having 80% chances to stay below 2 °C

Reaching climate neutrality won't be easy...

- Belgium CO₂ emissions ~ 100 Mt/a
- This corresponds to ~ 8.6 t/hab.a
 - Everyday, each of us puts 24 kg CO₂ into the environment !!
- Source: Our world in data

CHEMIC

- Related reference: https://doi.org/10.5194/essd-12-3269-2020
- https://ourworldindata.org/co2/country/belgium
- https://ourworldindata.org/co2-emissions

Possible answers: Trias Energetica

CHEMICAL

Lysen E., The Trias Energica, Eurosun Conference, Freiburg, 1996

CO₂ capture

- It's a question of fluid separation!
 - Sources usually contain CO_2 , N_2 , H_2O , H_2 , CH_4 , O_2 ...
 - □ CO₂ concentration varies between 0.04% and almost 100%
 - Mature (exist for >50 years) & flexible, but costly!

And then, what with the CO₂: waste or feedstock?

- CCS (excluding EOR) is a cost only technology!
 - Requires infrastructure off-site (pipelines, ships, storage sites determined by geology)
 - Basically permanent landfilling
 Any better idea?
- We'll need CO₂ as a source for carbon!
 - Our society is based on carbon
 - If we ban fossils, we can get carbon only from
 - Biomass

CHEMICAL

Main CO₂ re-use pathways

- Direct use, no transformation
- **Biological transformation**
- Chemical transformation
 - To lower energy state
 - Carbonatation
 - To higher energy state

CHEMICAL

=> At large scale, need to make sure that energy comes from renewables!

Frenzel et al, 2014. Doi:10.3390/polym6020327

LEVELIZED COST OF SOLAR AND WIND DERIVED POWER VERSUS DEPLOYED CAPACITY

23/05/2022 ©VITO – Not for distribution

vito

Grim et al., 2020. Transforming the carbon economy: challenges and opportunities in the convergence of lowcost electricity and reductive CO₂ utilization. Energy & Environmental Science, 13(2), pp.472-494.

REUSING CARBON DIOXIDE

Companies are turning the greenhouse gas into many products. Some products lock CO_2 away for decades, but others are short-lived solutions, so the gas quickly ends up in the atmosphere.

chemicals often requires hydrogen (H2) from industrial waste gases or from electrolysis of water.

Peplow, M., 2022. Nature, 603(7903), pp.780-783.

©VITO – Not for distribution

REDUCTIVE AND NON-REDUCTIVE PATHWAYS FOR CO₂ CONVERSION

23/05/2022 ©VITO – Not for distribution Grim et al., 2020. Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO₂ utilization. Energy & Environmental Science, 13(2), pp.472-494.

VALUE-DRIVEN CO₂ CONVERSION

- **O** Formic acid: small market, but H₂ carrier and 'liquid syngas'
- **O** Oxalic acid: small market, but high value/volume derivatives
- **Fuels:** legislation, incentives / large market

23/05/2022 ©VITO – Not for distribution

POWER2X DEPLOYMENT ROADMAP

©VITO – Not for distribution

Electrochemical CO₂ reduction reaction

Copper-based catalysts, high selectivity for valuable fuels and chemicals, ethylene and alcohols

The binding energy of Cu to the intermediate is neither strong nor weak.

Wenxing Chen* et al. ACS Energy Lett. 2021, 6, 3992–4022

What it takes for industrialization?

Current density of 1.3 A cm⁻² But FE of 45%, Cell voltage ~ 4.5 V

World record of FE FE of 87%, Current density of ~32 mA cm⁻², Cell voltage of 2.02 V

García de Arquer et al., Science 367, 661–666 (2020)

Andrew A. Gewirth* et al. Nature Catalysis | VOL 4 | JANUARY 2021 | 20-27

CURRENT DENSITY VS STABILITY

"Yeah, your catalyst might have high current but how is its long term stability?"

23/05/2022 ©VITO – Not for distribution

Degradation Mechanisms

SnO₂ Reduction

Van Dale et al., 2021. Sn-Based Electrocatalyst Stability. ACS Energy Letters, 6, 4317-4327.

From lab scale: 1 cm², 4 cm², 10 cm²

To Pilot scale: 20 cm² up to 600 cm²

Booster: 20V 20A

High pressure reactor: 20

CO2 ELECTROLYZERS

/ito

- H2020 LOTER.2M and ETF PROCURA projects TRL 6 5 kW pilot in progress today
- ECO2FUEL Green Deal project: 50 kW electrolyzer in 2023
- Towards renewable fuels ranges (e.g. methanol, C₁-C₄...), also gasses: H₂, CO, ...
 - 50 kW (5000 h/y): 20 t methanol/y (100 % select., 50 % η^{energy})

vito DEMONSTRATOR CONSTRUCTION

BES FOR BIOLOGICAL AND ENZYMATIC CONVERSIONS

Katuri et al. 2018, Adv. Mat. 30 (1707072), 1-18

23/05/2022 ©VITO – Not for distribution

vito

🧡 vit	0	BIOCHEMIC	CALS A	ND BIOFUELS (OBTAINED F	ROM CO2	IN MES	
Product	Highest production rate (g/(L·d))	Main carbon sources	рН	т (°С)	Potentiostatic control (V vs. SHE)	Galvanostatic control (mA/cm²)	Cathode	Reference
Acetate	77	NaHCO ₃	5.2	35	-1.10	n.a	3D-reticulated vitreous carbon	Jourdin et al. (2016)
Butyrate	5.70	CO ₂ :N ₂ 30:70 %	5.8	32	-0.85	-5 to -12	Carbon felt	Jourdin et al. (2019)
Caproate	2.41	Ethanol, CO ₂ and NaHCO ₃	7.0	30	n.a.	-1.0	Carbon felt	Jiang et al. (2020)
Butanol	0.06	CO2	8.0	29	-0.80	n.a.	Gas diffusion electrode	Srikanth et al. (2018b)
Ethanol	0.18	CO ₂	8.0	29	-0.80	n.a.	Gas diffusion electrode	Srikanth et al. (2018b)
Ethanol	0.05	CO ₂	5.4	25	-0.80	n.a.	Granular graphite	Blasco-Gómez et al. (2019)
Isopropanol	0.06	CO ₂ :N ₂ 10:90%	5.0	30	n.a.	-0.5	Carbon felt	Arends et al. (2017)
Methane	12.5 ^b	NaHCO ₃	7	30	n.a.	-1.0 to -3.5	Graphite felt	Geppert et al. (2019)
23/05/2022 @V/ITO = Not for dis	tribution	Dessi et al., 2021 chemicals from C	I. Microbi CO2 emis	al electrosynthesis: To sions. Biotechnology A	owards sustainab Advances, 46, p.1	le biorefineries 1 107675.	or production c	of green

Wide product distribution mix

De Luna et al., 2019. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science, 364(6438).

23/05/2022 ©VITO – Not for distribution

Thermochemical CO₂ conversion: power-to-fuel

Idea: store renewable energy in the C-C and C-H bonds

CHEMICAL

Decisive advantage: a fantastic volume energy density!

CHEMICAL

Energy storage

Quick calculations

- How many cars tanking at the same time are needed to develop a power of 3 GW_{th} (i.e. a nuclear plant)?
 - 1 L/s gasoline transfer
 - Gasoline ~ 35 MJ/L
 - => 1 car = 35 MW_{th}
 - 3 GW_{th} ~ 85 cars

CO₂ to fuels

Methane

- $\bigcirc CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O$
- Sabatier reaction, $\Delta H^\circ = -165 \text{ kJ/mol}$
- Commercial uses:
 - Great Plain synfuel plant
 - Methanation in ammonia synthesis
 - Producing fuel on Mars
 - $CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O$
 - CH₄ used as fuel, H₂O electrolyzed for (re)generating H₂ and O₂
 - □ Jupiter1000 in Marseille (Fos-sur-mer), Audi e-gas plant (54% efficiency)...
- CH₄ is a greenhouse gas!
 - Lock-in effect of infrastructures...

https://www.sciencedirect.com/science/article/pii/S13640321173 11346#s0110 https://en.wikipedia.org/wiki/Sabatier_reaction

CO₂ to fuels

Methanol

□ CO + 2 H₂ → CH₃OH (Δ H_{300K} = - 90.8 kJ/mol) □ CO₂ + 3 H₂ → CH₃OH + H₂O (Δ H_{300K} = - 49.2 kJ/mol)

Haldor Topsoe, > 10 000 t/d

Power to Liquid : methanolisation

23/05/2022 ©VITO – Not for distribution

 \succ

Recent announcements ...

Became North-C-Hydrogen in 2022 due to non-selection of the project for European funding

8000 ton/y, operation start: due in 2023 https://powertomethanolantwerp.com/

CO₂ to fuels

- DME (CH_3 -O- CH_3)
 - □ 2 CH₃OH → CH₃-O-CH₃ + H₂O (Δ H° = 23.4 kJ/mol)
 - Similar to diesel fuel, but stored under pressure
 - Can be made from methanol, or directly CO₂

CO_2 to fuels

Syngas

- Reverse water-gas shift
 - $CO_2 + H_2 \rightarrow CO + H_2O$ $\Delta H^\circ = + 40.9 \text{ kJ/mol}$
- Dry Reforming
 - $CO_2 + CH_4 \rightarrow 2 CO + 2 H_2$ $\Delta H^\circ = + 247.3 \text{ kJ/mol}$
- Co-electrolysis:

ENGINEERING

- $H_2O \rightarrow H_2 + 0.5 O_2$ E°= 0.41 V vs.NHE
- CO₂ -> CO + 0.5 O₂ E°= 0.53 V vs.NHE

NETL, WGSR

Wikipedia, SOEC

CO₂ to fuels: gas-to-liquids (Fischer-Tropsch)

Gasoline:

■ 8 CO + 17 H₂
$$\rightarrow$$
 C₈H₁₈ + 8 H₂O
 Δ H_{298K} = -1276 kJ/mol

Jet fuel

■ 11 CO + 23
$$H_2 \rightarrow C_{11}H_{24}$$
 + 11 H_2O
 ΔH_{298K} = -1721 kJ/mol

Global reaction from CO n CO + (2n+1) $H_2 \rightarrow C_n H_{2n+2} + n H_2O$

Global reaction from CO_2 n CO_2 + (3n+1) $H_2 \rightarrow C_nH_{2n+2}$ + 2n H_2O

```
Difference is the RWGS: CO_2 + H_2 \leftrightarrow CO + H_2O
```


Rasmussen, 2019. Implementation of Fischer-Tropsch Jet Fuel Production in the Danish Energy System

CO₂ to fuels

Fischer-Tropsch fuels

- Similar to gasoline, complex mixture
- □ Sunfire: 58 m³/a, Efficiency ~70%

Figure 5

Sunfire PtL demonstration plant (top) using high-temperature electrolysis (middle) for the production of Fischer-Tropsch crude (bottom)

Sources: top: sunfire GmbH Dresden/CleantechMedia; sunfire GmbH Dresden/renedeutscher.de

Recent announcement

Carbon neutral kerosene

CHEMICAL

ENGINEERING

BELGIUM'S NEXT CENTURY SAF / E-FUEL ECOSYSTEM

Neutral Kero Lime Presentation to Energia

Autoworld, Octobre 28th, 2021

► ILÈGE

https://trends.levif.be/economie/entreprises/dukerosene-wallon-neutre-en-carbone/article-normal-1466097.html?cookie check=1637791560

Recent announcement

Capture de CO₂ + électrolyse + synthèse Fischer-Tropsch

CHEMICAL

https://trends.levif.be/economie/entreprises/dukerosene-wallon-neutre-en-carbone/article-normal-1466097.html?cookie_check=1637791560

DREAM PRODUCTION

https://www.plasteurope.com/news/detail.asp?id=234342

23/05/2022 ©VITO – Not for distribution

23/05/2022 ©VITO – Not for distribution https://www.agro-chemistry.com/news/photanol-to-build-demo-plant-on-akzonobel-site-delfzijl/

GLOBAL PIPELINE OF COMMERCIAL CCUS FACILITIES OPERATING & IN DEVELOPMENT

IEA, Global pipeline of commercial CCUS facilities operating and in development, 2010-2021, IEA, Paris <u>https://www.iea.org/data-and-statistics/charts/global-pipeline-of-commercial-ccus-facilities-operating-and-in-development-2010-2021</u>

23/05/2022 ©VITO – Not for distribution

TOP TECHNICAL BARRIERS AND AREAS FOR FUTURE RESEARCH ACROSS CO2R PATHWAYS

		DIRECT			INDIRECT		
	Elec	trochemical	Bioelectrochemical (MES)	Plasma	Bioelectrochemical (Fermentation)	Thermochemical	
	C1 (TRL: 4-6)	C ₂₊ (TRL: 1-3)	TRL: 1–3	(TRL: 1-3)	TRL: 4-7	TRL: 5-8	
Major Technical Challenges	 Scale up reactor / supporting systems Increase long-term system stability 	 Improve energy efficiency; reduce cell overpotential Increase selectivity to individual C₁₊ products Increase single-pass CO₂ conversion 	Develop fundamental understanding of electron transfer mechanism(s) Raise CQ, reduction rates Increase product titers and cell toxicity limits Increase CQ, solubility / current density	 Decouple energy efficiency / conversion correlation Raise yield to C_{2*} products Develop commercially viable reactor design 	 Increase solubility of gaseous reactants Reduce separation costs Increase product titers and cell toxicity limits 	 Process intensification and scale-down Develop multi-functional water and CO₂ tolerant catalysts Improve product selectivity 	
Research Needs	Transition to gas-phas Standardize testing pr Develop accelerated d Test possible anodic ch Optimize reaction contransport) Develop of new cataly	e, membrane electrode assemblies otocols egradation testing methods emistries to replace OER ditions (electrolyte, pH, mass tic materials and membranes	Expanded testing of mixed and pure cultures Develop bio-compatible gas diffusion electrodes Genetic engineering	Develop specialized packed-bed catalysts for plasma conditions Electronics development Scalable reactor design	 Raise product titers Improve reactant delivery / mixing Develop low-cost <i>in-situ</i> separations 	Rapid screening of active materials Improve catalyst performance through promoter additives Intelligent systems integration and reactor design	
Advantages	Commercially deploye Tunable distribution of 100% theoretical conv High theoretical energ Access to high-value, h products	d for C, species f over 20+ products ersion of CO ₂ y conversion efficiency high-volume intermediates &	 Can form C-C bonds at ~100% selectivity Specialized chemistry accessible through genetic modifications ~98.6 % theoretical conversion of CO₂ High theoretical energy conversion efficiency 	Adaptable to transient usage; quick to reach steady-state Feedstock flexible 100% theoretical conversion of CO ₂	 Can form C-C bonds at ~100% selectivity High TRL, deployed commercially ~98.6 % theoretical conversion of CO₂ 	 Direct access to high volume fuels and chemicals markets Highest TRL; deployed commercially at large-scale Long history of R&D investments; existing infrastructure 	
Limitations	 Low selectivity to C₂₊ p Reported products lim Low TRL to C₂₊ product Rapid deactivation and stability 	products ited in carbon number ≤ 4 is d limited testing on long-term	 Low productivity Limited number of direct C₁-C₃ products Poorly understood reaction mechanisms 	Low TRL High power demand Low selectivity to C ₂₊ products	 Poor mass transfer Limited number of direct C₁-C₃ products Large system footprint Lower theoretical energy conversion efficiency 	 Challenged economics at small-scale Limitations in CO₂ equilibrium conversion Lower theoretical energy conversion efficiency 	

23/05/2022 ©VITO – Not for distribution

PROPOSED TIMELINE OF CO₂ UTILIZATION METHODS

5 to 10 years		10 te	o 50 years	70+ years	
Electrocatalysis	Photocatalysis	Biohybrid	Nanoporous Confinement	Chain Insertion	Molecular Machines
 Flexible electricity source Closest to scale and commercial application Dependent on the cost of electricity 	 Direct solar to fuel conversion Portable No CO₂ solubility issues Efficiencies and activities are still low 	 Coupling of enzymes to inorganic water splitting Microbial synthesis Complicated molecule synthesis Stability is still an issue 	 Catalysis of hydrocarbons achieved in zeolites and MOFs High temperatures and pressures required 	 Metal catalysts for polymerization through chain insertion. Currently highly adopted by industry Have yet to be demonstrated with CO₂ 	 Artificial enzymes with dynamic components Potential for tandem catalysis with high selectivity Has yet to be demonstrated

23/05/2022

©VITO – Not for distribution

Bushuyev et al., 2018. What should we make with CO_2 and how can we make it? Joule, 2(5), pp.825-832.

- Multiple valorization routes are possible via CCU (several pathways) with different challenges associated to each pathways. Power to X route is a promising one allowing integration with renewable energy.
- > The multiple pathways are at different level of TRL.
- > There is a cost associated to each pathway and it varies according to different variables.
- Thermochemical and bioelectrochemical routes offer the most technically feasible near-term opportunities for CCU, representing immediately deployable pathways to high-value and relatively high-volume products

 face inherent challenges with respect to lower equilibrium conversion (thermochemical) and a limited C1–C3 product distribution (biochemical), potentially hindering their long-term viability
- Direct electrochemical pathway show long-term promise and can theoretically overcome these limitations, yet currently face numerous technical barriers preventing near-term market adoption

23/05/2022 ©VITO – Not for distribution

State of technologies CCUS

Cost of CO₂ capture and re-use

- CCU routes are more expensive than fossil under both near- (2020s) and long-term (2050s) assumptions. In the near-term, CCU commodities are at least twice the cost of their fossil counterparts. In the long-term, cost premiums can decrease significantly due to reductions in the cost of green hydrogen and CO₂ capture.
- Economic competitiveness of CCU routes is reliant on a 'cost of emission', estimated in the long-term between USD 120-225/tCO2.

Structural impact on CO₂ prices due to European Green Deal

CHEMICAL

IEAGHG, 2021-03 CO2 Utilisation Reality Check: Hydrogenation Pathways. <u>https://www.ieaghg.org/publications/technical-reports/reports-list/9-technical-reports/1052-2021-03-co2-utilisation-reality-check-hydrogenation-pathways</u> <u>https://ember-climate.org/data/carbon-price-viewer/</u>

State of technologies CCUS

- Avoiding > 1 GtCO₂ requires very high levels of market penetration
 - For methanol: if methanol captures the entirety of the current market and then expands into the heavy-duty trucks market plus the plastics markets
 - For middle distillate hydrocarbons: only if they capture the entirety of today's aviation fuels and heavy-duty trucks market.
 - For formic acid: even if the CCU product were to penetrate the entire formic acid market, the abatement currently achievable is limited to approximately 2 MtCO₂.
- CCU pathways must be designed carefully to ensure lower life cycle emissions than the alternative pathways.

ULiège: FRITCO₂T platform

CHEMICAL

NGINEERI

LIÈGE université

Perspective

- We live in a carbon-based society, with very good reasons for that !
- A CO₂ neutral future is in sight with passionating (and huge) challenges for engineers!
- This will require a large penetration of hydrogen as an (intermediate) energy carrier

Martens et al., (2017) The Chemical Route to a CO_2 -neutral world, *ChemSusChem* Saeys (2015), De chemische weg naar een CO_2 -neutrale wereld, Standpunt KVAB

Thank you for your attention

Deepak PANT Senior Scientist, (Bio)Electrochemistry Phone tel:+3214336969 <u>deepak.pant@vito.be</u>

Grégoire LEONARD Associate prof., g.leonard@uliege.be

Interreg 2 Seas Mers Zeeën European Regional Development Fund

©VITO – Not for distribution