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Abstract
Since its publication, R2RML has provided us with a powerful tool for generating RDF from relational
databases. R2RML has its limitations, which are being recognized by W3C’s Knowledge Graph Construc-
tion Community Group. That same group is currently developing a specification that supersedes R2RML
in terms of its functionalities and the types of resources it can transform into RDF–primarily hierarchical
documents. The community has a good understanding of problems of relational data and documents,
even if they might need to be approached differently because of their different formalisms. This paper
presents a challenge that has not been addressed yet for relational databases–generating literals based
on (outer-)joins. We propose a simple extension of the R2RML vocabulary and extend the reference
algorithm to support the generation of literals based on (outer-)joins. Furthermore, we implemented a
proof-of-concept and demonstrated it using a dataset built for benchmarking joins. While it is not (yet)
an extension of RML, this contribution informs us on how to include such support and how it allows us
to create self-contained mappings rather than relying on less elegant solutions.

Keywords
R2RML, Knowledge Graph Generation, Outer-joins, Joins

1. Introduction

R2RML [1] is a powerful technique for transforming data from relational databases into RDF and
was published almost a decade ago. Since then, it HAS inspired many initiatives to generalize
this approach to other types of data sources, such as RML [2] and xR2RML [3]. Others looked
at extending aspects of (R2)RML not pertaining to the sources being transformed but to tackle
unaddressed challenges and requirements such as RDF Collections [3, 4] and functions [5, 6].

The R2RMLRecommendation specified a reference algorithm inwhich relational joins (natural
joins or equi-joins, to be specific) can be used to relate resources. The implementation can be
broken into two parts: (1) the generation of triples based on a triples map 𝑡𝑚1 related to a logical
source, and (2) the generation of triples relating subjects from 𝑡𝑚1 with those of another triples
map 𝑡𝑚2. While (2) does not use an outer-join, the combination of both (1) and (2) ensures that
the data being transformed ”behaves” as the result of an outer-join. The problem, however, is
that support for such outer-joins is only limited to resources; there is no convenient way to do
something similar for literals.
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title

PK  id
    title
    imdb_index
    kind_id
    production_year
    imdb_id
    phonetic_code
    episode_of_id
    season_nr
    episode_nr
    series_years
    md5sum

aka_title

PK  id
FK  movie_id
    title
    imdb_index
    kind_id
    production_year
    phonetic_code
    episode_of_id
    season_nr
    episode_nr
    series_years
    md5sum

Figure 1: The tables title and aka_title of the database. A title may be related to one or more
aka_titles, and an aka_title may be related to one title.

This paper proposes a simple extension of R2RML for supporting joins for the generation
of literals and proposes how the reference algorithm could be extended. We demonstrate this
extension using a fairly big relational database developed for benchmarking joins [7]. This
benchmark provides us also with a realistic case, motivating the need for such an extension.
Furthermore, this paper positions this contribution with other initiatives developed by the
Knowledge Graph Generation community to open a discussion.

2. The Problem

We framed the problem in the previous section. This section will rephrase the problem and
discuss several approaches to achieve the desired result that one can observe in practice. To
this end, we will be using a running example based on the database developed by [7].

To benchmark the performance of joins, [7] developed a database based on the Internet Movie
Database1 (IMDb). In short, their motivation was that existing synthetic benchmarks might be
biased, whereas real and “messy” provided better grounds for comparison. While that aspect is
not important for this paper, the database they developed did contain two big tables: title
containing information about movies and their titles, and aka_title containing variations in
titles (either an alternative title or titles in different languages). Figure 1 depicts the relation
between the two tables and their attributes.2

How can one use R2RML to relate instances of movies stored in the table title with their
titles from title and their alternative titles from aka_title, which requires one to apply a left
outer join between title and from aka_title? There are two approaches to achieving this
with R2RML:

Sol1 The first is the creation of two triples maps with one dedicated to the generation of triples
for the outer-join.

1https://www.imdb.com/
2The files were loaded into a MySQL database but required some minor pre-processing: a handful of encoding

issues in the files and NULL values in aka_title were represented with the number 0. We also introduced a foreign
key constraint that was not present in the SQL schema provided by [7]. The reason is that the foreign key constraint
optimizes joins on these two tables. The tables contain 2528312 and 361472 records, respectively. There are 93
records from aka_title not referring to a record in title and 2322682 records in title have no alternative titles.

https://www.imdb.com/


Sol2 The second is using one triples map with a (outer-)join in its logical table.

The problem with Sol1 is that the mapping is not self-contained and that there are two distinct
triples maps that need to be maintained.3 One also must document that this construct was
necessary to facilitate this outer-join. The advantage is that there are two distinct processes for
querying the underlying database and thus less overhead. And while Sol2 makes the triples
map self-contained, it may require the processor to process many logical rows that generate the
same triples when the first table has multiple matches with the second. There may be many
NULL values in the result set when there are few matches.

Practitioners familiar with RDF may lean towards the first solution as they may think in terms
of the generated RDF; they know that the triples generated via these ”disjointed” triples maps
will be ”merged” in the output. Practitioners familiar with SQL may naturally lean towards the
second solution.

In the next section, we propose a small extension of R2RML to provide support for joins on
literal values.

3. Proposed solution

In Listing 1, we demonstrate the extension. It introduces the predicate rrf:parentLogicalTable.4

The domain of that predicate is rr:RefObjectMap and the range is rr:LogicalTable. Our
extension requires that a rr:RefObjectMap must have either a rrf:parentLogicalTable or
rr:parentTriplesMap. A referencing object map may now also generate literals. Where nec-
essary, we will refer to object maps with a parent-triples map as “regular” referencing object
maps.

1 <#title>
2 rr:logicalTable [ rr:tableName "title" ] ;
3 rr:subjectMap [ rr:template "http://data.example.com/movie/{id}" ; rr:class ex:Movie; ] ;
4 rr:predicateObjectMap [ rr:predicate ex:title ; rr:objectMap [ rr:column "title" ] ; ] ;
5 rr:predicateObjectMap [
6 rr:predicate ex:title ;
7 rr:objectMap [
8 rr:column "title" ;
9 rrf:parentLogicalTable [ rr:tableName "aka_title" ] ;

10 rr:joinCondition [ rr:child "id" ; rr:parent "movie_id" ] ;
11 ] ;
12 ] ;

Listing 1: Using parent-logical tables for managing joins

The reference algorithm5 is extended as follows: step 6 will now iterate over all referencing
object maps with a rr:parentTriplesMap, and we add a 7th step for each referencing object

3We may observe cases of the first also being conducted for referencing object maps, especially when the
processor used uses the reference algorithm. The problems with respect to the ”self-containedness” of triples maps
still hold. An R2RML processor may internally “rewrite” referencing object maps as triples maps to optimize the
process. [8], for instance, analyzes the attributes that are referenced to apply a projection to the source data.

4The namespace rrf refers to the namespace used in [6].
5https://www.w3.org/TR/r2rml/#generated-rdf
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map that uses a parent-logical table. The steps for generating are mostly the same. The
differences are:

1. the column names used for the parent SQL query are the union of the attributes mentioned
in the join conditions and the columns referred to in the term map6;

2. it may generate a term of any term type; and
3. the column names referred to by the object map are those of the parent.

In other words, if both logical tables share a column X, then a reference to X would be to that
of the parent. This behavior is consistent with that of regular referencing object maps.

An implementation of this algorithm is made available.7 We have chosen to extend R2RML-F
as it implements R2RML’s reference algorithm.

4. Demonstration

We now present a limited experiment comparing the performance of Sol1, Sol2, and our proposal
using the relational database introduced in Section 2. The mappings for Sol1 and Sol2 are in
Appendix A. In this experiment, we join using the tables as a whole. As R2RML requires result
sets to have unique names for each column, we created a third table aka_title2, where each
column received the suffix ’2’. We also created a foreign key from aka_title2 to title. We
wanted to avoid using subqueries to rename the columns, and these may become materialized
and thus have an unfairly negative impact on the outcome.

We ran the experiment on a MacBook Pro with a 2.3 GHz Dual-Core Intel Core i5 processor
and 16 GB 2133 MHz LPDDR3 RAM. The database was stored in a MySQL 8.0 database using
MyISAM tables in a Docker container. We compiled both R2RML-F and the script for our
experiment with Java 17.0.2. When invoked, the Java Virtual Machine only loads the classes
from libraries (JARs). I.e., Java adopts lazy loading, which negatively impacts the first execution
of the mapping. We, therefore, execute a mapping once to ensure all classes are loaded and
then run each mapping 30 times in a loop. We explicitly call the garbage collector between
executions.

The code calls upon the extension of R2RML-F and registered timestamps before and after
executing the mapping. We have not registered the time for writing the graph onto the hard
disk.

Table 1 provides the descriptive statistics of the time it took to process each mapping that
corresponds with Sol1, Sol2, and our proposed solution. The data we have collected is listed in
Appendix B.

From Figure 2, which shows the average run times in seconds, it is clear that the approach of
using two different triples maps (Sol1) is faster than the two other approaches, which comes
as no surprise. The problem, however, is that we have two distinct triples maps and their
relationship is not explicit. Placing the outer-join in the logical table (Sol2) has the worst

6One column name in case of a rr:column, a set of column names in case of a rr:template and an empty set
in case of a rr:constant. In the case of a rr:constant, the algorithm will generate constants based on the matches
of the join query.

7https://github.com/chrdebru/r2rml/tree/r2rml-join
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Figure 2: Time taken to process three mappings: Sol1–2 triples maps for the outer-join, Sol2–one triples
map with the outer-join in the logical table, and our proposed solution.

Sol1 Sol2 Proposal

count 30.000000 30.000000 30.000000
mean 88.332720 112.595483 96.616708
std 3.548997 5.047198 4.004154
min 80.873969 101.222406 87.411147
25% 87.317585 109.592302 93.666924
50% 89.485543 115.118579 98.156296
75% 90.884436 116.067260 99.623490
max 92.665459 119.661447 102.249416

Table 1
Descriptive statistics about the time taken to process the three approaches and their mappings: Sol1–2
triples maps for the outer-join, Sol2–one triples map with the outer-join in the logical table, and our
proposed solution.

performance. The outer join yields a result set with 155749 more records than the referred table
and contains twice the number of attributes. The overhead can be significantly reduced by only
selecting the columns of interest8, but the three mappings refer to the logical tables as a whole.
Unsurprisingly, our solution is less efficient than Sol1 but considerably more efficient than Sol2.

The three groups do not follow a normal distribution.9 To test whether there is a statistically
significant difference between the medians of the three groups, we apply the Kruskal-Wallis
Test. This test can be applied to groups that do not fit a normal distribution. Given that the
p-value 1.4500079774576953 × 10−16 ≤ 0.05, we reject the test’s null hypothesis that the median
is equal across all groups.

8[8] presented an approach to do this automatically.
9All three groups are skewed and fit an Asymmetric Laplace distribution the best.



We may conclude from these initial results that the proposed solution is not only a viable
solution in terms of performance. More importantly, our proposal ensures that the mappings
remain self-contained. While performance is crucial in knowledge graph generation, we argue
that our proposed vocabulary extension is crucial. An R2RML processor may rewrite referencing
object maps (both types) into distinct triples maps to optimize the process.

5. Discussion

In this paper, we extended the concept of rr:RefObjectMap to support joins for literal values.
The reference algorithm for R2RML processes these in a separate loop for the generation of
relations between subjects of two triples maps. Our approach added a similar step to the
generation of literals based on a join. One may ask whether this approach may be adopted
for term maps in general. The generation of subjects, predicates, and graphs for relational
databases is based on a logical row. Generalizing this approach for such term maps may require
a join per row, which is not efficient and is thus best done in the logical table of a triples map.

As we can generate resources with our approach, one can question whether the notion of
parent-triples maps is still necessary. The reference algorithm uses both logical tables, even
though a processor can only select those used by the subject maps. The question arises: do we
refer to (data in) sources, or do we refer to triples maps?

Related to this work is the approach proposed by [9], where they proposed ”fields” to ma-
nipulate and even combine the source before generating RDF. Their work, demonstrated with
hierarchical data, aimed to address the problem of references that may yield multiple results and
that sources may contain data of mixed formats. They also introduced an abstraction allowing
one to retrieve information via a reference that does not depend on the underlying reference
formulation. To the best of our knowledge, support for relational databases and the addition
of fields from different tables has not yet been published. However, as they declare fields on
the logical source, such an approach may boil down to a situation similar to Sol2 mentioned in
Section 2.

This study assumed that we did not store our values in SQL arrays or JSON. These may
provide another solution, but processing those data types is not within R2RML’s capabilities.
And if the data is not stored in such columns, one has to write an SQL query to create those for
the logical table. There are additional challenges with that approach: one is how to combine
different representations (for which the work presented in [9] may be useful), and the other
is the processing of multi-valued term maps. The latter is being discussed in the Knowledge
Graph Construction Community Group.

5.1. Limitations

With this paper, we aimed to propose an idea for extending R2RML, and we conducted a small
experiment to demonstrate the viability of our approach. There are some limitations concerning
the experiment.

First, we have chosen to adopt a benchmark for SQL joins for this paper. We could have
considered adopting other benchmarks. [10] developed an approach to assess the variables that
affect RML implementations using synthetic data stored as CSV files. Their framework may



have provided insights as R2RML-F as implementation as a whole (even though it is not an RML
engine). However, their work may offer us guidelines for choosing datasets with particular
characteristics for future experiments (join duplicates, dataset size, etc.).

Secondly, we have chosen to declare a foreign key between the two tables. It may be
interesting to what the impact of omitting that foreign key may be. We believe, however, that
this would provide us with information about the underlying database instead of our proposed
solution.

Finally, we ran each mapping 30 times and used one particular implementation of R2RML.
The extended implementation follows R2RML’s reference implementation, even though an
R2RML engine may process it differently (and even more efficiently). However, this paper aims
to start a discussion on the viability of our approach and, more importantly, the advantages of
extending the vocabulary for SQL joins for literals.

6. Conclusions

We addressed the problem of generating literals from an outer-join, which R2RML does not
support. While interesting initiatives are proposed for mostly hierarchical documents, we
wanted to address this problem for relational databases by extending R2RML. We proposed a
small extension with few implications regarding the R2RML vocabulary. We also extended the
reference algorithm and provided an implementation that we have analyzed in an experiment.

From this paper, we can conclude that, for relational databases, our approach is a viable
solution. While not as efficient as disjoint triples maps, it may be worth considering not as an
approach. In our approach, the mappings are self-contained, and the relationship between the
two logical tables is thus explicit. It is essential not to consider this vocabulary extension as
syntactic sugar, as that would imply it is shorthand for something semantically equivalent.

We have addressed this problem for relational databases and R2RML. We could envisage that
such an approach could be part of RML, which has the ambition to supersede R2RML. How this
approach would work for non-relational data is to be studied.
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A. Mappings Used in the Experiment
1 ### MAPPING USED FOR SOL1 IN THE EXPERIMENT
2 <#title_tm>
3 rr:logicalTable [ rr:tableName "title" ] ;
4 rr:subjectMap [ rr:template "http://data.example.com/movie/{id}" ; rr:class ex:Movie; ] ;
5 rr:predicateObjectMap [ rr:predicate ex:title ; rr:objectMap [ rr:column "title" ] ; ] .
6 <#aka_title_tm>
7 rr:logicalTable [ rr:tableName "aka_title" ] ;
8 rr:subjectMap [ rr:template "http://data.example.com/movie/{movie_id}" ; rr:class ex:Movie; ] ;
9 rr:predicateObjectMap [ rr:predicate ex:title ; rr:objectMap [ rr:column "title" ] ; ] .

10

11 ### MAPPING USED FOR SOL2 IN THE EXPERIMENT
12 <#title_tm>
13 rr:logicalTable [
14 rr:sqlQuery "SELECT * FROM title t LEFT OUTER JOIN aka_title2 a ON t.id = a.movie_ID2" ] ;
15 rr:subjectMap [ rr:template "http://data.example.com/movie/{id}" ; rr:class ex:Movie; ] ;
16 rr:predicateObjectMap [ rr:predicate ex:title ; rr:objectMap [ rr:column "title" ] ;
17 rr:objectMap [ rr:column "title2" ] ;

B. Data

This table presents the data we collected. It represents the time (seconds) it took to transform the
tables into RDF. The time for reading the R2RML mapping, preprocessing the R2RML mapping,
and writing the files onto the disk is not considered.

Sol1 Sol2 Proposal Sol1 Sol2 Proposal

82.767074 105.217382 91.348131 81.999299 106.416826 90.347002
90.427724 109.809143 93.264663 87.217652 112.399161 95.900177
88.725155 109.520021 96.184195 88.061773 113.065328 96.838843
89.692226 112.841730 96.235368 91.653757 115.125541 99.763734
90.985728 116.415721 98.115005 90.911754 118.151595 100.106114
90.802484 115.789062 99.497830 87.617385 115.111617 98.930498
89.970738 113.851943 102.249416 91.687230 115.240347 99.203136
89.278861 116.240366 99.665376 91.411960 119.661447 99.472763
92.111467 116.408101 100.164253 89.072998 116.122525 98.916101
89.702658 114.564878 99.801730 90.528770 115.901463 98.147563
90.727826 116.322650 98.165029 89.027501 115.633416 101.355876
91.352994 115.445335 94.873705 88.246109 115.808912 98.338438
92.665459 116.712422 100.349824 82.890711 105.337932 87.411147
81.469006 101.222406 90.316647 85.803827 101.949639 92.664208
82.297501 106.010150 90.027944 80.873969 105.567430 90.846512
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