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Abstract

Planning the defossilization of energy systems by facilitating high penetration of renewables and maintaining access
to abundant and affordable primary energy resources is a nontrivial multi-objective problem encompassing economic,
technical, environmental, and social aspects. However, so far, most long-term policies to decrease the carbon footprint
of our societies consider the cost of the system as the leading indicator in the energy system models. This paper is
the first to develop a novel approach by adding the energy return on investment (EROI) in a whole energy system
optimization model. We built the database with all EROI technologies and resources considered while keeping the
core components of the model: open access, multi-energy carriers, short computational time, and accounting for all
the energy sectors. In addition, moving away from fossil-based to carbon-neutral energy systems raises the issue of
the uncertainty of low-carbon technologies and resource data. Thus, we conducted a global sensitivity analysis to
identify the main parameters driving the variations in the EROI of the system. This novel approach can be applied to
any energy system at the worldwide, country, or regional level. We use a real-world case study to illustrate the model:
the 2035 Belgian energy system for several greenhouse gas emissions targets.

The main results are threefold: (i) the EROI of the system decreases from 8.9 to 3.9 when greenhouse gas emissions
are reduced by 5; (ii) the renewable fuels - mainly imported renewable gas - represent the largest share of the system
primary energy mix due to the lack of endogenous renewable resources such as wind and solar; (iii) in the sensitivity
analysis, the renewable fuels drive 67% of the variation of the EROI of the system for low greenhouse gas emissions
scenarios.

The decrease in the EROI raises questions about meeting the climate targets without adverse socio-economic im-
pact. Most countries rely massively on fossil fuels, like Belgium, and they could encounter an EROI decline when
shifting to carbon neutrality. Therefore, this study demonstrates the importance of considering other criteria, such
as the EROI, in energy system models. It helps to nuance the cost-based results to better guide policy-makers in
addressing the challenges of the energy transition.

Keywords: Energy return on energy investment; energy transition; whole energy system; sensitivity analysis;
EnergyScope TD; polynomial chaos expansion.

1. Introduction

To limit climate change and achieve the ambitious
targets prescribed by the Intergovernmental Panel on
Climate Change [1], the transition toward a carbon-free
society goes through an inevitable increase in the share
of renewable generation in the energy mix. Integrating
these new energy resources and technologies will lead
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to profound structural changes in energy systems, such
as an increasing need for storage and radical electrifica-
tion of the heating and mobility sectors. Therefore, en-
ergy planners face the double challenge of transitioning
towards more sustainable fossil-free energy systems, in-
cluding high penetration of renewables, while preserv-
ing access to abundant and affordable primary energy
resources. In the literature, a large variety of energy
models exists. Limpens et al. [2] has conducted an ex-
tensive review of 53 energy models and tools. They
all consider a cost-based objective function with some-
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times a greenhouse gas emissions target. However, de-
signing an optimal energy system is a multi-objective
problem as it encompasses economic, technical, envi-
ronmental, and social aspects. Thus, new flexible and
open-source optimization modeling tools are required
to capture the increasing complexity of future energy
systems.

This study addresses this issue by considering a com-
prehensive indicator: the energy return on investment
(EROI). It better encompasses the technical and social
challenges of energy transition than the cost. The field
of net energy analysis first came to attention during the
1970s oil crises to assess how much energy is provided
to society [3]. Then, various metrics have been intro-
duced in the past few decades, including the energy
profit ratio, energy gain, energy payback, and the most
well-known, the EROI. Expressed as a ratio [4], the
EROI is the amount of helpful energy yielded from each
unit of energy input to obtain that energy. The lower
the EROI of an energy source, the more input energy
is required to produce the output energy, which results
in less net energy available for consumption. Thus, the
EROI can be understood as the ease with which the en-
ergy system can extract energy sources and transform
them into a form beneficial to society. The work of
Mulder and Hagens [5] established a theoretical frame-
work for EROI analysis that encompasses the various
methodologies in the literature.

Access to abundant and affordable primary energy re-
sources has been recognized as an essential element for
the prosperity of human societies, and the concept of
EROI is commonly used to measure their quality. The
literature about EROI is abundant and, without being
exhaustive, concerns three main fields of research: (1)
the link between EROI and societal well-being; (2) es-
timation of the EROI of an energy resource or technol-
ogy; (3) estimation of the EROI at the level of an econ-
omy or a society.

The potential connections between societal well-
being and net energy availability are investigated by
Lambert et al. [6]. The results for a large sample of
countries point out that the estimated societal EROI is
correlated with the Human Development Index (HDI),
which is a standard living indicator. However, for a few
countries with a high level of development, HDI above
0.75, there is a saturation point where increasing the
EROI above 20 is not associated with further improve-
ment in society. In addition, the relationship between
EROI and HDI is non-linear as the HDI increases less
and less rapidly with societal EROI.

The characteristics of the primary energy sources, in-
cluding the EROI of each fuel, are investigated by Hall

et al. [7]. They conclude that: (i) the EROI of critical fu-
els, such as oil and gas, is declining; (ii) most renewable
and non-conventional energy alternatives have substan-
tially lower EROI values than traditional conventional
fossil fuels. Another more recent study [8] estimates the
EROI of fossil fuels at both primary and final energy
stages. However, their results suggest that the current
EROI of fossil fuels may not differ from the EROI of re-
newables, which illustrates the difficulty of adequately
assessing the EROI of resources or technologies.

Several attempts to determine a lower bound of the
societal EROI have been performed over the past few
years. However, the estimation differs from one con-
tribution to another. The study of Hall et al. [9] calcu-
lates a lower bound around 5 of the societal EROI below
which a prosperous lifestyle would not be sustainable.
The study of Court [10] estimates that the minimum sus-
tainable societal EROI has declined from 20 in 1900 to
6 in 1970 to remain constant so far. Brandt [11] esti-
mates a minimum societal EROI of around 5 by using
a simple template economy with four sectors and inputs
for each sector defined at an order-of-magnitude level
using data for the US.

Finally, a few studies have attempted to estimate the
societal EROI at a country or world level. The work of
Dupont et al. [12] provides an estimate of the societal
EROI using a simple macroeconomic model with two
sectors, an energy sector and a final sector aggregating
the rest of the economy. In addition, they use the net en-
ergy ratio, which is more comprehensive than the EROI,
to assess the energy embodied in the intermediate and
capital consumptions of the entire economy. The model
estimates a net worldwide EROI of 8.5 for 2018, and
the sensitivity analysis performed on the model parame-
ters demonstrates the robustness of the model. However,
their model focuses only on the actual system EROI and
does not assess how it would evolve with a transition
towards an energy system based mainly on intermittent
renewable energy sources to meet the IPCC targets.

These papers illustrate the difficulty of assessing the
EROI of a given resource, technology, or society. How-
ever, they depict the key elements which have con-
tributed to the increased attention paid to the EROI re-
search field: (1) the EROI of the essential fuels, in
particular fossil fuels, has been declining due to the
depletion of finite resources [9, 13]; (2) the estimated
EROI ratios for renewable energy sources and conven-
tional fossil fuels are often controversial and vary sig-
nificantly depending on the adopted methodology [7, 8].
This matter raises concerns that the renewables-led en-
ergy transition required to meet climate targets may
have adverse socioeconomic impacts [14]; (3) the EROI
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captures the efficiency of energy conversion technolo-
gies and provides some macro-economic perspective
because of its link to the well-being of society [6].

We provide two reasons to assess the EROI of a whole
energy system instead of a set of technologies and re-
sources or only a given system sector, such as the elec-
tricity grid. First, it is not relevant to compare the EROI
of renewable resources or technologies independently.
For instance, solar and wind energies are intermittent
and stochastic. Gas and nuclear power plants are ad-
justable and can meet fluctuating demand. Thus, com-
paring the EROI of solar vs. nuclear without taking into
account storage systems and other assets to balance the
system is not pertinent. Second, a whole energy sys-
tem comprises several sectors (mobility, heat, electric-
ity, industry) that use several technologies and resources
that can be imported or extracted. These resources are
transported, stored, and converted by energy conversion
technologies to supply end-use demands such as elec-
tricity, transport, heating, and the production of goods.
Assessing an energy system as a whole opens the oppor-
tunity for the full deployment of synergies and generates
unexpected results [15]. Thus, the EROI of the system
cannot be the sum of the EROI of each of its compo-
nents.

The literature comprises a large variety of energy
models (optimization and simulation), and we refer
the reader to the reviews proposed by Limpens et al.
[2], Borasio and Moret [16] which compare models with
the following features: open-source, with a monthly
to hourly time resolution, and modeling mobility and
heat supply besides the electricity sector. While there
are many studies devoted to planning a whole energy
system based on the cost indicator, those that con-
sider the EROI are much rarer. MEDEAS-World [17,
18] a global, one-region energy-economy-environment
model, is one of the few models which take into account
the societal EROI evolution. MEDEAS is a policy-
simulation dynamic-recursive model that has been de-
signed by applying System Dynamics. The EROI of the
system is estimated, based on a detailed review of the
life cycle analyses of the different energy sources, in-
cluding the ancillary structures required to handle the
intermittency of renewable energies. For 2015, using
aggregated data at the world level, the model estimated
an EROI of the system of 12. Then, the results reveal a
fast transition to reach a 100% renewable electric sys-
tem by 2060, consistent with the Green Growth nar-
rative1, which could decrease the EROI of the system

1It is an alternative paradigm usually assumed to avoid the adverse
impacts on human societies of the global environmental change.

from 12 to 3 by the mid-century.
In this present work, we concentrate on optimization

models that reveal optimal configurations over many
available options and degrees of freedom. They are suit-
able for analyzing complex systems, where many com-
bined alternatives need to be explored. However, the
study Borasio and Moret [16] illustrates that there is
no perfect energy model capable of addressing all case
studies and research topics. It is improbable that a sin-
gle modeling framework will ever be able to capture
all the relevant and interlinked dynamics of the energy
transition, which is a complicated and interdisciplinary
challenge [15]. Various models can answer different re-
search questions and can be complementary. However,
selecting a particular model among the wide range of
available energy models is a difficult task. Thus, build-
ing on existing and consolidated frameworks can be ad-
vantageous over developing new case-specific models
from scratch.

We decided to use EnergyScope Typical Days (Ener-
gyScope TD) [2], an open-source model for the strategic
energy planning of urban and regional energy systems.
Compared to other existing energy models, which are
often proprietary, computationally expensive, and pri-
marily focused on the electricity sector, EnergyScope
TD optimizes both the investment and operating strat-
egy of an entire energy system, including electricity,
heating, mobility, and the non-energy demand2 (NED).
Therefore, the EnergyScope TD model offers several
benefits compared to other modeling approaches and
can easily be extended to include new indicators such
as the EROI. In the following, we focus on the recent
works related to EnergyScope TD.

1.1. Related work
A first attempt to consider the EROI to investigate

the Belgian energy system is conducted by Limpens and
Jeanmart [20]. The study focuses on the energy storage
mix required to allow the penetration of a high share
of renewable energy. A simplified hourly-based model
optimizes the renewable energy and storage assets by
maximizing the EROI while respecting energy balance
constraints. The results indicate that depending on the
renewable energy deployment and the nuclear share in
the energy mix, the system EROI ranges from 5 to 10.5.
However, one of the main limitations of this study relies
on the model, which is not a whole energy system. This

2The NED comprises energy products used as raw materials in the
different sectors, not consumed as a fuel or transformed into another
fuel [19]. In the case of Belgium, it amounts to 20% of the total energy
demand and 10% of the world final energy consumption.
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issue is addressed with EnergyScope TD by Limpens
et al. [2], a more advanced model of the Belgian energy
system.

First, the EnergyScope TD model was applied to an-
alyze the 2035 Belgian energy system for different car-
bon emission targets. The results estimate a lack of
endogenous resources in Belgium of 275.6 [TWh/y],
amounting to 30-40% of the primary energy. Several
recommendations are proposed to obtain additional po-
tential such as importing renewable fuels and electricity
or deploying geothermal energy. In this study, a mix
of solutions is the most cost-effective for reaching low
carbon emissions.

Second, a further step is achieved by considering
the importance of renewable fuels in a low-carbon en-
ergy system [21]. This study performs the uncertainty
quantification on a whole energy model by considering
the total annualized cost of the system in the objective
of EnergyScope TD. The polynomial chaos expansion
method is implemented to perform the sensitivity analy-
sis and highlights the influence of the critical parameters
on the cost of the system. The results indicate: (i) when
considering uncertain parameters, the average value of
the system cost is 17% higher at carbon neutrality than
in a deterministic setting; (ii) the standard deviation of
the cost increases when decreasing the GHG emissions;
(iii) renewable fuels are the primary driver of the system
cost uncertainty with 53% of the cost variation.

Finally, a preliminary implementation of a multi-
criteria approach in the EnergyScope TD model, which
is currently a single objective model, is proposed by
Muyldermans and Nève [22]. Given the challenges as-
sociated with the energy transition, it allows for assess-
ing a system including economic, environmental, tech-
nical, and social aspects. The case study is the 2035
Belgian energy system. The analysis emphasizes the en-
vironmental impacts of the energy system according to
the weight associated with each criterion in the objective
function: the total system cost, EROI, and global warm-
ing potential. They conclude that considering multiple
criteria leads to a more nuanced and robust solution than
a single criterion approach. However, this work is in-
troductory, and the results must be consolidated with a
more extensive analysis. In addition, it does not: (i) con-
sider several greenhouse gas emissions scenarios; (ii)
assess the uncertainty of the model input parameters.
Nevertheless, it paves the way for this paper.

1.2. Research gaps and scientific contributions

To the best of our knowledge, the research gaps mo-
tivating this paper are four-fold:

1. Many studies using the EROI are focused on spe-
cific technologies and resources. There have been
several attempts to estimate the EROI of society
in economic and social sciences [10, 12], but none
have considered a whole energy system using an
optimization-based model;

2. While many studies are devoted to planning a
whole energy system based on the cost indicator,
those considering the EROI are more infrequent.
MEDEAS-World [17], a global energy-economy-
environment system dynamics model, is one of the
few that consider the societal EROI evolution but
is not an optimization-based model;

3. There is no consolidated EROI open-access dataset
for all technologies and resources of a whole en-
ergy system;

4. There is no comparison of the EROI of a whole en-
ergy system, accounting for parameters uncertain-
ties, to the deterministic cost-optimum situation.

With these research gaps in mind, the main contri-
butions of this paper, built on the previous studies
[20, 2, 21, 22], are four-fold:

1. Develop a novel and open-source approach by
adding the EROI in a whole energy system opti-
mization model. This approach can be applied to
any energy system to investigate the EROI of a so-
ciety during the energy transition at the worldwide,
country, or regional level;

2. Propose and implement a methodology to assess
the impact of uncertain parameters on the EROI of
the system and compare the results to the determin-
istic analysis;

3. Use a real-world case study, the Belgian energy
system, for several GHG emissions targets in 2035
to illustrate the novel approach by comparing the
results when considering the cost as a leading in-
dicator. In this case study, we emphasize the role
of renewable fuels in the purpose of decreasing the
GHG emissions;

4. Provide a transparent and collaborative database of
the EROI of all technologies and resources of a
whole energy system.

In addition to these contributions, this study also pro-
vides open access to the code repository3 and the lat-
est documentation4 to help the community reproduce
the experiments. Table 1 presents a comparison of the

3https://github.com/energyscope/EnergyScope
4https://energyscope-td.readthedocs.io/en/master/
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Figure 1: Paper skeleton with the main contributions. The energy
system optimization model EnergyScope TD is used to assess the
EROI of the Belgian energy system for several GHG emissions tar-
gets. Then, an EROI sensitivity analysis identifies the critical uncer-
tain parameters X ∈ RN and estimates the EROI probability density
functions using the surrogate model f̂ .

present study to several state-of-the-art papers analyz-
ing energy transition systems. Appendix A provides
the justifications.

We hope the present work provides decision-makers
with insightful guidelines to answer the following ques-
tions: (i) What are the main changes in the transition of
an energy system when considering the EROI compared
to the total system cost? (ii) To what extent should un-
certainties be considered when planning a low-carbon
energy system based on the maximization of EROI?
Furthermore, which are the key parameters that drive
the system EROI uncertainty? (iii) Given the limited
availability of local renewables in Belgium, what solu-
tions of the Mix scenario presented by Limpens et al.
[23], such as electrification, nuclear energy, and import
of synthetic fuels, would most affect the variation of the
system EROI?

1.3. Organization

Figure 1 depicts the paper skeleton, which is orga-
nized as follows. Section 2 presents the EROI definition
used in this study and provides the succinct formula-
tion of the EnergyScope TD model with the main as-

sumptions. Section 3 provides the real-world case study
of the Belgian energy system in 2035, and Section 4
investigates its EROI evolution for several GHG emis-
sions targets. Section 5 presents the results of the EROI
sensitivity analysis, and Section 6 points out the model
and methodology limitations. Finally, Section 7 out-
lines the main findings and proposes ideas for further
work. Appendix A presents the justifications of the
comparison conducted in Table 1. Appendix B provides
the methodology to derive the final energy consumption
from the simulation results in EnergyScope TD. Finally,
Appendix C and Appendix D give additional results of
the EROI study of the Belgian energy system in 2035
and the sensitivity analysis, respectively.

2. Methodology

This section presents the EROI definition used in
this study and details the main assumptions of the
model, including the EROI-based objective function.
The EnergyScope TD complete formulation, the doc-
umentation of the model, and the input data are de-
scribed in Limpens et al. [2, Appendix C. Supplemen-
tary material], and the code repository with the data is
open-access.

2.1. EROI definition

This study considers the EROI defined at a the final
energy stage

EROIfin =
Gross energy produced

Energy invested
=

Eout

Ein
. (1)

The motivation of this definition is that energy enters
the productive economy at the final energy stage. Figure
2 depicts the differences between primary energy, final
energy consumed, and end-use demand with the concept
of energy cascade. It illustrates the EROI of the system
at the final stage.

In (1), Eout is computed at the final stage, i.e., the
quantity of gasoline or electricity required by cars and
trains, the heat produced for warming buildings, or the
electricity delivered to households and companies. Ein

is also measured in terms of final energy. It is com-
posed of: (1) the energy required for building all the
infrastructure of the energy system, from the cradle to
the grave; (2) the energy used for operating the energy
system; (3) the energy employed for building and oper-
ating the infrastructure.
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Criteria [24] [25] [26] [27] [28] [23, 21] Study

Authors EU FPB EV ELIA RTE UCL UCL-ULG
Multi-sectors X × X × × X X

Multi-scenario × ∼ X X X X X

Model PRIMES [29] CSG [30] TIMES [31] Antares [32, 33] EnergyScope TD [2]
EROI × × × × × × X

Sensitivity analysis × × × × × X X

Open dataset × × ∼ ∼ × X X

Open-access code × × × X X X X

Table 1: The contributions of the present study are compared to several state-of-the-art studies about energy system transition. The justifications
are provided in Appendix A.
X: criteria fully satisfied, ∼: criteria partially satisfied, ×: criteria not satisfied. Multi-sectors: whole energy system considered; Multi-scenario:
several scenarios of GHG emissions; EROI: EROI-based objective function; Sensitivity analysis: uncertainty analysis of the model parameters;
Open dataset: the data used are in open-access; Open-access code: the code used to conduct the experiments is in open-access. Abbreviations:
European Commission (EU), Federal Plan Bureau (FPB), EnergyVille (EV), France’s transmission system operator (RTE), Belgium’s transmission
system operator (ELIA), UCLouvain (UCL), ULiège (ULG), Price-Induced Market Equilibrium System (PRIMES), Crystal Super Grid (CSG),
The Integrated MARKAL-EFOM System (TIMES).
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Figure 2: The energy cascade illustrates the system EROI at the final
stage considered in this study. This Figure was adapted from Brock-
way et al. [8].

2.2. EROI formulation of EnergyScope TD

This study uses the open-source energy system op-
timization model EnergyScope TD [2], built on previ-
ous works [34, 35]. EnergyScope TD is a linear pro-
gramming (LP), multi-sector, and multi-carrier model
for the regional whole energy system such as a coun-
try. This model has been validated for the 2035 Bel-
gian whole energy system by Limpens et al. [23], which
is the case study of interest. Furthermore, the model

has been used for several regions5 including Italy [16],
Spain [36], Switzerland [34], and Europe-26 [37]. In
addition, Thiran et al. [38] developed a multi-regional
version, called EnergyScope Multi-Cell, which was ap-
plied to Western Europe [39] and Italy [40].

EnergyScope TD represents the heating, mobility,
and electricity sectors with the same level of detail. The
main characteristics are: (i) satisfying the system end-
use demand (EUD) instead of final energy consump-
tion (FEC). The system EUD is composed of electricity,
heat, transport, and non-energy demands. For instance,
passenger mobility is defined in passenger kilometers
per year rather than in a certain amount of gasoline to
fuel cars or electricity to power trains; (ii) optimizing
the system design and operation by minimizing its over-
all cost. In this study, the objective function is modified
to maximize EROIfin; (iii) an hourly resolution which
makes the model suitable for analyzing the integration
of intermittent renewable energy resources and storage;
(iv) the country is modeled as a single node where trans-
missions within the country are not considered. The
demands are balanced by the generations without con-
sidering the flows between the producers and the con-
sumers; (v) a short computational time, typically a few
minutes, due to the use of typical days, and a rebuilt
method to represent a year with an hourly resolution.

The model uses fixed EUD as input parameters where

5https://energyscope.readthedocs.io/en/master/

sections/Releases.html#case-studies
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the EUD is related to the numerator in the EROIfin def-
inition (1). Therefore, maximizing the system EROI
is equivalent to minimizing the denominator: the en-
ergy invested Ein. Thus, the model optimizes the en-
ergy invested and the operational strategies to minimize
the total annual system energy invested Ein,tot given: (1)
the exogenous EUD in electricity, heat, non-energy de-
mand, and mobility; (2) the availability and the energy
invested in the operation of the resources (RES) such as
natural gas, wind and solar energies, biomass or renew-
able fuels; (3) the efficiency and the energy invested in
the construction of technologies (TECH) such as power
plants, wind turbine, heat pumps, or cars. The objective
function to minimize is

min Ein,tot =
∑

j∈T ECH

Econstr( j)
lifetime( j)

+
∑

i∈RES

Eop(i), (2)

with T ECH and RES the sets of all the technologies
and resources, respectively, and lifetime( j) the lifetime
of the technology j. Econstr( j) and Eop(i) are the system
annual energy invested in construction of technology j
and operation of resource i, respectively. They are de-
fined as follows

Econstr( j) = econstr( j)F( j) ∀ j ∈ T ECH, (3a)

Eop(i) =
∑

t∈T |{h,td}∈T H T D(t)

eop(i)Ft(i, h, td)top(h, td) ∀i ∈ RES ,

(3b)

with econstr( j) [GWh/GW] the specific value of energy
invested in construction of technology j which is the cu-
mulative energy demand associated to the construction
of this technology, eop(i) [GWh/GWhfuel] the specific
value of energy invested in operation of resource i which
includes extraction/production/transportation and com-
bustion, F( j) [GW] ([GWh] for storage technologies)
the installed capacity of the technology j, Ft(i, h, td)
[GWh] the quantity of the resource i that is used at the
hour h of the typical day td, top(h, td) (1h by default)
the time period duration, T the set of all the periods of
the year, i.e., 8760 hours, and T H T D(t) the hour h
and the typical day td associated to the period t. In (3b)
summing over the different typical days and the hours
of typical days, using the set T H T D(t), is equivalent
to summing over the 8760 hours of the year.

The choice made in EnergyScope TD to model Cli-
mate change is the global warming potential (GWP)
[MtCO2-eq./y]. The annual greenhouse gas emissions
of the system GWPtot are defined as the sum of: (1)
the emissions related to the construction and end-of-
life of the energy conversion technologies GWPconstr,

allocated to one year based on the technology lifetime;
(2) the emissions related to the operation of resources
GWPop which accounts for extraction, transportation
and combustion. They are defined as follows

GWPtot =
∑

j∈T ECH

GWPconstr( j)
lifetime( j)

+
∑

i∈RES

GWPop(i), (4a)

GWPconstr( j) = gwpconstr( j)F( j) ∀ j ∈ T ECH, (4b)

GWPop(i) =
∑

t∈T |{h,td}∈T H T D(t)

gwpop(i)Ft(i, h, td)top(h, td) ∀i ∈ RES .

(4c)

Similarly to the energy invested, the total emissions re-
lated to the construction of technologies are the product
of the specific emissions gwpconstr and the installed ca-
pacity F. The total emissions of resources operation are
the emissions associated with fuels from cradle to com-
bustion and imports of electricity gwpop multiplied by
the quantities of resources used Ft(i, h, td) and the pe-
riod duration top.

The GHG emissions scenario or target is defined by
setting a limit, gwplimit, on the annual system GHG
emissions GWPtot as follows

GWPtot ≤ gwplimit. (5)

Therefore, the method relies on a snapshot approach
[35] where for two different GHG emissions targets
specified in (5) two different strategies result from the
optimization without a pathway to link them with each
other.

In practice, EROIfin (1) is computed ex-post by using
the optimization result with

Eout = FEC, (6a)
Ein = arg min Ein,tot, (6b)

where the final energy consumption (FEC) is derived
from the simulation result with the methodology de-
tailed in Appendix B.

GWP data (gwpop and gwpconstr) are estimated by us-
ing a life cycle assessment (LCA) approach taken from
the Ecoinvent database v3.2 [41] using the “allocation at
the point of substitution”, i.e., taking into account emis-
sions of technologies and resources “from the cradle
to the grave” and following the indicator “GWP100a-
IPCC2013” developed by the Intergovernmental Panel
on Climate Change (IPCC) [42]. The “Input Data” Sec-
tion of the online documentation provides the input data
to apply the EnergyScope TD model to the Belgian en-
ergy system in 2035. Table 2 summarizes the specific
value of energy invested eop(i) and gwpop(i) and GHG
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Resources gwpop eop

Elec. import 206 0.123
NG 267 0.0608
Renewable gas 0 0.269
Gasoline 345 0.281
Bio-ethanol 0 0.316
Diesel 315 0.21
Bio-diesel 0 0.432
LFO 312 0.204
H2 364 0.083
Renewable H2 0 0.579
Ammonia 285 0.065
Renewable ammonia 0 0.579
Methanol 350 0.0798
Renewable methanol 0 0.579
Wood 11.8 0.0491
Wet biomass 11.8 0.0559
Waste 150 0.0577
Uranium 3.9 0.0434
Wind 0 0
Solar 0 0
Hydro 0 0
Geothermal 0 0

Table 2: The specific value of energy invested eop [GWh/GWhfuel]
and GHG emissions gwpop [MtCO2-eq./y] for each resource in 2035
used in the case study. The GHG emissions are given for the impact
of the resources combustion only, based on Quaschning [43]. And
the methodology of the data collection of eop relies on Muyldermans
and Nève [22] where the data have been collected from the ecoinvent
database [41].

emissions for each resource in 2035. We refer the reader
to the online documentation for the data related to the
construction of technologies.

Finally, EnergyScope TD has an hourly resolution
and a tractable formulation with a few minutes of
computational time computationally affordable due to
twelve typical days [2]. This number allows to reach a
good trade-off with: (i) a limited impact on the result-
ing energy system strategy, i.e., the installed capacity of
the technologies and the use of resources remain in the
same order of magnitude; (ii) a significant gain in com-
putational time from 20 hours, with no typical day, to a
few minutes. This relatively short computation time al-
lows: (1) for a detailed analysis of the high integration
of renewable energy resources and storage capacities;

(2) to keep the uncertainty quantification, several thou-
sands of runs.

3. Case study: the 2035 Belgian energy system

The model is applied to the 2035 Belgian energy sys-
tem for several GHG emission targets. This year is a
trade-off between a long-term horizon where policies
can still be implemented and a horizon short enough to
define the future of the society with a group of known
technologies.

3.1. Case study description

The energy transition relies on renewable energies,
making their deployment potential a critical parameter.
Tables 3 and 4 provide the installed capacity of tech-
nologies using renewable energy and the renewable re-
source potential, respectively. The data for 2015 and
2020 are compared to the predictions for 2035 used as
input parameters of the model. In the following para-
graphs, we comment on some of the parameters consid-
ered in the case study.

Based on the current policies, Belgium intends to
phase out coal and nuclear. Hence, we suppose coal
and nuclear power plants are shut down in 2035; thus
not available. However, in the sensitivity analysis con-
ducted in Section 5, the installed nuclear capacity is
considered an uncertain parameter. A limit of 27.9%
[23] of the 2035 electricity end-use demand, represent-
ing 27.57 [TWh/y], bounds the electricity imports and
restricts the Belgian electrical dependence on neighbor-
ing countries. This study assumes an upper limit of 59.2
GWe [23] of PV installed capacity. This estimation re-
lies on two hypotheses; (i) the actual area of available
well-oriented roofs is approximatively 250km2 [44],
which is around 1% of total Belgian lands; (ii) a 23%
PV efficiency expected in 2035 with an average daily
total irradiation, similar to historical values, of 2820
Wh/m2. Notice that PV and solar thermal technolo-
gies compete with this land availability constraint of
250km2, equivalent to 59.2 GWe of PV or 70 GWth
of solar thermal (centralized or decentralized). This
study accounts for two types of biofuels: bio-diesel and
bio-ethanol. They can substitute diesel and gasoline, re-
spectively. Finally, a new type of renewable fuel, pro-
duced from renewable electricity, is considered. This
study allocates them a zero-global warming potential,
i.e., gwpop = 0 [MtCO2-eq./GWh]. However, there is al-
ways a residual CO2-impact that must be compensated
for through biomass or direct air capture. Nevertheless,
the analysis of these CO2-compensation approaches is
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Technology 2015 2020 2035

Electricity
production

PV 3.85 4.49 59.2†

onshore wind 1.49 2.49 10
offshore wind 0.70 1.95 6
hydro river 0.11 0.115 0.115
geothermal 0 0 0

Heat
production

geothermal 0 0 0
cen. solar th. 0 0 70†

dec. solar th. 0 0 70†

Table 3: Comparison of installed capacity [GWe] or [GWth] of tech-
nologies using renewable energy in 2015, 2020 and their maximal
potential expected in the model for 2035. † PV and solar thermal
technologies compete with the land availability constraint of 250km2

which is equivalent to 59.2 GWe of PV or 70 GWth of solar thermal
(centralized or decentralized). 2015 and 2020 data are based on Euro-
pean Commission et al. [24] and the 2035 projection on Limpens et al.
[23]. Abbreviations: centralized (cen.), decentralized (dec.), thermal
(th.).

out of the scope of this work. Four fuels are considered:
hydrogen, ammonia, methanol, and methane. They can
be “renewable” or fossil with a gwpop > 0 [MtCO2-
eq./GWh].

The 2035 heating, electricity, and mobility EUD pro-
jections are based on Limpens et al. [23] and Table 5
summarizes the differences between the EUD in 2015,
2020 and 2035. It is possible to notice the COVID-
19 impact in 2020. The 2035 passenger transport de-
mand, 194 [Mpass.-km/y], is divided between public
and private transport. The lower and upper bounds
for the use of public transport are 19.9% and 50% of
the annual passenger transport demand, respectively.
The freight demand, 98 [Mt-km/y], can be supplied by
trucks, trains, or inland boats with corresponding lower
and upper bounds: 0% and 100%, 10.9% and 25%
15.6% and 30%, respectively.

3.2. Reference case study results
EnergyScope TD reaches an EROI-optimum Belgian

energy system in 2035 at around 8.9 and 100.3 [MtCO2-
eq./y] without limiting the GHG emissions. This case is
called “reference scenario-100%”, where the constraint
(5) is not activated, and the parameters are at nomi-
nal values. In comparison, the EU reference scenario
2020 [24] provides the actual 2015 and 2020 values and
the 2035 forecast value for the total GHG emissions6

6These GHG emissions values do not consider the international
intra-EU and international extra-EU and Use, Land-Use Change and
Forestry (LULUCF).

Resources 2015 2020 2035

Imported
fuels

bio-ethanol 0.48 ?† no limit
bio-diesel 2.89 ?† no limit
gas-RE 0 0 no limit
H2-RE 0 0 no limit
ammonia-RE 0 0 no limit
methanol-RE 0 0 no limit

Biomass
woody 13.9 ?† 23.4
wet 11.6 ?† 38.9

Waste 7.87 ?† 17.8

Elec. import 24.54 -0.6 27.57

Table 4: Comparison of renewable resources [TWh] in 2015, 2020,
and their maximal potential in the model for the year 2035. Waste is
a non-renewable resource. † no consolidated data available. Abbrevi-
ations: electricity (elec.), renewable (RE).

of 118.6, 106.6, and 100.0 [MtCO2-eq./y], respectively.
Notice that 2020 is particular due to the COVID-19, and
the GHG emissions are expected to increase in the com-
ing years before decreasing to achieve the EU targets.
As explained in the following paragraphs, the 2035 en-
ergy system, when maximizing the EROI, relies mainly
on natural gas, which is less carbon-intensive than the
actual Belgian energy system, which uses oil for mo-
bility. In addition, the share of renewable energies is
higher with maximal wind installed capacities.

Non-renewable sources (82.7%), particularly natu-
ral gas (NG) import, dominate the primary energy mix
(413 TWh): NG import (292.9 TWh), methanol (38.4
TWh), ammonia (10.2 TWh). Renewables stand only
for 17.1% of the primary energy supply and are split be-
tween wind (43.0 TWh), wood (23.4 TWh), solar (4.0
TWh), and hydro (0.5 TWh). The remaining 0.2% con-
sists of electricity import (0.8 TWh). Table 6 details the
major technologies used to supply the demands of Table
5 in terms of share of production and installed capac-
ity. The electricity generation relies mainly on gas with
CCGT (33.4 TWh) and CHP (65.8 TWh) vs. wind (43.0
TWh), PV (4.0 TWh), hydro (0.5 TWh), and imported
electricity (0.8 TWh). A large part of the electricity pro-
duction (42.3 TWh) is used to supply heat pumps which
supply mainly DEC and DHN low-temperature heat de-
mands. The gas CHP is the most prominent player in
supplying the industrial high-temperature heat demand,
besides a small share from gas boilers. Overall, mo-
bility is also dominated by NG import: (1) passenger
mobility is equally divided between private (50%) and
public (50%) technologies with NG cars (100% of the
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NG: 71%
Wind: 10%

Methanol: 9%
Wood: 6%

Ammonia: 3%
PV: 1%

NG: 61%
Elec import: 7%

elec cars

NG: 50%
Wet biomass: 10%

DHN biomass 
cogen 

NG: 28%
PV: 17%

Waste: 5%

PV max capacity
IND waste boilers
IND elec heating
elec trucks
TS DHN seasonal
TS DEC HP elec

Methanol: 0%

Gas-RE: 30%
NG: 0%

Waste: 0%

Gas-RE: 60%
Ammonia: 0%

Elec import: 0%

Gas-RE import

Wood: 0%
Wet biomass: 0%

Wind: 1%
Solar: 1%

Gas-RE: 86%
Ammonia-RE: 2%

Methanol syn: 10%From elec to gas

Figure 3: EROI - GHG emissions optima with primary energy mix and technologies implementation. The energy transition is composed of seven
main steps illustrated with the red circles. Abbreviations: natural gas (NG), electricity (elec), district heating networks (DHN), decentralized
(DEC), heat pump (HP), thermal storage (TS), industrial (IND), maximal (max), renewable gas (Gas-RE).

EUD 2015 2020 2035

Electricity [TWhe] 81.5 74.8 91.9
Heat high T. [TWh] 74.1 71.2 50.4
Heat low T. [TWh] 124.8 116.8 147.3
Non-energy [TWh] 89.0 86.3 53.1
Mobility pass. [Mpass.-km] 147 110 194
Mobility freight [Mt-km] 70 69 98

Table 5: Comparison of EUD for 2015, 2020, and the 2035 projection.
The 2015 and 2020 heat low/high T. EUD are derived from the FEC
of the corresponding sector (residential, service and industry for heat
low T. and energy intensive industries for heat high T.) by removing
the corresponding electricity FEC. 83.1% of the electricity FEC of
Belgium is allocated to the residential, service and industry sectors
and the remaining to the energy intensive industries sector. This ratio
is estimated based on European Commission and Eurostat [45]. 2015
and 2020 data are based on European Commission et al. [24] and the
2035 projection on Limpens et al. [23]. Abbreviations: end-use de-
mand (EUD), temperature (T.), passenger (pass.), tons (t).

private mobility), tramways (30% of the public mobil-
ity), trains (50% of the public mobility), and NG buses
(20% of the public mobility); (3) NG trucks, trains, and
NG boats for the road, train, and boat freight, respec-
tively. Finally, methanol and ammonia are imported to
satisfy the non-energy demand, where a large part of

the methanol is used to synthesize high-value chemicals
(HVC).

The result of an EROI-optimum for the 2035 Bel-
gian energy system of 8.9 is close to the estimation of
the 2018 societal worldwide EROI [12]. However, this
comparison suffers from two limitations. First, in their
model, the current global energy system was mainly
based on fossil fuels in 2018. Second, the scope of their
study differs as it considers the world. EnergyScope
TD with the reference scenario indicates that renew-
able synthetic fuels are too energy-expensive to compete
against the fossil equivalent when there is no constraint
on GHG emissions. However, it is essential to remind
that such a system results from linear optimization. A
slight difference, e.g., efficiency, energy invested in con-
struction or operation, can make the system switch be-
tween two different solutions but with similar energy in-
vested objective. This is another rationale to account for
uncertainties in such a research field, which is investi-
gated in Section 5.

4. Results: EROI Belgian energy transition

This Section conducts an analysis of the Belgian en-
ergy system in 2035 by forcing the total annual emis-
sions of the system to decrease by reducing its upper
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Demand Technology Production Capacity

Electricity
CCGT 33.4 6.5
wind 43.0 16.0
PV 4.0 3.9

Heat HT
gas CHP 59.7 8.0
gas boiler 4.2 4.8

Heat LT DHN
HP 45.2 12.9
gas CHP 7.0 4.3

Heat LT DEC HP 92.9 31.3

Private mobility gas car 97.0 -

Public mobility
train 48.5 -
tramway 29.1 -
gas bus 19.4 -

Freight
gas truck 44.1 -
gas boat 29.4 -
train 24.5 -

Table 6: Reference scenario-100%: major technologies used to sup-
ply the demands of Table 5 in terms of production and installed capac-
ity. The private mobility accounts for 50% of the passengers mobility.
Units: production of electricity and all types of heat in [TWh], the
private and public mobility in [Mpass.-km], the freight mobility in
[Mt-km], and the production capacity of electricity and all types of
heat in [GW]. Abbreviations: end-use demand (EUD), high tempera-
ture (HT), low temperature (LT), combined cycle gas turbine (CCGT),
combined heat and power (CHP), decentralized (DEC), district heat-
ing networks (DHN), passenger (pass.), heat pump (HP), natural gas
(NG).

limit, i.e., gwplimit in (5). In practice, 5% steps of
GWPtot reduction were made from the GWPop (94.9
[MtCO2-eq./y]) of the “reference scenario-100%” pre-
sented in Section 3.2. First, we investigate energy trends
system strategies by considering the EROI in the ob-
jective function facing different GHG emissions con-
straints. However, it is essential to note that these strate-
gies result from specific snapshot optimizations without
a pathway to link them with each other. Then, we com-
pare a solution maximizing the system EROI to a solu-
tion minimizing the system cost.

4.1. EROI of the system evolution

The GHG emissions target scenarios are analyzed
from two perspectives: (1) the evolution of the EROI
and GHG of the system; (2) the primary energy supply
and its use in the energy system. Appendix C provides
additional results presented in terms of installed capac-
ities, energy invested, and final energy consumption for
the different GHG emissions targets.

4.1.1. System evolution summary
Figure 3 depicts a summary of the EROI - GHG emis-

sions optima with primary energy mix and technologies
implementation. The system shifts from high emissions
to low emissions; however, this is a view of the mind be-
cause the solutions of each GHG emissions target sce-
nario do not represent a transition path and must be ana-
lyzed individually. In the following, we comment on the
energy transition in seven steps, the red circles depicted
in Figure 3.

Step 0 - “reference scenario-100%” - green circle
depicted in Figure 3: GWPtot reaches 100.3 [MtCO2-
eq./y], and the system energy primary mix relies on 71%
of NG and the related technologies to satisfy the elec-
tricity, heat, and mobility demand (see Section 3.2).

Step 1 - gwplimit = 90.1 [MtCO2-eq./y]: the system is
partially electrified with a shift from NG to electric cars
for private mobility. In addition, a part of the electric-
ity production shifts from CCGT to electricity import,
reaching 7% of the primary energy mix. The NG share
in the primary energy mix dropped by 10% and reached
61%.

Step 2 - gwplimit = 80.6 [MtCO2-eq./y]: wet biomass
is introduced and achieves 10% of the primary energy
mix. DHN biomass co-generation technology supplies
the DHN heat low-temperature demand instead of DHN
gas co-generation. There is an additional decrease of
10% of the NG share in the primary energy mix.

Step 3 - gwplimit = 61.7 [MtCO2-eq./y]: PV technol-
ogy and waste resource achieve the maximal available
capacity with 59.2 [GWe] and 17.8 [GWh], represent-
ing 17% and 5% of the primary energy mix, respec-
tively. Waste boilers and direct electricity heating re-
place the industrial gas boilers. The trucks shift from
NG to electricity. Thermal seasonal and daily storage
are introduced to cope with the solar and wind seasonal
and daily intermittency.

Step 4 - gwplimit = 56.9 [MtCO2-eq./y]: synthetic
renewable gas (gas-RE) begins to be imported. Then,
when gwplimit = 33.2 [MtCO2-eq./y], the NG disappears
from the primary energy mix, and the gas-RE import
amounts to 30% of the primary energy mix.

Step 5 - gwplimit = 19.0 [MtCO2-eq./y]: the im-
ported methanol and the waste resource (gwplimit = 14.2
[MtCO2-eq./y]) disappear from the primary energy mix.

Step 6 - gwplimit = 9.5 [MtCO2-eq./y]: the imported
ammonia and electricity vanish from the primary energy
mix. The gas-RE import amounts to 60% of the primary
energy mix. CCGT technology replaces the electricity
imports to produce electricity by using the gas-RE.

Step 7 - gwplimit = 4.7 [MtCO2-eq./y]: there is an ex-
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treme shift from electric-based to gas-based technolo-
gies. Indeed, the wood, wet biomass, wind, and so-
lar energies have almost completely vanished from the
primary energy mix. The gas-RE, ammonia-RE, and
methanol-RE imports amount to 86%, 2%, and 10%
of the primary energy mix, respectively. The cars and
trucks shift from electric to gas technologies using the
gas-RE. The CCGT produces electricity with gas-RE.
Finally, boilers and co-generation using gas-RE satisfy
the heat demand.

The following paragraphs comment in detail on the
breakdown of GHG emissions by resources and tech-
nologies, and the evolution of the system primary en-
ergy mix.

4.1.2. System GHG emissions
Figure 4 depicts the system GWPconstr and GWPop

breakdown by technologies and resources for the differ-
ent yearly GHG emissions targets in 2035. The GHG
construction emissions are mainly driven by electricity
and mobility technologies. The PV installation amounts
to a significant part of the electricity construction GHG
emissions increase between GHG emissions targets of
80.6 and 61.7 [MtCO2-eq./y]. Private passenger mobil-
ity composes the prominent part of the mobility con-
struction GHG emissions with battery-electric cars for
GHG emissions targets between 90.1 and 9.5 [MtCO2-
eq./y], and NG cars for the reference case and the GHG
emissions target of 4.7 [MtCO2-eq./y]. The GHG op-
eration emissions mainly comprise non-renewable re-
sources: NG, electricity import, methanol, and ammo-
nia. They decrease with the progressive shift from non-
renewable to renewable resources.

4.1.3. System primary energy evolution
Figure 5 depicts the system primary energy evolu-

tion for several yearly GHG emissions targets in 2035
breakdown by resource categories. Step 0 - “refer-
ence scenario-100%”: the primary energy mix com-
prises mainly NG with a share of 71%. Renewable re-
sources are composed of wind, solar, and wood. On-
shore and offshore wind resources are used at the max-
imum available capacity with 10 [GWe] and 6 [GWe].
They amount to 10.4% of the primary energy mix. The
wood represents 5.7% of the primary energy and is also
used at its maximum capacity of 23.4 [GWh/y]. Finally,
the PV capacity is 3.9 [GWe] and amounts to only 1%
of the primary energy mix. Indeed, the energy invested
in constructing offshore and onshore wind capacities is
approximately two times lower than the PV capacity.

Figure 6 provides the system primary energy evo-
lution breakdown between non-renewable and renew-
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Figure 4: System GWPconstr and GWPop breakdown by technologies
and resources for several yearly GHG emissions targets in 2035.

able resources, respectively. The following comments
explain the main steps of non-renewable resources de-
crease. Step 1 - gwplimit = 90.1 [MtCO2-eq./y]: the de-
crease of NG in the primary energy mix is balanced with
electricity import7, which reaches the maximum impor-
tation limit of 27.5 [GWh/y]. The other non-renewable
and renewable resources are stable in volume compared
to the “reference scenario-100%”. Step 2 - gwplimit =

80.6 [MtCO2-eq./y]: wet biomass and solar renewable
resources balance the NG decrease. The wet biomass is
used at its maximal capacity of 38.9 [GWh/y]. The PV

7The use of imported electricity is highly dependent on its indirect
emissions. In this study, electricity imports emit about half of the elec-
tricity production of a CCGT. Therefore, imported electricity replaces
the production of CCGTs.
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Figure 5: System primary energy mix evolution for several yearly
GHG emissions targets in 2035 breakdown by resource categories.
Abbreviations: non-RE: waste, methanol, and ammonia; Fossil: NG;
RE-fuels: gas-RE, methanol-RE, and ammonia-RE; Biomass: wood,
and wet biomass.

capacity starts to increase and reaches a capacity of 11.2
[GWe]. Then, from 80.6 to 61.7 [MtCO2-eq./y], the NG
decrease is balanced with increased waste and PV in the
primary energy mix. The latter reaches the maximal
installed capacity of 59.2 [GWe]. Step 3 - gwplimit =

61.7 [MtCO2-eq./y]: NG amounts to 28.1%, PV 16.8%,
wind offshore and onshore 11.7%, wood 6.4%, biomass
10.6%, and waste 4.9% of the primary energy mix.
Steps 4 to 6 - from 61.7 to 9.5 [MtCO2-eq./y]: the de-
crease in NG, methanol, waste, and electricity imports
is progressively balanced by importing renewable gas
(gas-RE). Step 7 - gwplimit = 4.7 [MtCO2-eq./y]: below
9.5 [MtCO2-eq./y], there are no more non-renewable
resources. GHG emissions targets force the system to
decrease the construction GHG emissions as the op-
eration GHG emissions are approximately 0 [MtCO2-
eq./y]. Renewable fuels almost completely replace the
PV and wind resources, and the system is partially un-
electrified to use them. For instance, electric vehicles
(mobility private and freight) are replaced by vehicles
using synthetic fuels. That case is hypothetical because
it assumes that: (1) imported renewable fuels imply
lower GHG emissions than renewable resources such as
solar and wind. However, the GWP data on renewable
fuels are not mature enough to draw such conclusions;
(2) it is doubtful to import such quantities of renewable
fuels (approximately 510 [TWh/y]).

4.1.4. Conclusion
The system EROI evolution analysis provides two

main conclusions. First, major energy system changes

occur when the system GWPtot ≤ 9.5 [MtCO2-eq./y].
In this case, the domestic renewable energies such as
solar and wind are replaced by imported renewable fu-
els and electric technologies by gas-based technologies.
Almost all the primary energy is composed of renew-
able fuels. This case is not realistic and depends on
the quality of GWP and energy invested data which are
uncertain for renewable fuels. In addition, it is unex-
pected to import approximately 510 [TWh/y] of such
renewable fuels. Thus, further investigations need to be
conducted to investigate low carbon energy system with
GWPtot ≤ 10 [MtCO2-eq./y]. Second, renewable fu-
els seem to play an increasingly key role in the energy
transition to satisfy the mobility and heating end-use de-
mands when decreasing GHG emissions. They repre-
sent the major part of the system primary energy when
GWPtot ≈ 10 [MtCO2-eq./y]. These preliminary results
encourage further investigations to assess the impact of
the data quality, particularly synthetic fuels, on the re-
sults. Thus, Section 5 conducts a sensitivity analysis
of the system EROI for several GHG emissions targets
above 10 [MtCO2-eq./y].

4.2. Comparative study: system EROI when minimizing
the cost vs. the invested energy

Figure 7 depicts the evolution of the cost and EROI of
the 2035 system for several GHG emissions scenarios
when minimizing the cost and maximizing the EROI.
The trends are similar. The EROI of the system de-
creases when constraining the GHG emissions, and the
EROI level is constantly smaller for a given GHG emis-
sions target when minimizing the system cost. Simi-
larly, the cost of the system is constantly higher for a
given GHG emissions target when minimizing the en-
ergy invested in the system.

However, the primary energy mix differs, as illus-
trated by Figure 8. When minimizing the system
cost, with no GHG emissions target, the system uses a
higher share of domestic renewable resources with 41.9
[TWh/y] of onshore and offshore wind, 33.8 [TWh/y]
of PV, 23.4 [TWh/y] of wood, and 38.9 [TWh/y] of wet
biomass. In comparison, when maximizing the system
EROI, the system uses 43 [TWh/y] of wind onshore and
offshore, 4 [TWh/y] of PV, 23.4 [TWh/y] of wood, and
0 [TWh/y] of wet biomass. In addition, the system uses
a smaller share of NG, which is compensated with more
renewable energies, coal, light oil fuel (LFO), waste,
and electricity import. When the GHG emissions de-
crease, the fossil energies are progressively replaced by
imported renewable fuels: ammonia, methanol, H2, and
renewable gas. Indeed, domestic renewable energies
are almost already used at maximal capacity, except for
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Figure 6: System primary energy mix evolution for several yearly GHG emissions targets in 2035 breakdown between non-renewable and renewable
resources. Abbreviations: NG: natural gas, Elec. import: electricity import; renewable fuels: gas-RE, methanol-RE, and ammonia-RE; hydro:
hydro river.

the PV with 32.2 [GWe] when there is no restriction on
GHG emissions.

Overall, the strategy to decrease GHG emissions is
similar when minimizing the system cost and maximiz-
ing the EROI by importing an increased share of renew-
able fuels. However, instead of using large quantities
of imported renewable gas, the system also employs
renewable ammonia, methanol, and H2. The renew-
able ammonia is employed in CCGT to produce elec-
tricity, and the renewable gas in CHP is consumed to
satisfy a part of the high-temperature heat demand. The
methanol is converted into HVC, and the H2 is used for
the freight. Finally, the wet biomass produces renew-
able gas with the bio-methanation process instead of
being directly consumed in CHP, and boilers consume
the wood to satisfy the heat high-temperature demand
instead of being transformed into methanol.

5. Sensitivity analysis of the system EROI

The model relies on numerical input data, which are
sometimes highly uncertain, such as the energy invested
in the operation of renewable fuels. This uncertainty
could influence the key messages of the previous de-
terministic results. To nuance these messages, two ac-
tions are proposed: (i) being transparent on the dataset
used (refer to the online documentation), (ii) assessing
the impact of uncertainty of the system EROI for several
GHG emissions targets through global sensitivity analy-
sis (GSA), and the Monte Carlo method. This section is
an extension of the works of Limpens [46], Rixhon et al.

[21] by assessing the uncertainty of the EROI of the sys-
tem with a GSA using the polynomial chaos expansion
(PCE) method [47]. The PCE approach emphasizes the
critical parameters by using Sobol indices and extract-
ing statistical moments, mean and variance, of the EROI
of the system.

This section is organized into two parts. First, the
most critical uncertain parameters for the EROI of the
system are listed according to their respective Sobol in-
dices based on the GSA results. Then, the EROI of
the system is analyzed through its mean, variance, and
probability density function (pdf). Appendix D pro-
vides the details about the GSA approach and additional
results concerning the first and second-order PCE.

5.1. Critical parameters

The PCE coefficients allow estimating the statistical
moments, e.g., mean µ and variance σ, of the EROI
of the system, without additional computational cost.
In addition, it enables the estimation of the EROI pdf
by a Monte Carlo approach with the obtained surrogate
model in a few seconds of computational time.

Figure 9 illustrates the evolution of the Top-5 param-
eters and their total-order Sobol values [%] for GHG
emissions of 28.5 and 85.4 [MtCO2-eq./y] over several
GHG emissions targets. The total-order Sobol value of
a parameter indicates its contribution to the variance of
the EROI of the system. Table 7 presents the Top-5 crit-
ical parameters for several GHG emissions targets with
the values of the total-order Sobol indices.
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Figure 7: Comparison of the system cost and EROI evolution for several scenarios of GHG emissions when minimizing the cost and maximizing
the EROI.

Ranking 85.4 56.9 28.5 19.0

1 eNG cars
constr 39.2 eElec. cars

constr 18.0 eGas-RE
op 43.6 eGas-RE

op 67.1
2 eNG

op 25.5 f NUC
max 12.5 eElec. cars

constr 4.8 eElec. cars
constr 6.1

3 eElec. cars
constr 6.3 %public mob

max 7.7 f NUC
max 4.8 f NUC

max 3.4
4 %public mob

max 5.4 ePV
constr 5.0 availWet biomass 4.7 availWood 2.5

5 eWet biomass
op 4.3 eNG

op 5.0 f Offshore wind
max 4.2 %public mob

max 2.3

Table 7: Top-5 critical parameters and their total-order Sobol values [%] for several GHG emissions targets [MtCO2-eq./y]. Abbreviations: electric
(elec.) photovoltaic (PV), nuclear (NUC), renewable gas (Gas-RE), natural gas (NG). Table D.11 in Appendix D.4 lists all the critical parameters
with their total-order Sobol values [%].

It is expected that eGas-RE
op becomes the primary driver

of the variation of the EROI of the system, given the
increasing share of renewable gas in the primary en-
ergy mix when GHG emissions targets decrease. In the
model, the energy invested in the operation of renewable
gas is 4.4 higher than its fossil equivalent, making it less
competitive; thus, unused with no restrictions on GHG
emissions. However, it becomes the most-impacting pa-
rameter, up to 67.1% of the variance of the EROI of the
system for the GHG emissions target of 19.0 [MtCO2-
eq./y]. The lower part of Figure 9 illustrates the opposite
trend for NG. Given its low energy invested in opera-
tion, it is a critical resource when the GHG emissions
targets are not compelling. The energy invested in the
construction of gas cars and NG operation substantially
impacts the EROI variance with 39.2% and 25.5%, re-
spectively, when the GHG emissions are weakly con-
strained (85.4 [MtCO2-eq./y]).

Then, the energy invested in the construction of elec-
tric cars eElec. cars

constr is the second parameter to play a key

role in the variance of the EROI of the system with the
decrease of GHG emissions. It is the most-impacting
parameter on the system EROI with 18.0%, for the tar-
get of 56.9 [MtCO2-eq./y]. Then, it is the second most-
impacting parameter with 4.8% and 6.1%, for the tar-
gets of 28.5 and 19.0 [MtCO2-eq./y]. Figure C.16 de-
picts the essential impact on the system EROI of the
private mobility for GHG emissions between 61.7 and
9.5 [MtCO2-eq./y], where the energy invested in con-
struction is mainly composed of mobility and electricity
technologies, and more particularly of PV and electric
cars.

The maximum capacity of nuclear power plants
f NUC
max is the third critical parameter. It has lower en-

ergy invested in construction than PV, 2600 vs. 4400
[GWh/GW], which is similar to wind on/offshore, and a
negligible related global warming potential of construc-
tion. Thus, the system consistently relies on the maxi-
mum capacity of the nuclear power plant. f NUC

max is the
second most-impacting parameter with 12.5% for GHG
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Figure 8: Comparison of the system primary energy mix breakdown
by non-renewable resources (upper) and renewable resources (lower)
for several scenarios of GHG emissions when minimizing the cost
(left) and maximizing the EROI (right).

emissions target of 56.9 [MtCO2-eq./y], and the third
one with 4.8% and 3.4% for targets of 28.5 and 19.0
[MtCO2-eq./y].

The wet biomass availWet biomass and wood availWood

availabilities with 4.7% and 2.5%, respectively, are
the fourth critical parameters for low GHG emissions
targets of 28.5 and 19.0 [MtCO2-eq./y]. The energy
invested in the operation of the wood is lower than
biomass, 0.049 vs. 0.056 [GWh/GWh] for an equiv-
alent global warming potential. The wood is used by
the model to produce methanol for satisfying the non-
energy demand. Thus, it allows limiting the methanol
importations, which have a higher invested in the oper-
ation with 0.08 [GWh/GWh].

Finally, for GHG emissions targets of 28.5 and 19.0
[MtCO2-eq./y], [MtCO2-eq./y], the fifth critical param-
eters are the offshore wind maximal installed capacity
f Offshore wind
max and the maximal share of public mobility

%public mob
max with 4.2% and 2.3%, respectively. Private car

is the most significant partaker in the passenger mobility
of Belgium. According to the Federal Planning Bureau
[48], 80% of the passenger mobility is expected to be
supplied by private cars in the future. Therefore, it sup-
ports half of the passenger mobility, and the other half
is supplied by public transport modes, i.e., buses, trains,
and tramways. Thus, the uncertainty on the maximal
share of public mobility %public mob

max is likely to impact
significantly private mobility and the system EROI.
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Figure 9: Evolution of the total-order Sobol values of the Top-5 criti-
cal parameters for GHG emissions of 28.5 and 85.4 [MtCO2-eq./y].

5.2. EROI probability density functions

Figure 10 depicts the EROI mean µ and the evolution
of the 95% (±2σ in gray) confidence interval for the
GHG emissions targets considered. Table 8 presents the
mean, the standard deviation of the system EROI, and
the coefficient of variation (CoV), defined as the ratio
between σ and µ. Finally, Figure 11 presents the EROI
pdf for each GHG emissions target using the Monte
Carlo approach along with the mean depicted by the
dashed vertical line.

Phasing out of low energy-intensive fossil fuels, par-
ticularly NG, by relying on more renewables and im-
porting renewable fuels naturally drives down the sys-
tem EROI. This EROI decrease raises concerns about a
minimal system EROI value below which a prosperous
lifestyle would not be sustainable. The estimation of
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Figure 10: The EROI mean µ (blue curve) of the runs performed dur-
ing the sensitivity analysis with the 95% confidence interval (±2σ in
gray), and the result of the deterministic runs at the nominal value of
the parameters (green curve).

GWPtot [MtCO2-eq./y] 85.4 56.9 28.5 19.0

Deterministic 7.9 6.2 4.4 3.9
Mean µ 8.4 6.9 4.7 4.2
Standard deviation σ 0.76 0.67 0.55 0.45
CoV σ/µ [%] 9.0 9.7 11.6 10.5

Table 8: Deterministic value, mean, standard deviation of the system
EROI, and ratio between σ and µ, the coefficient of variation (CoV).

such value is complex and out of the scope of this study.
However, it is possible that considering the actual val-
ues of energy invested in the construction of renewable
technologies and the operation of renewable resources,
the system EROI could reach this limit before achieving
carbon neutrality. The estimated system EROI probabil-
ity density functions indicate that decreasing the GHG
emissions makes the EROI more sensitive to uncertain
parameters. Indeed, the 95% confidence interval (±2σ)
narrows slower than the decrease in the mean. This
trend is translated in an increase in the CoV with 9.0 %
vs. 10.5% for GHG emissions targets of 85.4 and 19.0
[MtCO2-eq./y], as depicted in Table 8. These results re-
inforce the importance of considering the uncertainties
of parameters in long-term energy planning. In addi-
tion, in this case, deterministic optimization underesti-
mates the system EROI on average of 6-7% and cannot
provide a confidence interval. The maximal nuclear ca-
pacity f NUC

max is responsible for this underestimation, set
to 0 [GWe] in the deterministic setting. This parame-
ter is considered uncertain in stochastic settings with a
uniform distribution between 0 and 5.6 [GWe]. Then,
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Figure 11: Probability density function (plain lines) of the system
EROI for several GHG emissions targets. The dashed vertical lines
provide the EROI mean of the runs performed during the sensitivity
analysis: 8.4, 6.9, 4.7, and 4.2 for 85.4, 56.9, 28.5, and 19.0 [MtCO2-
eq./y], respectively.

the model systematically uses the nuclear capacity at its
maximal value; thus, increasing the EROI as the energy
invested in constructing nuclear power plants is similar
to wind on/offshore.

6. Discussion and limitations

This section first discusses the results of Sections 4
and 5. Then, it presents the limitations of the model and
the methodology used to perform the sensitivity analysis
of the system EROI.

6.1. Discussion

Overall, this study provides the following primary
outcomes when maximizing the system EROI: (1) re-
newable energies (domestic such as solar and wind or
imported with renewable fuels) are required massively
to reach ambitious GHG emissions targets; (2) nuclear
energy is not the primary driver of the EROI variance.

Concerning the first point, given its limited domestic
renewable potential compared to its end-use demands,
Belgium has to import energy-intensive renewable fu-
els to decrease GHG emissions. The uncertainty of the
energy invested in the operation of these renewable fu-
els drives up the variance of the system EROI. This re-
sult is similar to the simulations with the minimization
of the system cost [21, 23], where the uncertainties of
the renewable fuels prices are responsible for the in-
crease of the system cost variance. Figure 12 depicts
the key pillars of the energy transition when decreasing
the GHG emissions. The system sequentially uses most
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Figure 12: The pillars of the energy transition to decrease the GHG
emissions when maximizing the system EROI.

of the options of the energy Mix scenario [23], which
is a scenario accounting for an increased amount of re-
newable resources plus nuclear capacity and geother-
mal energy, but with a different priority. The model be-
gins with low-energy intensive fossil (NG) and domes-
tic renewable resources (wind) when there is no limit
on GHG emissions. Then, it first improves its energy
efficiency in the early stages by reducing the primary
energy consumed to meet the demand. The electrifi-
cation is progressively performed with the electricity
imports at their full potential (27.57 [TWh/y]) to im-
prove the electrification of the mobility (private elec-
tric vehicles) and heating sectors (heat pumps). Then,
to enhance the electrification while reducing the overall
global warming potential, the system uses local PV re-
newable electricity production up to its full potential of
59.2 [GWe], and wet biomass 38.9 [TWh/y] and waste
17.8 [TWh/y] for heating. Finally, the model forces the
system to import renewable fuels massively to achieve
ambitious low GHG emissions targets. When maximiz-
ing the EROI, the system uses mainly renewable gas,
and when minimizing the cost, it is a mix of H2, re-
newable gas, and renewable-liquid fuels (ammonia and
methanol). These pillars indicate the main levers to de-
crease GHG emissions while maximizing the system
EROI and the research directions to decrease the un-
certainties of the parameters of the related technologies
and resources. Indeed, efforts should not be distributed
equally to decrease the uncertainties of every model pa-
rameter. The sensitivity analysis provides the critical
uncertain parameters responsible for the main contribu-
tions to the system EROI variance. A similar conclusion
to Rixhon et al. [21], Limpens et al. [23] is drawn: pol-
icymakers, industries, and academia should spend time
and energy improving the knowledge about renewable
fuels by reducing the cost, the energy invested in the
operation, and the related uncertainties.

Concerning the second point, the sensitivity analysis

reveals the impact of the maximum capacity of the nu-
clear power plant on the variance of the system EROI.
The contribution of this parameter reaches a maximum
of 12.5% for the GHG emissions target of 56.9 [MtCO2-
eq./y]. Then, it decreases to 3.4% at 19.0 [MtCO2-eq./y]
and is never the main driver of the EROI variation for all
GHG emissions targets considered. Therefore, nuclear
electricity does not compete against renewables, either
local or imported. In addition, it substantially improves
the system EROI as the model always utilizes nuclear
power plants at their maximal capacity.

6.2. Limitations
The study limitations are either caused by the model

or the uncertainty characterization and quantification
conducted in the EROI sensitivity analysis.

First, we depict three main model limitations: (1) the
snapshot approach [35] limits the concept of a trajec-
tory between several GHG emissions targets. One way
to overcome this issue is to consider a pathway [46,
Chapter 7] that could describe the different steps con-
tinuously in terms of technologies to implement and re-
sources to exploit; (2) the unlimited availability of im-
ported renewable fuels regardless of origin. Estimating
the realistic maximal import quantities of imported re-
newable fuels could be done with different costs and en-
ergy invested in operation concerning the origin. For in-
stance, the study Colla et al. [49] proposes a framework
to account for the different origin of biomass imports;
(3) the linear optimization approach makes the results
highly sensitive to the input parameters. A slight dif-
ference in technology efficiency or energy invested in
construction or operation can make the system switch
between two different solutions but with a similar ob-
jective. The sensitivity analysis partially addresses this
issue because it relies on the relevant definition of the
list of uncertain parameters with their uncertainty range.
Another approach could consist of investigating the fea-
sible space near optimality. The study Dubois and Ernst
[50] proposes a generic framework for addressing this
issue. It allows looking for solutions that can accommo-
date different requirements, such as determining neces-
sary conditions on the minimal energy investments in
domestic renewable energies or imported renewable fu-
els.

Finally, we propose four main limitations concerning
the uncertainty characterization and quantification: (1)
the energy data invested in the construction of technol-
ogy and the operation of resources. The methodology
of the data collection relies on Muyldermans and Nève
[22] where the data have been obtained from the ecoin-
vent database Wernet et al. [41]. However, new data
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and publications could refine these values, especially
for renewable fuels, which are booming; (2) the global
warming potential data in the operation of renewable re-
sources, particularly renewable fuels, is assumed to be
0. New data and publications could refine these values,
similar to the energy data invested data; (3) the choice
of uncertain parameters. This study focuses mainly on
energy invested related parameters and did not consider
other parameters such as the technology efficiencies and
lifetimes or the GWP of construction and operation. A
complete investigation should be conducted to consol-
idate the results; (4) the uncertainty ranges considered
are based on Moret et al. [51], Rixhon et al. [21] for
the parameters not related to the energy invested in con-
struction and operation. However, these ranges could
be updated based on the last data and publications re-
leases. In addition, due to the significant uncertainty of
the energy invested in the construction and operation of
technologies and resources, we adopted an arbitrary un-
certainty range of minus/plus 25%. Further work should
be dedicated to refining this range and adapting it to spe-
cific technology and resource.

7. Conclusion

Most long-term policies to decrease the carbon foot-
print of our societies consider the cost of the system
as the leading indicator in the energy system models.
However, the energy transition encompasses economic,
technical, environmental, and social aspects. We con-
sider a more comprehensive indicator to address this is-
sue: the EROI of a whole energy system.

The primary outcomes of this paper are: (1) the devel-
opment of a novel and open-source approach by adding
the EROI in EnergyScope TD [2], a whole energy sys-
tem optimization model, and providing open access to
the Python code and the database; (2) the illustration
of this approach in a real-world case study: the energy
transition of the 2035 Belgian energy system. However,
the novel model can be applied to any energy system at
the worldwide, country, or regional level; (3) the com-
parison of the results of the system cost minimization
to the system EROI maximization; (4) the global sen-
sitivity analysis of the EROI of the system by applying
a polynomial chaos expansion method [47]. It provides
the critical drivers of the variation of the system EROI;
(5) the estimation of the probability density functions
of the EROI of the system for several GHG emissions
targets.

The main results are five-fold. First, the EROI of
the Belgian system decreases from 8.9 to 3.9 for GHG
emissions of 100 and 19 [MtCO2-eq./y]. These values

can be put into perspective with estimated values of: (i)
lower bound on the societal EROI, e.g., 5 [9, 11] or 6
[10]; (ii) worldwide EROI, e.g., 8.5 [12] in 2018 and
12 [17] in 2015. Second, the renewable fuels - mainly
imported renewable gas - represent the largest share of
the system primary energy mix when GHG emissions
decrease due to the lack of endogenous renewable re-
sources such as wind and solar. Third, the strategy to
decrease GHG emissions is similar when minimizing
the cost of the system and maximizing the EROI. It con-
sists of importing an increased share of renewable fuels
to reduce GHG emissions. However, instead of using
large quantities of imported renewable gas, the system
also employs renewable ammonia, methanol, and H2.
The EROI of the system, when minimizing the cost, de-
creases from 6.3 to 2.5 for GHG emissions of 95 and 19
[MtCO2-eq./y]. Fourth, the sensitivity analysis reveals
that the energy invested in the operation of renewable
gas is responsible for 67.1% of the variation of the sys-
tem EROI for the GHG emissions target of 19 [MtCO2-
eq./y]. Finally, the estimation of the EROI probabil-
ity density functions exhibits that decreasing the GHG
emissions makes the EROI of the system more variable
to uncertain parameters. Indeed, the coefficient of vari-
ation, which is the ratio of the standard deviation over
the mean, increases with GHG emissions reduction.

Overall, the decrease in the EROI of the Belgian sys-
tem with the GHG emissions raises questions about
meeting the climate targets without adverse socio-
economic impact. Indeed, most countries rely mas-
sively on fossil fuels, like Belgium, and they could prob-
ably experience such an EROI decline when shifting to
carbon neutrality. Thus, we hope this paper will encour-
age policymakers, industries, and academia to: (i) dedi-
cate more research to assess whole energy systems with
the EROI indicator; (ii) spend more time and energy im-
proving the knowledge about renewable fuels, mainly to
decrease the uncertainties related to their cost, availabil-
ity, and energy invested.

Future works will address the model limitations, e.g.,
drawing a continuous plan of strategies from today
to the carbon neutrality of 2050 instead of the snap-
shots approach. They will also focus on refining the
data and reducing the uncertainties of the main drivers,
i.e., the renewable fuels, of the variation of the sys-
tem EROI. In addition, this novel model could be ex-
tended to: (i) assess the EROI of a system composed
of several inter-connected countries using EnergyScope
Multi-Cell [38], such as Europe, to better take into ac-
count the domestic complementarity of renewables. In-
deed, as previously stated, the developed EROI-based
approach is not limited to a specific country or area; (ii)
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perform multi-criteria optimization in the vein of Muyl-
dermans and Nève [22] with indicators such as the sys-
tem cost, global warming potential, and EROI; (iii) in-
clude a macroeconomic model following the approach
of Dupont et al. [12] to estimate another indicator, in-
troduced by Fagnart and Germain [52], called the net
energy ratio (NER) of the economy. The NER is more
comprehensive than the EROI and allows assessing the
energy embodied in the intermediate and capital con-
sumptions of the entire economy.
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Dynamic energy return on energy investment (eroi) and
material requirements in scenarios of global transition
to renewable energies, Energy Strategy Reviews 26
(2019) 100399. URL: https://www.sciencedirect.com/
science/article/pii/S2211467X19300926. doi:https:
//doi.org/10.1016/j.esr.2019.100399.
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Acronyms

Name Description
Ammonia-RE Synthetic renewable ammonia.
CCGT Combined cycle gas turbine.
CHP Combined heat and power.
DEC Decentralized.
DHN District heating networks.
EROI Energy return on investment.
ES-TD EnergyScope Typical Days.
EUD End-use demand.
FEC Final energy consumption.
FC Fuel cell.
Gas-RE Synthetic renewable gas.
GEO Geothermal.
GHG Greenhouse gas.
GWP Global warming potential.
H2-RE Synthetic renewable H2.
HP Heat pump.
HVC High value chemicals.
IPCC Intergovernmental Panel on Climate

Change.
LCA Life cycle assessment.
LFO Light oil fuel.
LP Linear programming.
Methanol-RE Synthetic renewable methanol.
NG Natural gas.
PCE Polynomial chaos expansion.
pdf Probability density function.
PHS Pumped hydro storage.
RE Renewable.
RES Resources.
TECH Technologies.
PV Photovoltaic.

Variables (bold) and parameters
The snapshot approach implicitly considers variables
and parameters over a year. For instance, Ein,tot is the
annual system energy invested expressed in [GWh/y].
However, for the sake of clarity, we omit the year unit.
The variables are in bold.
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Name Unit Description
Ein,tot [GWh] System energy invested.
Econstr( j) [GWh] System energy invested

in construction of tech-
nology j.

Eop( j) [GWh] System energy invested
in operation of resource
i.

F( j) [GW or GWh] Installed capacity of
technology j.

Ft(i, h, td) [GWh] Quantity of resource i
used at hour h of typical
day td.

GWPtot [MtCO2-eq.] System GHG emissions.
GWPconstr( j) [MtCO2-eq.] GHG emissions of con-

struction of technology
j.

GWPop(i) [MtCO2-eq.] GHG emissions of re-
source i.

econstr( j) [GWh/GW] Energy invested in con-
struction of technology
j.

eop(i) [GWh/GWhfuel] Energy invested in oper-
ation of resource i.

gwpconstr( j) [ktCO2-eq.] GHG emissions for the
construction of technol-
ogy j.

gwpop(i) [ktCO2-eq.] GHG emissions for the
operation of resource i.

gwplimit [MtCO2-eq.] GHG emissions target.
top(h, td) [hour] Time period duration of

hour h of typical day td.
lifetime( j) [years] Lifetime of technology j.

Sets and indices
Name Description
j Technology index.
i Resource index.
h Hour index.
td Typical day index.
eud End-use demand index.
T H T D(t) Hour h and typical day td associated to

the time period t.
T ECH Set of technologies.
RES Set of resources.
T Set of all periods of the year.

Appendix A. Table 1 justifications

The EU reference scenario 2020 [24] uses the Price-
Induced Market Equilibrium System (PRIMES) [29]
model, which is not in open-access, and the data used

as input are not available. It is an update of the pre-
vious version published in 2016 [54]. The model is
multi-sectors as the “Reference Scenario” projects the
impact of macro-economic, fuel price, and technology
trends and policies on the evolution of the EU energy
system, transport, and GHG emissions. However, this
study considers only one scenario, i.e, the “Reference
scenario”. In addition, this study does not consider the
EROI, and there is no sensitivity analysis.

In the study [25], the Federal Planning Bureau dis-
cusses what role offshore wind can play in helping Bel-
gium achieve climate neutrality by the middle of the
century. The analysis is multi-sectors by considering
the electricity, H2, and gas sectors. The model used is
Artelys Crystal Super Grid [30], which is not in open-
access, and the data used for the study are not available.
In particular, this report examines the development of
joint hybrid offshore wind projects that both provide re-
newable energy capacity and can serve as interconnec-
tors linking different countries. Two different scenarios
are defined and studied; thus, this study is considered
partially multi-scenarios. However, this study does not
consider the EROI, and there is no sensitivity analysis.

The study [26] uses the TIMES/MARKAL model, a
reference in scenario analysis. This model is open ac-
cess [31], but the different versions for each country are
not open. This study has adapted the model to the Bel-
gian case and is unavailable. The main assumptions are
detailed in the report with some input parameters. How-
ever, there is no proper access to all the input data. The
TIMES Belgium model includes different technology
portfolios for different supply and demand sectors of the
energy system and is consequently multi-sectors. The
model generates a set of five scenarios where assump-
tions on three parameters, namely the import capacity
for electricity, the fossil fuel prices, and the phase-out
of nuclear energy, are being altered. Finally, the sce-
nario analysis with the TIMES Belgium model is based
on a system cost optimization approach; thus, it does
not consider the EROI.

The study Elia [27] analyzes both short-term and
long-term policy options on the future energy mix for
Belgium on the path towards 2050. It proposes the
“base case scenario”, “decentral scenario”, and “large-
scale RES scenario”. On top of these scenarios, dif-
ferent sensitivities are assessed at the 2030 and 2040
time horizons, resulting in additional scenarios. The as-
sumptions of each scenario are detailed, but the input
data are not available, and there is no sensitivity analy-
sis. The report focuses on the electricity sector with re-
newables (PV, onshore and offshore wind, biomass, hy-
dro, and geothermal) and thermal (CCGT, nuclear, and
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CHP) generation plants, electric demand (heat pumps,
electric vehicles), and considers interconnections with
neighboring countries. However, it is not multi-sectors
as it does not model the non-electric demand of the
transportation, heating, and non-energy sectors. The
electricity market simulator developed by RTE, Antares
[32, 33] is used to perform the electricity market and
adequacy simulations. Antares is open-source and cal-
culates the most-economic unit commitment and gener-
ation dispatch. Finally, the scenario analysis with the
Antares model is based on a system cost optimization
approach; thus, it does not consider the EROI.

The objective of the Energy Pathways to 2050 report
[28] is to construct and evaluate several possible options
for the evolution of the French power system (genera-
tion, network, and consumption) to achieve carbon neu-
trality. To this end, several scenarios are proposed based
on different assumptions, from 100% renewable gener-
ation technologies to a mix of renewable and nuclear
capacities. Each scenario is detailed with the assump-
tions in the report, but the dataset used to conduct the
study is not open-access. The open-source power sys-
tem model, Antares [32, 33], describes the production
capacities, the network, and the sources of consumption
in all European countries, to simulate the production,
consumption, and exchanges per country at hourly in-
tervals in all the countries of the European Union. How-
ever, the report does not include a sensitivity analysis of
the input parameters of the scenarios, and the Antares
model uses a cost optimization approach.

The studies [23, 21] analyze the Belgian energy sys-
tem in 2035 and 2050, respectively, for different GHG
emissions targets using the multi-sectors open-source
model EnergyScope TD [2]. They optimize the design
of the overall system to minimize its costs and emis-
sions. The input data of the model are open-access on
the Github repository. A sensitivity analysis is con-
ducted in Rixhon et al. [21] by implementing the PCE
approach to emphasize the influence of the parameters
on the total cost of the system. They point out Belgium’s
lack of endogenous renewable resources to achieve am-
bitious GHG emissions targets. Thus, additional po-
tentials shall be obtained by importing renewable fuels,
electricity or deploying geothermal energy.

Appendix B. FEC calculation

This appendix provides the details to derive the FEC
from the simulation results to be used to calculate the
system EROI following (1).

The set of end-use demands EUD comprises: (1)
electricity; (2) heat: heat high temperature, heat low-

temperature DEC, and heat low-temperature DHN; (3)
non-energy: ammonia, HVC, and methanol; (4) mobil-
ity: freight boat, freight rail, freight road, passenger
private, and public. The end-use demand is expressed
in [Mpkm/y] (millions of passenger-km) for passenger
mobility, [Mtkm/y] (millions of ton-km) for freight mo-
bility, [GWh/y] for heating, [GWh/y] for non-energy,
and [GWhe/y] for electricity end-uses.

The system FEC is the sum of the final energy con-
sumption related to each end-use demand (eud):

FEC =
∑

eud∈EUD

FEC(eud). (B.1)

Then, for a given end-use demand (eud) the energy bal-
ance is

eud +
∑
i∈I

ci(eud) =
∑
j∈J

p j(eud), (B.2)

with ci(eud) the consumption of this end-use demand
by technology i, and p j(eud) the production of this end-
use demand by technology j. For instance, several tech-
nologies can produce heat at high temperatures, such
as gas boilers or CHP. Furthermore, some technologies
use heat at high temperatures as input material, such as
technology to produce HVC.

First, let us consider the case where no technology
uses this end-use demand as input material: I = ∅.
Then, from (B.2) the FEC related to this end-use de-
mand is

FEC(eud) =
∑
j∈J

FEC j(eud). (B.3)

If j is a technology, it produces p j(eud) and possibly
other outputs, such as electricity or hydrogen, by con-
suming gas, electricity, or biomass. Then, FEC j(eud) is
defined as follows

FEC j(eud) =
p j(eud)

p j(eud) +
∑

outputs j

∑
inputs j. (B.4)

For instance, in the model, when considering the heat
high-temperature end-use demand, the technology gas
CHP industry consumes 2.1739 GWh of gas to produce
1 GWh of heat high-temperature and 0.9565 GWh of
electricity. In this case, the FEC of gas of this technol-
ogy to produce 1 GWh of heat at high-temperature is

FEC =
1

1 + 0.9565
2.1739 ≈ 1.111. (B.5)

If j is a resource such as methanol or ammonia, then

FEC j(eud) = p j(eud). (B.6)
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For instance, the methanol end-use demand can be par-
tially satisfied with imports.

Let us consider the case where at least one technol-
ogy uses this end-use demand as input material: I , ∅.
Then, the consumptions ci(eud) are taken into account
as follows to estimate the FEC correctly

p̃ j(eud) = p j(eud) −
∑
i∈I

ci(eud)
p j(eud)∑

j∈J p j(eud)
. (B.7)

Finally, the different FEC j(eud) are estimated as previ-
ously described by replacing p j(eud) in (B.4) and (B.6)
by p̃ j(eud) defined in (B.7).

Appendix C. Reference scenario additional results

This appendix presents the results of the simulation
with the reference scenario (see Section 4.1) in terms of
installed capacities for several GHG emissions targets,
energy invested, and FEC.

Appendix C.1. Assets installed capacity evolution

Figure C.13 depicts the installed capacities of elec-
tricity production, storage (electric, thermal, gas, am-
monia, and methanol), and renewable fuels technolo-
gies. The PV technology drives the evolution of elec-
tricity production assets by replacing the CCGTs and
reaching the maximal available capacity of 59.2 [GWe].
Notice that the onshore and offshore wind technologies
are already at their maximal capacities in the “refer-
ence scenario-100%”. When the GHG emissions are
below 9.5 [MtCO2-eq./y], the PV and wind capacities
are replaced mainly by CCGT, which uses renewable
gas (gas-RE). The electric storage is composed of daily
storage: pumped hydro storage9 (PHS) and batteries
of electric vehicle (BEV). The PHS is already at its
maximal available capacity in the “reference scenario-
100%”, and the batteries of electric vehicles are used
when GHG emissions are below 66.4 [MtCO2-eq./y] to
cope with uncertainty related to the increasing share of
PV and wind power in the primary energy mix. With
the shift from thermal to electric cars, batteries (BEV)
can interact with the electricity layer (vehicle-to-grid)
when GHG emissions decrease. They provide addi-
tional flexibility to cope with a primary energy mix that
relies on an increasing share of intermittent renewable
energy as the GHG emissions decrease. Then, when

9In Belgium, it is mainly the Coo-Trois-Ponts hydroelectric power
station.

the GHG emissions are below 9.5 [MtCO2-eq./y], elec-
tric cars are replaced by thermal cars, which use renew-
able fuels (gas-RE). When the GHG emissions target
is below 66.4 [MtCO2-eq./y], the PV installed capac-
ity is maximal (59.2 [GWe]), and the system relies on
a high share of intermittent renewable energy: solar
and wind to produce electricity. The DHN and DEC
low heat temperature demands are mainly satisfied by
heat pumps. Therefore, the system uses an increased
capacity of seasonal thermal DHN and daily thermal
DEC storage technologies to cope with the seasonal
and daily intermittent electricity production. When the
GHG emissions target is below 9.5 [MtCO2-eq./y], the
primary energy mix comprises renewable fuels, includ-
ing renewable gas. Thus, the gas boiler technology
mainly satisfies the DHN and DEC low heat tempera-
ture demands, and the capacities of DHN and daily ther-
mal DEC storage technologies are close to 0 [GWh].
The seasonal gas storage is filled with NG in the “ref-
erence scenario-100%”. Its capacity decreases when
GHG emissions are ≈ 85.4 [MtCO2-eq./y] with the elec-
trification of the private mobility. Then, its capacity
increases when GHG emissions are ≈ 71.1 [MtCO2-
eq./y] and reaches a constant value with GHG emissions
from 61.7 to 33.2 [MtCO2-eq./y]. Finally, its capacity
increases progressively when GHG emissions decrease
below 33.2 [MtCO2-eq./y] to satisfy the seasonality of
the heating, mobility, and electricity demands that rely
heavily on renewable gas. The HVC end-use demand,
which amounts to most non-energy demand, is satisfied
with technology that converts methanol into HVC. The
methanol is imported and synthesized from biomass
when the GHG emissions are between 100.3 - 33.2
[MtCO2-eq./y]. When the GHG emissions are between
33.2 and 9.5 [MtCO2-eq./y], the methanol imports are
replaced by technologies to synthesize methanol from
imported renewable gas. Finally, when the GHG emis-
sions are below 9.5 [MtCO2-eq./y], there are only re-
newable methanol imports.

Figure C.14 depicts the installed capacities of heat-
ing and mobility technologies. The industrial gas boil-
ers are replaced by waste boilers and electrical resis-
tors (I elec.) when GHG emissions reach 66.4 [MtCO2-
eq./y]. It corresponds to the shift from a primary en-
ergy mix composed mainly of NG to less intensive car-
bon energies, such as solar, wind, and waste, to sat-
isfy the heat high-temperature end-use demand. When
the GHG emissions are below 14.2 [MtCO2-eq./y], the
waste boilers are replaced by gas boilers that use renew-
able fuels, including imported renewable gas. Finally,
when the GHG emissions are below 9.5 [MtCO2-eq./y],
the gas boiler technology is exclusively used with im-
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ported renewable gas. The low heat temperature DEC
end-use demand is always satisfied with heat pumps, ex-
cept when GHG emissions decrease below 9.5 [MtCO2-
eq./y]. In this case, DEC gas boilers are used with
imported renewable gas. Overall, the DHN heat low-
temperature demand is mainly satisfied with DHN elec-
tricity heat pumps when GHG emissions are > 14.2
[MtCO2-eq./y]. The decrease of DHN gas CHP is first
balanced by DHN electricity heat pumps and then by
DHN biomass CHP. When GHG emissions target is be-
low 9.5 [MtCO2-eq./y], DHN gas CHP, and gas boiler
technologies use imported renewable gas to satisfy the
demand. Private mobility relies on electric cars from
GHG emissions of 85.4 to 9.5 [MtCO2-eq./y] and gas
cars using imported renewable gas when GHG emis-
sions decrease below 9.5 [MtCO2-eq./y]. The trend is
similar for freight trucks. The freight boat first uses
NG and then renewable gas when GHG emissions de-
crease. The freight trains rely only on electricity in En-
ergyScope TD; thus, there is no technology change for
this mobility type.

Appendix C.2. Energy invested evolution

Figures C.15 and C.16 depict the operation (Eop) and
construction (Econstr) system energy invested breakdown
by resources, between renewable and non-renewable,
and technologies (all technologies, and between elec-
tricity and mobility technologies).

The total system energy invested (Ein,tot) increases
with the limitation of GHG emissions due to the in-
crease of Econstr and Eop, and is driven by the increase of
renewable fuels. The Eop increase is mainly due to the
shift from NG to renewable gas, and it exceeds the con-
struction system energy invested when GHG emissions
are below 47.4 [MtCO2-eq./y]. The main drivers of the
Econstr increase are the PV technology and the shift from
NG cars and trucks to electric cars and trucks.

Appendix C.3. FEC evolution

Figure C.17 depicts the evolution of the FEC break-
down by end-use demand: heat, mobility, non-energy,
and electricity. First, the FEC decreases with the shift
from NG cars to better efficient electric cars. Then, it
increases slightly due to the shift from DHN gas co-
generation to DHN bio hydrolysis CHP technology that
uses more primary energy to produce the same amount
of heat low-temperature end-use demand. Finally, it
decreases with the shift from NG trucks to more effi-
cient electric trucks. When GHG emissions achieve 4.7
[MtCO2-eq./y], the heat low-temperature decentralized
FEC increases with the shift from electric technologies
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(b) Electric storage.
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Figure C.13: Evolution of the electricity production, storage (electric,
thermal, gas, ammonia, and methanol), and renewable fuels asset in-
stalled capacities breakdown by technology for several scenarios of
GHG emissions in 2035. Abbreviations: combined cycle gas turbine
(CCGT), photovoltaic (PV), electric (elec.), battery of electric vehicle
(BEV), pumped hydro storage (PHS), decentralized (DEC), district
heating networks (DHN), fuel cell (FC), combined heat and power
(CHP), heat pump (HP), high value chemicals (HVC).

such as heat pumps to gas boilers that use renewable
gas. Then, the FEC of mobility, public and freight road,
increases due to the shift from electric vehicles to re-
newable fuel vehicles.

Appendix D. Sensitivity analysis

This appendix details the sensitivity analysis method-
ology and provides additional results. Figure D.18 de-
picts the framework of the EROI system sensitivity anal-
ysis and how the PCE method is implemented. First, un-
certain parameters are defined with their respective un-
certainty ranges. Then, the PCE framework is applied
to generate a surrogate model and retrieve the critical
uncertain parameters. Finally, the mean and variance of
the system EROI are estimated, and the surrogate model
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Figure C.14: Evolution of the heat and mobility asset installed capac-
ities breakdown by technology for several scenarios of GHG emis-
sions in 2035. Abbreviations: industry (I), combined heat and power
(CHP), decentralized (DEC), district heating networks (DHN), elec-
tric (elec.), heat pump (HP), fuel cell (FC).

is used to perform Monte Carlo sampling to estimate the
EROI pdf for several GHG emissions targets.

This appendix is organized as follows. First, Ap-
pendix D.1 details the framework used to perform
the sensitivity analysis of the system EROI. Then, Ap-
pendix D.2 presents the set of uncertain parameters
considered with their respective uncertainty ranges. Fi-
nally, Appendix D.3 illustrates the selection process us-
ing the first-order PCE to build a shortlist of uncertain
parameters for the second-order PCE.

Appendix D.1. Sensitivity analysis methodology

The PCE approach provides a computationally ef-
ficient alternative to the Monte Carlo simulation for
uncertainty quantification to address the “curse of di-
mensionality” pointed out by Rixhon et al. [21]. In-
deed, given limited information about the uncertainty
of the parameters for long-term energy planning mod-
els, the PCE method constructs a series of multivariate
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Figure C.15: System energy invested in operation (Eop) evolution in
2035 for several GHG emissions targets breakdown between renew-
able (left) and non-renewable resources (right). Abbreviations: RE-
fuels: gas-RE, methanol-RE, and ammonia-RE; electricity (Elec.).
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Figure C.16: System energy invested in construction (Econstr) evolu-
tion in 2035 for several GHG emissions targets (upper), and break-
down between electricity (lower left) and mobility (lower right)
technologies. Abbreviations: RE-fuels: gas-RE, methanol-RE, and
ammonia-RE; natural gas (NG); electric (Elec.).

orthonormal polynomials used as a surrogate model f̂ .
It is a closed-form function that takes as input a vector
composed of the values of the realization i of the N un-
certain parameters considered Xi = [Xi

1, · · · , X
i
n]ᵀ and

outputs the system EROI

f̂ (Xi) = EROIi. (D.1)

Depending on the number of uncertain parameters, the
polynomial order can be increased and is, therefore,
more accurate. A few hundred evaluations are required
for tens of uncertain parameters to have a first-order
polynomial. However, thousands of evaluations are re-
quired to obtain a third-order polynomial. Then, the
surrogate model (D.1) allows: (1) to extract statistical
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Figure C.17: Final energy consumption (FEC) evolution for several
GHG emissions targets in 2035 breakdown by end use demand: heat
(upper left), mobility (upper right), non-energy and electricity (lower).
Abbreviations: temperature (T.); district heating networks (DHN), de-
centralized (DEC); mobility (Mob.); high value chemicals (HVC).

moments such as the mean and variance using the coef-
ficients and the total-order Sobol indices. They illustrate
the contribution of each uncertain input parameter to the
variance of the quantity of interest, in our case, the sys-
tem EROI, including the mutual interactions; (2) to con-
duct a Monte-Carlo evaluation where millions of sam-
ples are generated, and the associated results are calcu-
lated instantaneously. It provides the accurate estima-
tion of the system EROI pdf for several GHG emissions
targets.

The first step, depicted in Figure D.18, is the uncer-
tainty characterization which consists of defining a set
of uncertain parameters and their uncertainty ranges.
In this study, we use the extension to the Belgian en-
ergy system uncertainty characterization performed by
Limpens [46] based on the work of Moret et al. [51].
A preliminary screening was performed to determine
which parameters had no impact and resulted in a set
of 138 uncertain parameters X0 = [X1, · · · , X138]ᵀ. The
second step consists of conducting a first-order PCE on
these 138 uncertain parameters to build a shortlist of
n critical parameters Xn used for a second-order PCE.
This step is performed five times to increase the confi-
dence of the result. A parameter is considered negligi-
ble if its total-order Sobol index is close to 0 for all five
cases. The last step consists of conducting a second-
order PCE to identify the m critical uncertain parameters
Xm based on Xn and estimating an accurate total-order

Parameters uncertainty 
characterization

1st-PCE

Preliminary screening

Define the uncertainty range

Select uncertain parameters

STEP 1

STEP 2: 
f ir st -order  

PCE
conducted 5 

times

ES-TDN1 samples EROI values

n critical parameters "short-listed"

Monte Carlo EROI pdf

2nd-PCE

ES-TDN2 samples EROI values

- m critical parameters
- EROI mean & variance
- surrogate model

STEP 3: 
second-order  

PCE

Figure D.18: Framework of the EROI system sensitivity analysis. The
steps 2 and 3 are conducted for each GHG emissions target consid-
ered.

Sobol index for each of them. Then, a Monte-Carlo
evaluation is performed using the surrogate model f̂ to
estimate the pdf of the system EROI for several GHG
emissions targets. Steps 2 and 3 are conducted for each
several GHG emissions targets.

Appendix D.2. Uncertainty characterization

Accounting for uncertainties in energy system long-
term planning is crucial [55] to obtain robust designs
against uncertainty. However, the insufficient quantity
and quality of available data is frequently a limitation.
This challenge is addressed in Moret et al. [51] by de-
veloping an application-driven method for uncertainty
characterization, allowing the definition of ranges of
variation for the uncertain parameters. These ranges
were initially defined for the Swiss energy system and
have been adapted for Belgium [46, 21]. Similarly, this
study assumes that all the uncertain parameters are inde-
pendent and uniformly distributed between their lower
and upper bounds.

Table D.9 summarizes the uncertainty ranges for the
different groups of technologies and resources consid-
ered in the sensitivity analysis. Following the approach
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developed by Moret et al. [51] and capitalizing on the
works of Limpens [46], Rixhon et al. [21] the uncer-
tainty intervals are defined. A preliminary screening,
including all the parameters of the model, allowed to
obtain an initial list of 138 parameters to be used for the
first-order PCE.

There are four categories of uncertain parameters:
end-use demands, technologies, resources, and oth-
ers. The uncertainty in the yearly end-use demands is
split by energy sectors. The electricity demand, space
heating demand, and industrial demand are related to
the yearly industrial demand uncertainty endUsesI

year,
which has the most extensive range. The freight and
passenger mobility are related to the uncertainty of
transport endUsesTR

year. Technologies are defined through
different parameters: the energy conversion efficiency η,
the investment cost cinv, the construction energy invest-
ment econstr, the yearly cp and hourly cp,t load factors,
the potential fmax, the maintenance cost cmaint, and the
lifetime. This study does not consider the energy con-
version efficiency, investment and maintenance costs,
yearly capacity factors, and lifetime as uncertain param-
eters. In addition, the energy invested in the construc-
tion of storage technologies is not taken into account.
Intermittent renewable energy is limited in its potential
( fmax of PV, onshore and offshore wind) and the hourly
capacity factor (cp,t of PV, solar, onshore and offshore
wind, and hydroelectricity). The electricity %elec

loss and
heat %heat

loss network losses are considered uncertain pa-
rameters. Resources are characterized by an operating
cost cop, not considered uncertain in this study, energy
invested in operation eop, and availability avail. Most
resources have unlimited availability except biomass,
waste, and electricity imported. The availability of lo-
cal resources (wood, waste, and biomass) are uncertain
parameters. Finally, there is a limited installed capacity
fmax imposed arbitrarily for nuclear f NUC

max [GWe], elec-
tricity f GEO elec

max [GWe] and heat f GEO DHN
max [GWth] pro-

duction from geothermal. This work also accounts for
uncertainties on the upper bounds of mobility %public mob

max

[%], %train freight
max [%] and %boat freight

max [%], the upper
bound of heat that can be covered by district heating
network %DHN heat

max , and the capacity of electrical inter-
connection with neighbours elecimport

max [GWe].

Appendix D.3. First-order PCE results

The second step, depicted in Figure D.18, consists of
using the first-order PCE to build shorter lists of uncer-
tain parameters for the second-order PCE. This selec-
tion is performed for each GHG emissions target con-
sidered in the sensitivity analysis. It relies on good

Category rep. param. min max

endUsesI
year endUsesI

year -10.5% +5.9%
endUsesTR

year endUsesTR
year -3.4% +3.4%

avail availWaste -32.1% +32.1%
fmax f PV

max -24.1% +24.1%
cp,t cPV

p,t -11.1% +11.1%
%loss %elec

loss -2% +2%
econstr ecars

constr -25% +25%
eop eRE− f uels

op -25% +25%

Others

f NUC
max 0.0 5.6

f GEO elec
max 0.0 2.0

f GEO DHN
max 0.0 2.0

%public mob
max 45.0% 55.0%

%train freight
max 22.5% 27.5%

%boat freight
max 27.0% 33.0%

%DHN heat
max 33.3% 40.7%

elecimport
max 8,749 10,692

Table D.9: Application of the uncertainty characterization method
[51] to EnergyScope TD when maximizing the system EROI. Uncer-
tainty is characterized for one representative parameter (rep. param.)
per category. Due to the lack of data in the literature for 2035, the
uncertainty intervals of eop and econstr are by default absolute uniform
interval U[−25%,+25%]. Abbreviations: photovoltaic (PV), district
heating network (DHN), industry (I), transport (TR), nuclear (NUC),
geothermal (GEO), electricity (elec).

practice [56], by selecting the parameters which have
at least, over the five runs, i.e., to ensure redundancy,
one total-order Sobol index above the threshold = 1/d,
where d = 138 is the number of uncertain parameters at
the pre-selection phase. These parameters short-listed
are named critical parameters and considered for the rest
of the study in the second-order PCE.

Figure D.19 illustrates this selection process using the
first-order PCE for the GHG emissions target of 28.5
[MtCO2-eq./y]. In this scenario, 42 parameters are iden-
tified (blue marks) as critical to be used in the second-
order PCE. The red marks are the minimum values of
the Sobol index for each parameter over the five runs,
and the black marks are the mean of their five Sobol
index values.

Appendix D.4. Second-order PCE results

The final step, depicted in Figure D.18, consists of us-
ing the second-order PCE on the parameters short-listed
to limit the error below 1% [53] on the EROI statistical
moments: mean µ and variance σ.
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Figure D.19: Illustration of the selection process using first-order PCE
for GWPtot ≤ 28.5 [MtCO2-eq./y]. The y-axis is logarithmic. For
each parameter, the blue mark indicates the parameter is critical, and
the grey mark that it is negligible. It corresponds to the maximal value
of the Sobol index over the five runs. A parameter is critical if its
maximal value of the Sobol index over the five runs is above threshold
= 1/d. The red (black) mark is the minimum (mean) value of the
Sobol index over the five runs.

GHG target [MtCO2-eq./y] 85.4 56.9 28.5 19.0

# parameters short-listed 64 55 42 45
# critical parameters 9 27 17 5

Table D.10: Number (#) of short-listed and critical parameters using
the first-order and second-order PCE.

Figure D.20 depicts the selection of the critical pa-
rameters using the second-order PCE for the GHG emis-
sions targets considered. Table D.10 presents the num-
ber (#) of short-listed and critical parameters using the
first-order and second-order PCE. Finally, Table D.11
lists the critical parameters and their Sobol index for the
GHG emissions targets considered.
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Figure D.20: Sobol indices of the parameters using the second-order PCE. Parameters are sorted and critical ones (in blue) have an index above the
threshold 1/d, with d the number of uncertain parameters considered in the second-order PCE. The y-axis is logarithmic.
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Ranking 85.4 56.9 28.5 19.0

1 eNG cars
constr 39.2 eElec. cars

constr 18.0 eGas-RE
op 43.6 eGas-RE

op 67.1
2 eNG

op 25.5 f NUC
max 12.5 eElec. cars

constr 4.8 eElec. cars
constr 6.1

3 eElec. cars
constr 6.3 %public mob

max 7.7 f NUC
max 4.8 f NUC

max 3.4
4 %public mob

max 5.4 ePV
constr 5.0 availWet biomass 4.7 availWood 2.5

5 eWet biomass
op 4.3 eNG

op 5.0 f Offshore wind
max 4.2 eNG cars

constr 2.3
6 eDHN wet biomass CHP

constr 2.2 availWood 4.2 endUsesI
year 3.8 -

7 eElec. trucks
constr 1.9 eNG cars

constr 3.6 f GEO DHN
max 3.3 -

8 eMethanol
op 1.8 cPV

p,t 3.0 ePV
constr 3.3 -

9 eDiesel trucks
constr 1.8 endUsesI

year 3.9 eOffshore wind
constr 3.1 -

10 - eUranium
op 2.9 %public mob

max 3.1 -
11 - availWet biomass 2.9 f Onshore wind

max 3.0 -
12 - f GEO DHN

max 2.9 eNG cars
constr 3.0 -

13 - eWet biomass
op 2.9 eElec.

op 2.8 -
14 - eGas-RE

op 2.8 availWood 2.6 -
15 - cOffshore wind

p,t 2.5 eWet biomass
op 2.5 -

16 - f Offshore wind
max 2.5 eElec. wet biomass

constr 2.5 -
17 - eMethanol

op 2.5 cOffshore wind
p,t 2.5 -

18 - f Onshore wind
max 2.5 - -

19 - endUsesTR
year 2.4 - -

20 - eH2
constr 2.4 - -

21 - %freight train
max 2.2 - -

22 - cOnshore wind
p,t 2.1 - -

23 - %freight boat
max 2.1 - -

24 - eI waste boilers
constr 2.0 - -

25 - eDHN waste CHP
constr 1.9 - -

26 - eWood
op 1.8 - -

27 - eCCGT ammonia
constr 1.8 - -

Table D.11: Critical parameters and Sobol indices values [%] for several GHG emissions targets [MtCO2-eq./y]. Abbreviations: electric (elec.),
mobility (mob), photovoltaic (PV), nuclear (NUC), renewable gas (Gas-RE), natural gas (NG), geothermal (GEO), transport (TR), industry (I),
district heating networks (DHN), combined heat and power (CHP), combined cycle gas turbine (CCGT).
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