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Abstract: Semantic augmentation of 3D point clouds is a challenging problem with numerous real-
world applications. While deep learning has revolutionised image segmentation and classification, its
impact on point cloud is an active research field. In this paper, we propose an instance segmentation
and augmentation of 3D point clouds using deep learning architectures. We show the potential of an
indirect approach using 2D images and a Mask R-CNN (Region-Based Convolution Neural Network).
Our method consists of four core steps. We first project the point cloud onto panoramic 2D images
using three types of projections: spherical, cylindrical, and cubic. Next, we homogenise the resulting
images to correct the artefacts and the empty pixels to be comparable to images available in common
training libraries. These images are then used as input to the Mask R-CNN neural network, designed
for 2D instance segmentation. Finally, the obtained predictions are reprojected to the point cloud to
obtain the segmentation results. We link the results to a context-aware neural network to augment
the semantics. Several tests were performed on different datasets to test the adequacy of the method
and its potential for generalisation. The developed algorithm uses only the attributes X, Y, Z, and a
projection centre (virtual camera) position as inputs.

Keywords: 3D point cloud; instance segmentation; 3D projection; panoramic image; deep learning;
I point cloud semantics; semantic augmentation

1. Introduction

Understanding and interpreting complex 3D scenes is an innate human visual task
that can be performed instantaneously and effortlessly. Delegating this task to the machine
is a significant challenge that has attracted several researchers from various disciplines.
Transforming a human-centred process into a fully “artificial” workflow requires one to
deeply investigate automation processes and Artificial Intelligence (AI) algorithms that
can permit human-like inference.

This is particularly crucial for the better integration of point clouds in 3D capture
workflows, where objects, described by sets of points, primarily need to be clearly identi-
fied [1]. Furthermore, the manual segmentation of datasets composed of billions of points
is extremely cumbersome and imprecise, and workflows with a high level of automation
are highly sought after. The research community is investigating state-of-the-art supervised
learning methods, but the lack of available 3D point cloud training datasets is a major
hurdle [2]. Moreover, direct automation through Deep Learning (DL) methods presents
many difficulties for semantic segmentation tasks; the most obvious of which is the size
of the data itself. Another hurdle is the lack of clear structure akin to the regular grid ar-
rangement in images [3]. Finally, in the interest of generalisation, the number of supported
classes is often in the range of 1–10 and cannot reasonably scale to the various domain
definition needs. These obstacles have likely prevented Convolutional Neural Networks
(CNNs) from achieving the impressive performances attained for regular datasets such as
speech processing or images, using irregular data [4].
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This research aims to overcome the challenges by adopting an inverse approach for
point cloud semantic augmentation using an instance segmentation technique. We propose
to leverage complete and robust deep learning models that can detect many objects. In
fact, the method investigates the exploitation of pre-established image datasets to solve
the problem of insufficient data concerning point clouds. In addition, we hypothesise that
projecting a point cloud into an image has the advantage of extending all the research
carried out over the last decade on 2D images to 3D point clouds [5], especially the robust
neural networks for object detection, semantic segmentation, and instance segmentation in
2D data (FCN [6]; the R-CNN series: R-CNN [7], Fast R-CNN [8], Faster R-CNN [9], Mask
R-CNN [10]; YOLO [11]).

Traditionally, two categories of methods were commonly used to segment images:
pixel-based classifiers and Object-Based Image Analysis (OBIA) [12], and that, especially in
the field of remotely sensed imagery, captured by satellites, airplanes, or drones. Only the
spectral information available for each pixel is used in pixel-based methods. They are faster
but ineffective in some cases, particularly for high-resolution images and heterogeneous
object detection ([13–15]). Object-based methods take into account the spectral as well as
the spatial properties of image segments (a set of similar neighbour pixels). OBIA-methods
represent the state-of-the art in remote sensing for object detection [16], high-resolution
land-cover mapping ([17,18]), and change detection [19]. However, contrary to deep
learning techniques, OBIA-based models are not learnable models: they cannot learn from
an image and reutilize the learning into another. The detection is performed from scratch
on each new individual image [13].

This paper is organised as follows: In Section 2, we review the related work, guidelines,
and definitions, of the current study. Section 3 gives the proposed method providing details
about the projection and the deep learning parts. In Section 4, we explain the details about
experimental results. Section 5 provides the general discussion. Finally, we conclude in
Section 6.

2. State of the Art/Overview

This section briefly introduces the different concepts that are either used or related to
this study and thus necessary for its understanding. We organise the related works into the
two following sections: Section 2.1 includes the definition of panoramic images and geometric
projections that encompass a big part of the current research; Section 2.2 describes the different
deep learning semantic extraction techniques in computer vision. In this same section, we give
a brief cover of Tabkha’s thesis [20], which preceded this research.

2.1. Panoramic Image and Projections

Panoramic photography is very diverse. For some “panoramists”, it is a photo in
elongated format. For others, the elongated format is not sufficient; the image must also
embrace a wide angle of view that exceeds a certain threshold [21]. The most common
definition of a panoramic image is the image that covers the entire surrounding space [22];
consequently, a cubemap is also considered as a panoramic image even if it presents a less
homogeneous rendering due to the dissociation into six distinct images. Note all the same
that this definition remains questionable and is still the subject of a long debate.

The creation of panoramic images necessarily requires the passage through the notion
of geometric projections. Each type of projection gives a different degree and type of
distortion which returns a very special visual signature. Today, there are three main
categories and a multitude of types.

These three categories are: rectilinear projections, curved or tiled projections, and
unique projections.

2.1.1. Rectilinear Projection

This projection produces classic panoramas while maintaining straight and vertical
lines (any straight line in the real world is displayed as a straight line in the panorama; this
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makes it a suitable projection for architectural panoramas), which is the type of projection
that regular images have: a conical perspective projection on a projection plane. With this
type of projection, all of the projection lines converge towards the same point O called
the centre of projection, and the projection lines form a cone, hence the name “conical
projection” [23].

The cubic projection is mainly used for virtual tour and panorama creation applica-
tions. Its approach consists of projecting a 3D scene (in a classical perspective projection)
from the centre of the cube through the six facets’ directions and then flattening the cube by
developing it on a flat surface. This representation is less homogeneous than the spherical
and cylindrical projection since it introduces discontinuities at the level of each edge of the
projection cube. The cubic projection offers the advantage of covering the entire surround-
ing space and the absence of the curved line type distortions generated by spherical and
cylindrical projections. Therefore, each facet of the cubemap resembles an image taken
by a normal camera (rectilinear projection), which is why we have adopted this type of
projection in this project to better result from object detection by the neural network.

We can consider that the cubic projection is within the rectilinear projection category
since each facet of the cubemap represents the rectilinear projection of a portion of the
space surrounding one of the cube planes; in total, there are six rectilinear projections on
the six plane surfaces of the cube.

2.1.2. Curved or Tiled Projection

As its name implies, this projection generates deformations of straight lines that
become more curved as one moves away from the central horizontal line of the panoramic
image (all vertical straight lines are kept, but the horizontals lines become curved except
for the horizon line). This is the case of cylindrical and spherical projections [21].

The spherical projection consists of projecting the points of the surrounding space
onto a sphere of diameter R and centre O. The projected points result from the intersection
of the lines connecting the points from the cloud to the centre of the sphere. The spherical
projection has the advantage of being able to represent the totality of the surrounding
space. In addition, this representation is more homogeneous than the cubic projection since
each direction is represented in an equivalent way and without discontinuities. The main
drawback of this projection is that it is not directly developable on a plane. To avoid this
problem, it is essential to introduce another type of projection as in the case of cartographic
projections where it is necessary, to produce a map, to project the earth (sphere/ellipsoid)
onto a cone (conical projection), a plane (azimuthal projection), a cylinder (cylindrical
projection, Mercator), etc.

The cylindrical projection is one of the most famous projections in the history of
mapping. This involves projecting the earth onto a normal, transverse, or oblique cylinder,
then develop it on a flat surface. The meridians are represented by equidistant parallel
lines, and parallels are represented by lines perpendicular to the images of the meridians
but at varying distances depending on the type of cylindrical projection. In fact, it is the
grid of parallels that differentiates the different cylindrical projections. In the cylindrical
Mercator projection, for example, meridians are equally spaced vertical lines, and parallels
of latitude are straight horizontal lines that are spaced farther apart from the equator [24].
The Mercator projection is conformal (preserves angles and shapes) [25].

In the present work, to generate the panoramic image, we have adopted the equirect-
angular projection, also called equidistant cylindrical projection or plane chart, and this,
for the simple reason that it is the easiest to translate into image format (pixels), because
it converts a sphere into a Cartesian grid. In addition, its field of vision is not limited
(360◦ × 180◦), and it is the most used projection for this type of transformation (by stitch-
ing software and some cameras). Unlike the Mercator projection, the equirectangular
projection generates, in the case of a cartographic projection, meridians projected onto
equally spaced vertical lines and parallels projected onto equidistant horizontal lines. This
projection is neither conformal nor equivalent, which explains its absence on navigation
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charts and topographic maps. However, it is particularly used for generating panoramic
raster images from a sphere, and it comes down to the simple relationship between the
position of a pixel in the panoramic image and its corresponding location on the sphere
in spherical coordinates. In fact, the horizontal coordinate is simply longitude on the
panoramic image, and the vertical coordinate is simply latitude [26]. The poles (zenith,
nadir) of the sphere are located at the top and bottom of the image and are stretched across
the image’s width. The areas near the poles are also stretched horizontally, which implies
a very large number of data redundancy near the poles [27]. The panoramic image by
equirectangular projection must have a length/width ratio equal to 2:1, since it represents
an angle of 0–360◦ in width (longitude) and an angle of 0–180◦ in height (latitude).

2.1.3. Special Projection

They come in several variants: the Panini projection [28], the Mini planet projec-
tion [29], the Hammer projection, the Mirror Ball projection [30], the orthographic projec-
tion, etc. The Mini planet projection, also called the stereographic projection, is the most
famous of them, especially among enthusiasts of panoramic photography. Initially, this
projection’s principle consists of bringing together camera shots into a 360◦ panoramic
image. Subsequently, it is a question of projecting the information of the panoramic image
on a sphere, and finally to obtain a plane representation with the “mini planet” effect, it is
necessary to project the sphere on an azimuthal plane, hence the name stereographic pro-
jection. The projection of a point represents the intersection with the azimuthal projection
plane considered (for example the plane z = −1), of the line which links this point to the
North Pole of the sphere.

In the present work, we used the cylindrical, spherical, and cubic projections that were
applied on the point clouds to produce panoramic images.

2.2. Segmentation for the Extraction of Semantics

DL has become the most powerful tool for data processing in computer vision, which
is due to its powerful performance for tasks such as classification, segmentation, and
detection [31] (Sections 2.2.1–2.2.3). While DL techniques are mainly used for data with
a structured grid such as images, point cloud, on the other hand, comes with many chal-
lenges: occlusion, irregularity, and an unstructured and unordered data form. Regardless
of the previous challenges, DL on raw point cloud is receiving lot of attention since Point-
Net [32] was released in 2017, which is based on two main symmetric functions, MultiLayer
Perceptron (MLP) and a maxpooling function. The first stage consists of transforming the
input raw point cloud using the previous two functions, to a feature vector (obtained in a
winner-takes-all principal [33]), which represents the feature descriptor of the input that can
be used for recognition and segmentation tasks in the second stage. Many state-of-the-art
methods have been developed since then, such as PointNet++ [34] and RandLA-Net [35],
which both rely on point-wise MLP. In addition, other networks such as PointCNN [36]
and KPConv [37] are based on a point convolution method, as well as the graph-based
networks such as DGCNN [38] and SuperPoint Graph (SPG) network [4].

Unlike point clouds format, images contain a regular, ordered, and structured data
format, which is why we have chosen to test the efficiency of working in a 2D environment
to semantically enrich a 3D point cloud. Therefore, the next sections focus on introducing
DL techniques in a 2D context. There are several semantic extraction techniques in the field
of computer vision: classification, object detection, semantic segmentation, and instance
segmentation. The simplest of these is image classification, which tells us if one or more
classes are present in the input image and returns several prediction values for each class.

2.2.1. Object Detection

Object detection is not limited to finding the classes of objects and detecting their
positions on the image by bounding boxes. This type of technique is often used in self-
driving car applications, since the car not only needs to know the classes of objects around
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it but also detect their positions to avoid them. Detection can be solved with a CNN
network [39] followed by an FC network [40] but only in the case of images containing
a single object, because in the case where there are multiple objects, the output length
is unpredictable (unknown number of output parameters), knowing that in an object
detection problem it is necessary to predict, in addition to the object class, the parameters of
the bounding box (coordinates of the centre (bx, by), the height bh, and the width bw) [41].

To allow the detection of several objects with their bounding boxes, several neural
network approaches have been developed ([8,9,11,42,43]); one of the most famous is the
R-CNN approach [7]. This is a two-step detection: a Region of Interest (ROI) proposal step
and a classification step. The general idea of the approach is to select different regions of
interest in the image and to separately use a CNN in each of those regions. The advantage
of this approach over others is that it adopts a maximum number of 2000 regions of interest
based on a selective search (a fixed segmentation algorithm, which is not a neural network),
which prevents over-segmentation of images. Therefore, instead of classifying a large
number of regions, we can effectively work with only 2000 regions [7]. To improve this
model, it is better to use a trainable algorithm in the form of a neural network for the
detection of ROIs instead of using a fixed segmentation algorithm. Several improvements
have been made recently to make the model faster as the Fast R-CNN model [8] and the
Faster R-CNN model [9].

2.2.2. Semantic Segmentation

Semantic segmentation is a very popular technique in the field of computer vision. It
is about understanding the image at the pixel level; this is a dense classification problem
where each pixel of the input image is assigned to the class of the object that encompasses
it. Therefore, it is clear that it is not a simple classification of the image but rather a dense
classification at the pixel level, and the output image is fully segmented and classified.

The FCN (Fully Convolutional Network) [6] model created by Long et al. in 2015 is
one of the most popular models to solve the problem of semantic segmentation. In fact,
FCN is a neural network that consists only of convolutional layers, hence the name “Fully
Convolutional Network”. It does not contain an FC network at the end as in the case of the
usual CNN convolutional neural networks [6]. The FCN model is based mainly on two
key operations: the Uppooling operation and the operation of merging the outputs of the
intermediate convolutional layers.

The operation of pooling or subsampling induces a reduction in the size of the input
image, thus, the names: Uppooling or Upsampling refer to the reverse operation which
induces an increase in the size of the image in question. This operation is very important
in the FCN model, because, in the end, we are looking to find the class predictions for
each pixel of the input image, which means that we must have at the output a matrix
(image) equal in resolution to the input image, containing predictions for each pixel in the
image. However, the periodic operations of a CNN, “Max pooling” or “Average pooling”,
considerably reduce the size of the initial image, all the more as we go deep into the
network. However, to have a classification at the pixel level, the image at the output of the
network must have the same size as the input image, hence the use of this type of operation
at the end of the FCN network to find the size of the input image. The Uppooling operation
is introduced after the detection of feature maps in the image.

The second key notion in an FCN is the merging of outputs. This is because convo-
lutional networks begin to lose spatial information as they enter deep into the network,
which boils down to decreasing the size of the images. Intermediate layers which are
shallower contain more spatial information but, at the same time, a lower level of detected
characteristics. Thus, the solution which has been adopted in the FCN model is to make
a merge (addition element by element) between the layers which contain more spatial
information about pixels (shallower layers) and layers that contain a high level of detected
features (deep layers), as is the case of FCN-16s and FCN-8s [6].
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2.2.3. Instance Segmentation

The technique of instance segmentation makes it possible to extract objects from
images by assigning them to their appropriate classes, such that each pixel has the class of
the enclosing object; therefore, it is a classification at the pixel level, but it should not be
confused with the semantic segmentation technique, because here, only the objects of the
image are classified at the pixel level and not the whole image. It is therefore a combination
of the two object detection and semantic segmentation approaches [10]. The Mask R-CNN
model, adopted in this study, is part of this category of segmentation techniques. The
architecture of this model is detailed in the method section.

2.2.4. Previous Work: Tabkha’s Thesis 2019

To give a chronological order, this research follows Tabkha’s thesis [20], which was
elaborated in 2019 under the title “Semantic Increase of a Point Cloud through the Automatic
Extraction of a 360◦ Panorama and Its Integration into a Platform of Machine Learning ”.

The previous work that was carried out within this thesis is subdivided into three
main parts. The first part concerns the creation of an image assimilating a (virtual) camera
position within the point cloud by cylindrical panoramic projection with a width/height
ratio equal to 2:1. As for the second part, specific image treatments were applied to the
image to homogenise the rendering using median, statistical, and fill filters. Finally, the
homogenised image was introduced into an open-source image recognition software using
the Imagga API, which allows the tagging of images on “scalable clouds” via machine
learning techniques.

The elaborated process is characterised by simplicity and automation, but the algo-
rithm does not escape certain limits. There are several aspects to be improved, in particular
the adoption of a panoramic projection, which allows the preservation of the whole cloud
to thus avoid the loss of data of the points which are located above and below the projection
cylinder. It is also preferable to break away from the Imagga API by developing a new
approach to object recognition.

3. Methods

This section describes the point cloud analysis methodology used for semantic segmen-
tation of a point cloud. Our automatic procedure is serialised in the steps shown in Figure 1.
In Section 3.1, we describe the method of the constitution of the 360◦ panoramic image
grid. Section 3.2 discusses the process followed to homogenise the renderings and thus
enhance the classification step. Afterwards, in Section 3.3, we demonstrate the cubemap
generation using a cubic projection. Section 3.4 explains the instance segmentation applied
on the panoramic images using the Mask R-CNN neural network. Lastly, in Section 3.5, we
present the back projection method of the predictions to the initial point cloud.
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Figure 1. General methodological flowchart.

3.1. 360◦ Panoramic Image
3.1.1. Spherical Projection

Figure 2 shows the mathematical definition of the projection of a sphere with radius R
and centre O (0, 0, 0). Considering the yellow point (P) with Cartesian coordinates (x, y,
z), the problem consists in finding the Cartesian coordinates (x′, y′, z′) of the black point
P′ which represents the intersection of the line connecting the point P to the centre of
the sphere according to the known elements: x, y, z, and R, with D being the distance
separating the centre of the sphere from the point P.

Based on Thales’s theorem, we obtain the following expression of P′ coordinates:

P′·
(

R√
x2 + y2 + z2

× x,
R√

x2 + y2 + z2
× y,

R√
x2 + y2 + z2

× z), (1)
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Figure 2. Schema of the geometry of a spherical projection.

In the case of a point cloud, the sphere is not always located at the origin of the point
cloud coordinate system, and it is therefore necessary to apply a translation of the centre
of the sphere, before proceeding to the projection. For a better result, the sphere should
be positioned inside the point cloud, putting its centre closer to the part that we want to
highlight. To ensure the link between the projected points and those which correspond
to them in the cloud, an identifier ‘i’ is added to the tables of the new coordinates of the
points projected on the sphere, so that each point has a unique identifier throughout the
whole development process.

The application of the spherical projection on a three-dimensional point cloud gives
the following results (Figure 3).

The next step consists in projecting the sphere onto a cylinder using an equirectangular
cylindrical projection in order to generate the 360◦ panoramic image.

Figure 3. Visualisation on Potree: (a) the initial point cloud; (b) result of the spherical projection. Adapted from ref. [44].

3.1.2. Equirectangular Cylindrical Projection

This step consists of generating an equirectangular panoramic image from the pro-
jected points on the previous sphere. To accomplish this, it is necessary to calculate the
image coordinates which correspond to each point projected on the sphere. In fact, there
is a direct relation between the spherical coordinates of the points on the surface of the
sphere and the image coordinates of the panoramic image after developing the cylinder of
the equirectangular projection; more precisely, the horizontal coordinate on the panoramic
image is the longitude, and the vertical coordinate is the latitude. It is important to note
that this projection is neither conformal nor equivalent; it is particularly used to generate
panoramic images.
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We recall that the previously calculated coordinates of the points projected on the
sphere are Cartesian coordinates. However, since the relationship between the spherical
coordinates (r, ϕ, θ) and the image coordinates is the most obvious, we first transform
the Cartesian coordinates of the points projected on the sphere into spherical coordinates.
Then, considering the spherical coordinates of the point P′(r, ϕ, θ), its corresponding image
coordinates (i, j) are calculated by the following equations:

i = θ∗height
π

(2)

j = ϕ∗width
2π

(3)

The term (width) represents the desired number of columns on the panoramic image,
and the term (height) represents the number of rows, both expressed in pixels. Which
allows for the transforming of the points projected on the sphere to the image coordinates
on the developed cylinder (Figure 4).

Figure 4. (a) Schema of the equirectangular cylindrical projection; (b) schema of the panoramic image
after developing the cylinder (the parallel lines of the sphere are in green and the meridians in red).

The panoramic image has been correctly generated; thus, the process is validated.
Figure 5 shows the first generated panoramic image.

Figure 5. (a) Result of the spherical projection visualised on Potree; (b) first panoramic image after
the equirectangular cylindrical projection. Adapted from ref. [44].

Based on the spherical projection of the points of the cloud, it is obvious that several
projected points have the same coordinates (ϕ and θ). In fact, all the points of the cloud
which are in the same line passing through the centre of the sphere have the same spherical
coordinates. It is not the redundancies of the angles that are problematic but rather the
question: which point is considered as the right point occupying the angle (ϕ, θ)?, since we
later need its colour information (R, G, B) to generate the panoramic image. The correct
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point that should normally be considered is the closest point to the sphere’s centre, since
logically, if we position ourselves inside the sphere we would only see the points that are
in the foreground. The minimum distance condition is added to the code to keep only the
right points representing the foreground view with respect to the virtual camera (centre of
the sphere).

3.2. Homogenisation of the Panoramic Image

The panoramic image generated in the previous steps contains three major problems
which are mainly related to the special nature of this generation: noise, empty areas, and
artefacts related to the point cloud. In this part, we present the different filters adopted for
reducing the three problems above while trying to keep the useful information contained
in the image. The objective behind this homogenisation is to increase the rate of correct
predictions in the instance segmentation part, since the neural network used is trained on
a dataset containing normal images, which do not present these types of alterations. Of
course, the use of a given filter is conditioned by the type of noise considered and by the
intended use of the image subsequently (contour detection, segmentation, etc.)

We have chosen to apply homogenisation at this point and not after the generation
of the second panoramic image (the cubemap) for the following reason: the cubemap
itself presents a nonhomogeneous rendering with many empty areas resulting from the
development of the cube on only six faces of the cubemap (the rest of the faces are empty
and thus represented in black), and therefore, if we apply the filters on the cubemap, these
empty areas would negatively influence the homogenisation result.

The first applied filter is the median filter which is generally used to eliminate salt and
pepper noise [45]. This type of noise is very similar to the noise generated by empty pixels
and point cloud artifacts on the panoramic image (Figures 20, 21 and 23), which is why it
has been adopted. The good performance of the median filter stems from the property of
the median to be almost insensitive to extreme pixel values [45].

After reducing the artefacts and the small slots of the empty pixels, we still have some
bigger voids that a simple fill filter can fill in. We have created a function that fills the whole
filter window with the median value instead of changing only the central pixel’s value. A
5 × 5 median filter calculates this median value. However, in the case of the panoramic
image in Figure 5, this function is only applied to pixels that have a colorimetric value lower
than (30, 30, 30) so as not to alter the other nonempty pixels of the panoramic image and
thus reduce the contrast even more. The value (30, 30, 30) is a subjective value considered
after the application of several tests; further, it is only applicable for the panoramic image
shown above, and thus, this value can change from one image to another. This filter was
applied several times on the image until the desired result was obtained (Figure 6).

Figure 6. Panoramic image after applying the two filters.

3.3. Cubemap Generation Using Cubic Projection

As a reminder, the curved projection called tiled (spherical and cylindrical), used
to generate the previous panoramic image, generates deformations of the straight lines
which become more curved as we move away from the central horizontal line of the image
(all vertical straight lines are preserved unlike the horizontal ones). This represents a
big disadvantage for the deep learning step, since the images that were used to train the
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neural model adopted in this research (Mask R-CNN) are normal images (not curved)
generated with a rectilinear perspective projection, which is adopted by most digital
cameras. Consequently, there is a high probability that the objects in the first panoramic
image are not detected by the neural network, even in the case of a perfectly clear and
homogeneous image. This is why the generation of a second panoramic image is required
(the cubemap).

Unlike the tiled projections, the cubic projection preserves all the straight lines in reality,
since it is a rather special projection that brings together six rectilinear projections (on the cube
six facets) into a single projection. Thus, each facet of the cubemap looks like a typical image
taken by a conventional digital camera. The cubemap presents a second significant advantage
in this study, and we can easily dissect a cubemap either in several small images (facets) or in
bands grouping together several facets. Subsequently, these faces and bands can be executed
individually in the adopted neural network, and then, their results can be reintegrated into the
original cubemap. Figure 7 below represents a sphere inside a cube. To generate the cubemap
(panoramic image) from the point cloud projected onto the sphere using cubic projection, we
apply the following mathematical steps:

Each point belonging to the sphere is centrally projected towards one of the six facets
of the cube, so as to match each point to the correct facet. We first define four angle
intervals according to the longitude of the sphere: 0 ≤ ϕ < π

2 , π2 ≤ ϕ < π, π ≤ ϕ < 3π
2 ,

3π
2 ≤ ϕ < 2π. Point P′ has the following Cartesian coordinates: (x = r sin θ cos ϕ, y = r sin
θ sin ϕ, z= r cos θ).

If we take, for example, the first region defined by the interval: 0 ≤ ϕ < π
2 , all the

points that are part of this interval and which are projected centrally, would intersect with
the plane of the first facet at x = 1 (figure below).

Figure 7. (a,b) Projection of the 1st region of the sphere on the 1st facet of the cube (plane x = 1).

The projection of the point P′ (r sin θ cosϕ, r sin θ sinϕ, r cos θ) becomes (a sin θ cosϕ,
a sin θ sin ϕ, a cos θ), with ‘a’ being the radius of an imaginary sphere that shares the same
centre and the same directions as our original sphere. We deduct the following relations:

a sin θ cosϕ = x = 1, (4)

Thus,

a =
1

sin θ cos ϕ
, (5)

Therefore, the coordinates of the projected point on the plane x = 1 become: P” (1,
tanϕ , cotθ

cos ϕ ).
As we can notice in Figure 7, above, the points projected on the plane x = 1 do not

all belong to the indicated 1st facet. Those which protrude at the top should rather be
projected on the upper facet of the cube, and those which protrude at the bottom should be
projected on the lower facet (Figure 8). Mathematically:

• If −1 ≤ z = cotθ
cos ϕ ≤ 1, the points are on the 1st facet, otherwise;

• If z = cotθ
cos ϕ > 1, these points are not considered and should rather be projected on

the plane z = 1 (the top facet);
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• Otherwise, if z = cotθ
cos ϕ < −1, these points should be projected on the plane z = −1.

Figure 8. Projection of the 1st region of the sphere onto the 1st lateral facet of the cube and the two
upper and lower facets after applying the condition on coordinate z.

The same process is applied to the three remaining regions. Thus, at the end, we
obtain a point cloud in the form of a cube.

The next step consists of generating the cubemap which represents the flattened form
of our cube, which means to find for each point of the point cloud in cube format its
corresponding pixel in the cubemap. For this, we must first choose the configuration we
want to have of the cubemap. Note that there are eleven nets of a cube. In our study,
we opted for a cross net. The two figures below show the way of indexing the cubemap,
respecting the way in which the cube was developed.

We start by choosing the desired width A of the cubemap (in pixels), such that the length
of each edge is equal to A

4 and the resolution of the cubemap is (A, 3 × A
4 ). Each facet of the

cubemap of Figure 9 contains in the canter: its old Cartesian coordinate system (respecting the
way in which the cube was developed), which facilitates indexing thereafter, the name of the
facet, and its projection plane. Table 1, below, summarises the image coordinates.

Table 1. Image coordinates of the cubemap facets.

Facet Coordinate i Coordinate j

front A
2 × (3− Z) A

2 × (5 + Y)
back A

2 × (3− Z) A
2 × (3 + Y)

left A
2 × (3− Z) A

2 × (1− X)
right A

2 × (3− Z) A
2 × (7− X)

top A
2 × (1 + X) A

2 × (5 + Y)
bottom A

2 × (5− X) A
2 × (5 + Y)

Figure 9. (a) Cube coordinate system before development; (b) cubemap indexing method.
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To benefit from the homogenisation that has already been applied to the first panoramic
image (Figure 6), we create the cubemap based on it, by adding a small part to the mathe-
matical model above. In fact, we apply the inverse of the equirectangular projection on the
first panoramic image to have the points projected on the sphere again; after that, all that
remains is to apply the formulae to pass from the sphere to the cubemap explained above.

The first algorithm generated in this study consists of directly applying the formulae
explained previously by defining a projection function which takes the values θ and ϕ and
returns the coordinates in a cube from −1 to 1 in each direction. Further, a second function
takes the coordinates (x, y, z) of the points projected on the cube and transforms them into
image coordinates of the output cubemap. This first algorithm’s logic consists of scanning the
first panoramic image and for each pixel returning the position of the equivalent pixel in the
cubemap. Figure 10, below, shows the result of the first approach of generating the cubemap.

Figure 10. The resulting cubemap of the direct approach.

The cubemap above shows a geometrically correct result. However, we notice the
appearance of several black lines altering the visual aspect of our image. This comes
down to the fact that our starting panoramic image has a resolution of (A/2, A), while the
cubemap has a resolution of (3 × A/4, A), with ‘A’ being the width of the two panoramic
images. This means that it is not a pixel by pixel projection since the dimension of the
cubemap is greater in height than that of the first panoramic image, which generates the
artifacts in the figure above. We solved this problem by taking a reverse approach but
keeping the same projection logic; that is, instead of going through each pixel of the source
(1st panoramic image) and finding the corresponding pixel in the target (cubemap), we
scan the target image (cubemap), and for each pixel of the target (empty a priori), we find
the closest corresponding source pixel in the 1st panoramic image. Finally, we assign the
value of this pixel to the empty pixel of the cubemap. On the resulting cubemap from the
reverse approach, (Figure 11) below, we notice the disappearance of artefacts related to the
difference between the dimension of the first panoramic image and the cubemap.

Subsequently, the entire cubemap, facets and bands are separately integrated into the
Mask R-CNN neural network to make more classification testing.
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Figure 11. The resulting cubemap of the inverse approach.

3.4. Instance Segmentation with Mask-RCNN

After ensuring the link between the two panoramic images pixels and the initial point
cloud, the next step is to implement a neural network that ensures an automatic instance
segmentation of these images using deep learning. To semantically segment the panoramic
images, we chose to work with the Mask R-CNN model; this choice was mainly motivated
by the following reasons:

• The main reason is the fact that this model allows for a pixel level classification by
outputting for each object of the input image a different colour mask, which is perfectly
adapted to the logic of the developed program based on the back projection of the
new pixel values after the semantic segmentation of the panoramic images. Models
that only allow object detection, such as the R-CNN, fast R-CNN, or YOLO neural
networks, are not suitable for this study since they only generate bounding boxes
around the objects but not a dense classification at the pixel level;

• This model is pretrained on the Microsoft COCO (Common Objects in Context) dataset
and available under an open-source license on Github;

• Published in 2017, it is one of the most popular models for instance segmentation today.

The Mask R-CNN model, developed by He et al. in 2017, is one of the most adopted
and efficient models for instance segmentation tasks; it is a multistep approach that com-
bines approaches used in the previous versions of the R-CNN series (Faster R-CNN and
Fast R-CNN) and presents new improvements such as the RoIAlign method as well as the
fully convolutional (FCN type network [9]) binary mask prediction branch, hence the name
of the model. The model returns the bounding boxes, classes, and segmentation masks
of the detected objects (Figure 12). Mask R-CNN adopts the same two-stage procedure,
with an identical first stage (which is RPN [9]) [10]. The region proposal network (RPN) is
in charge of “proposing” areas of the image that potentially contain an object, before the
classification part which says whether each region (RoI) indeed contains an object worth
detecting and which object it is. The RPN outputs a set of rectangular object proposals
(four coordinates for each), each with the probability of containing an object [9]. Before
the RPN, the input image passes in a backbone part for feature map extraction which is
a ResNet-FPN ([46,47]) style deep neural network. It consists of a bottom-up pathway, a
top-bottom pathway, and lateral connections (Figure 12). Using ResNet-FPN backbone for
feature extraction with Mask R-CNN gives excellent gains in both accuracy and speed [10].
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Figure 12. Summarised architecture of the Mask R-CNN Network.

After the RPN phase, the resulting RoIs are warped to a fixed size before being intro-
duced to the second stage of the mask R-CNN architecture (the classification/bounding
box and mask branches). The improvement here is in the use of the method RoIAlign
instead of the RoIPool used in the previous version: Faster R-CNN architecture. In fact,
RoIPool [9] is a standard operation for extracting a small feature map (e.g., 7 × 7) from
each RoI. That implies the quantisation of the strid in the max pooling operation, for
example, for a RoI of 17 × 17, the required stride is 17/7 = 2.4, and since a stride of 2.4 is
meaningless, RoIPool quantises this value by rounding it to 2, which introduces a loss of
data and a misalignment between the RoI and the extracted features. While this may not
impact classification, which is robust to small translations, it has a large negative effect on
predicting pixel-accurate masks [10]. To avoid these problems, He et al. [10] developed
the RoIAlign that implies no quantisation; therefore, in the case of the 17 × 17 RoI input
region, we consider the 2.4 stride as it is, and for each cell in the RoI after devising it by
the 2.4 stride, four sampling points are defined. RoIAlign computes the value of each
sampling point by bilinear interpolation from the nearby grid points on the feature map,
and finally, the chosen cell value is the max value between the four sampling points values,
as for each of the RoI cells. No quantisation is performed on any coordinates involved in
the RoI, its bins, or the sampling points [10] (Figure 13). Warped features (RoIs) are then
fed into fully connected layers to make a classification using softmax, and boundary box
prediction is further refined using the regression model. The same warped features are
also fed into Mask classifier, which consists of a fully convolutional network (FCN [6]) to
output a binary mask for each RoI.
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Figure 13. RoIAlign: the dashed grid represents a feature map; the solid lines, an RoI (with 2 × 2
bins in this example); and the dots, the 4 sampling points in each bin. Reprinted from ref. [10].

The Mask R-CNN model used in this study was pretrained on the Microsoft COCO
image dataset; its name literally implies that the images are everyday objects captured
from everyday scenes. This adds context to the objects captured in the scenes. Moreover, it
was created primarily to advance the state of the art in object recognition by placing the
issue of object recognition in the context of the broader issue of scene understanding [48].
More concretely, the database is realised by gathering images of complex scenes containing
common objects in their natural context; these images are labelled using instance segmen-
tation. The particularity of this database is that it works better than previous ones for
recognising objects on noncanonical images: containing objects in the background, par-
tially occluded, in the middle of disorder, etc., reflecting the composition of natural daily
scenes [48]. Figure 14 shows the 80 object categories considered by the COCO database
with 330,000 images, containing 1.5 million labelled and segmented object instances.

Figure 14. The 80 object categories in the COCO dataset. Adapted from ref. [48].

To verify the correct implementation of the Mask R-CNN network in our program, we
first tested the instance segmentation on random images. The result of instance segmenta-
tion on a random test image is shown in Figure 15.

Figure 15. (a) Test image; (b) output result of the initial code of the Mask R-CNN instance segmenta-
tion network.
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The instance segmentation result is not suitable for our study for the two following reasons:

• The resulting image contains in addition to object recognition masks: bounding boxes,
prediction values, and object class names.

• As an output, the code does not allow for the downloading of the segmented image
but only its visualisation as a graph on the development environment used.

We have added a function that allows for the downloading of the images after their
instance segmentation in several modes and with more functionalities to solve these two
problems. This permits keeping only the segmentation masks with the input image in the
background. Figure 16, below, shows the result of downloading the segmented image in
mask mode only.

Figure 16. Output image keeping only the segmentation masks.

In addition to the download modes, the features that have been added are:

• The choice of the prediction threshold.
• The choice of the object classes to detect, allowing the user to filter the classes displayed

in the network output.

3.5. Back Projection of Class Instances Predictions to the Point Cloud

We recall that the objective of this study goes beyond the creation of the panoramic
images and deals also with the semantic segmentation of the initial cloud of points. In fact,
we have to ensure a link between each pixel of the panoramic image and its corresponding
point in the cloud, so that we can use this link to segment our cloud after the segmentation
of the panoramic image. A unique identifier ‘i’ expresses this link for each point, which
has been introduced each time a new coordinate table is created in our program in order
to ensure the preservation of the link with the points of the cloud throughout the whole
development process. Figure 17, below, schematises an example of the link between the
different coordinates at different phases allowing the back projection of the point (i = 10).

For instance, for the point with the identifier i = 10 above, each time we carry out a
projection, we introduce the identifier i at the end of the new coordinates table to preserve
the link with the initial point cloud. After the panoramic image semantic segmentation, we
simply need to replace the colour values (R, G, B) of the initial point (point of the cloud
with the identifier 10) by the new colour values (after instance segmentation) of pixel (i2, j2,
10) of the cubemap, based on the identifier i = 10. This exact process is applied to each of
the panoramic image pixels.
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Figure 17. Diagram of the link between the different coordinates tables allowing the back projection
of the point with the identifier 10.

4. Results

This section presents test results that have been carried out to validate our approach.
Firstly, we present analyses and remarks related to each phase of the adopted process for the
semantic augmentation of point clouds. Then, we present the test results on two different types
of point clouds (clouds of interior environment and clouds of some specific objects).

4.1. Datasets

The Table 2 below summarises the point clouds used in this study and their properties. XYZ
are the point coordinates; RGB are the point colour information; I the intensity; and D the depth.

Table 2. Datasets details.

Point Cloud Nb of Pts Source Attributes

Office 6,971,911 Canon EOS 70D (Photogrammetry) XYZ-RGB
Female Statue 3,525,792 Leica P30 XYZ-RGB-I

Bed 3,876,880 FARO Focus 3D X330 HDR XYZ-RGB-D
Boardroom 30,876,388 FARO Focus 3D X330 HDR XYZ-RGB-D

4.2. The Optimal Resolution for the First Panoramic Image

When choosing the resolution of the 360◦ panoramic image, it is necessary to keep a
certain balance on the image by adopting a resolution that preserves the richness of the
initial point cloud and at the same time without generating an exaggerated number of
empty pixels that could possibly influence the result of the automatic classification.

As an example, if we consider that the image coordinates of two different points (ϕ1,
θ1) and (ϕ2, θ2) are (80.2, 21.4) and (80.1, 21), the function in the program would return,
in reality, the integer values of (i, j) meaning the image coordinates (80, 21) for the first
point and the same coordinates (80, 21) for the second point, and since a pixel can only
take the colour information of a single point, the information of one of these points would
not be considered, which implies a loss of data for some points of the cloud that have very
close coordinates ‘ϕ’ and ‘θ’. To get around this problem, it is necessary to increase the
resolution of the panoramic image, such that each pixel represents a very restricted angle
field, thus increasing the chance that a single point of the cloud is in an angle field occupied
by a pixel (Figure 18). This is illustrated by the figure below: the left part shows a single
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pixel of a low-resolution panoramic image, and only the orange pixel is considered, which
induces a loss of the informative value of the other three pixels. On the other hand, we see
in the right part that, with the increase in the resolution, each point occupies exactly one
pixel; therefore, no data loss has occurred. However, the increase in resolution leads to the
appearance of more empty pixels in the image (black pixels in Figure 18), but this is still
treatable in comparison with the problem of loss of information value of the initial point
cloud. The majority of these empty pixels are later eliminated in the image processing part.
However, it is necessary to keep a certain balance by choosing a resolution that preserves
the richness of the initial point cloud and at the same time does not generate an excessive
number of empty pixels. In the case of the cloud (Figure 3), the resolution that has been
chosen is 786 pixels in height and 786 × 2 in width (to keep the 2:1 ratio).

Figure 18. Influence of resolution in preserving the informational richness of cloud points.

Figure 19, below, shows an example of the recuperation of certain parts of a chair with
the increase in the resolution of the panoramic image.

Figure 19. (a) Chair resolution (786, 1572); (b) chair resolution (3000, 6000); (c) chair resolution (5000, 10,000).

4.3. Homogenisation of the 360◦ Panoramic Image

Disappearance of the artefacts related to the acquisition of the cloud (Figure 20).
Disappearance of empty pixels (recovery of the lamp), as well as the filling of the

upper area that had an overabundance of empty pixels (Figure 21).
Appearance of blurring as the size of the median filter increases (Figure 22).
Recovery of writings on paper, as well as a loss of data in the regions where there is a

dominance of empty pixels over useful pixels (Figure 23).
The more we increase the median filter size, the more the image becomes less noisy

but, on the other hand, blurred. In addition, if the salt and pepper noise (empty pixels
and artefacts) is more significant than half the median filter size, filtering is ineffective.
Suppose the majority of the pixels in the window around a central pixel are noisy with
empty pixels that have a very low grey level. In that case, the median filter would give
this pixel a shallow grey level as well, and the pixel would be noisy ‘pepper’ in the filtered
image. The same would be true for most pixels in the window that are noisy with artefact
pixels that have a very high grey level. On the other hand, if in the window the number of
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noisy pixels ‘pepper’ and ‘salt’ are both less than half the size of the filter, then the median
grey level of the window would be neither ‘pepper’ nor ‘salt’ but a non-noise value. This
means that in the filtered image, the centre pixel would have a non-noise value.

Figure 20. Noise elimination by median filter: (a) before median filter; (b) after median filter.

Figure 21. Noise removal with median filter and the filling of the upper area that had an overabun-
dance of empty pixels: (a) before median filter and filling; (b) after median filter and filling.

Figure 22. Deterioration of the contrast as we increase the size of the median filter: (a) median filter
3 × 3; (b) median filter 7 × 7.
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Figure 23. Recovery of writings on papers: (a) before image processing; (b) after image processing.

4.4. Back Projection on the Point Cloud Analysis
4.4.1. Influence of the Projection Centre Position (Depth of the Cloud Points)

As explained in the previous part, in order to have a logical result on the panoramic
image, the points projected on the image must represent the foreground view with respect
to the projection centre (centre of the sphere). In another way, for an angle (ϕ, θ), only
the point that has the smallest depth with respect to the projection centre is considered in
the panoramic projection, and the other points are ignored in order to have a logical and
understandable panoramic image. This obviously affects the result of the back projection of
the predictions. The figure below shows the result of the back projection of a test panoramic
image that has been fully coloured to detect the points of the cloud that have been taken
into consideration in the projection process. We notice that the areas that are close to the
projection centre (red point) contain more segmented points compared to the areas that
are far from the centre, for example: areas (1) and (2) in Figure 24 below (points ignored
during the projection of the panoramic image due to the condition on the depth regarding
the points to be considered).

Figure 24. Influence of the projection centre position on the segmentation of the point cloud.

4.4.2. Influence of Panoramic Image Resolution on Cloud Segmentation

One of the major difficulties encountered in this study is how to efficiently merge 2D
and 3D domain data. This is quite difficult for the following reasons: there is generally no
one-to-one mapping between 2D and 3D data; the 2D and 3D neighbourhood definitions
are different; and further, neighbouring pixels in an image are defined by a very regular
grid, while 3D points are defined at nonuniform continuous locations.

To overcome these problems, it is necessary to choose the resolution of the panoramic
image that allows segmenting the maximum number of points on the cloud while paying
attention to the number of empty generated pixels, which could negatively influence the
result of automatic detection by the neural network used.
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In Figure 25, we notice that the resolution of the panoramic image has a big influence
on the segmentation rate of the cloud after the back projection. This comes back to the
influence of the resolution on the preservation of the informational richness of the cloud
points on the projected panoramic image (Figure 18). In fact, if the resolution is high, we
would have a larger number of segmented pixels on the panoramic image (these pixels are
obviously related to the points of the initial cloud), hence the increase in the number of
segmented points on the cloud after the back projection. The image on the left represents the
visualisation on Potree [44] of a point cloud derived from the segmentation of two objects
on a panoramic image of (786, 1572) resolution, while the image on the right represents the
same cloud derived from the segmentation of a panoramic image of (2000, 4000) resolution.

Figure 25. Influence of the panoramic image resolution on the cloud segmentation rate: (a) almost half
of the points representing the two objects were not segmented; (b) almost all the points representing
the two objects have been segmented.

4.4.3. Influence of the Scattered Structure of the Point Cloud

While neighbouring pixels in a panoramic image are defined by a regular grid, 3D
points are defined at irregular and nonuniform locations. In fact, the scattered nature of the
point cloud negatively influences the segmentation quality; more precisely, it influences the
accuracy of the segmented objects on the cloud, even if the depth condition is respected for
points that are in the same angle line (ϕ, θ). The problem here is not the depth, but the holes
between the points of the objects in the cloud. For example, in the figure below, we notice
that the object ‘computer’ contains in addition to the normal holes between the scattered
points, a large empty area (shown by an arrow); therefore, during the spherical projection
with respect to the centre of projection (point in red encircled in Figure 26), the points behind
the computer with respect to this empty area appear inside the computer in the panoramic
image. Therefore, after the segmentation of the computer on the panoramic image, these
points (which do not belong to the computer but are projected in the panoramic image
inside the computer) are also considered as points belonging to this object (Figure 26). That
is why in the case of objects with a lot of empty areas and low density, we always have
badly segmented points left behind, even if the depth condition is applied, except in the
case of objects that do not overlap with other objects on the cloud.
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Figure 26. Influence of the scattered structure of the point cloud.

4.5. Analysis of Instance Segmentation by Mask R-CNN

In this section, we present the results obtained by the segmentation of different point
clouds. The two scenes ‘female statue’ and ‘office scene’ were acquired by the ULiège
geomatics unit team. The rest of the clouds were downloaded from the Web database
“Indoor Lidar-RGBD Scan Dataset” in order to have a fairly significant sample of different
point clouds. This dataset contains five different complete indoor environments that were
collected using a “FARO Focus 3D X330 HDR” scanner [49]. Each scene was scanned from
several locations, and then the scans were merged using an unspecified alignment software.
The clouds are in “PLY” format.

We chose to use this database since it contains very dense clouds, representing indoor
environments and containing objects taken into account by the COCO image dataset with
which the Mask R-CNN was trained.

We notice that the developed approach works very well for clouds containing distinct
objects (Figure 27: (1) and (2)). The first detection gives a prediction value of 0.999 for
the object class ‘person’ and a value of 0.923 for the ‘bed’ class. Note that we did not
expect to have the class ‘statue’ for the first point cloud, since the network is not trained to
differentiate between a statue and a person.

On the second point cloud, we did not need to generate a cubemap since the shape of
the bed has not been greatly altered by the spherical and cylindrical projections. However,
the instance segmentation in the second case was performed on a single facet of the
cubemap. Subsequently, we reintegrated the segmented facet into the cubemap in order to
be able to carry out the backward projection towards the initial point cloud.

The third point cloud presents a 3D indoor (office) environment. In fact, this cloud
is very complex to segment semantically for the following reasons: low-density cloud
containing several large empty areas; very crowded scene with overlapping objects in
several places; and incomplete objects (example: computer).

We recall that the only objects that can be detected on these point clouds are those
taken into account by the COCO library (Figure 14). In this third cloud (Figure 27), the only
objects that can be detected are: book, table, computer, ball, and person.

We notice that only the objects ‘person’ (in purple) and ‘book’ (in yellow and green)
were correctly detected and segmented. This is why we proceeded with the second
projection (cubic projection) in order to eliminate the distortion effect related to tiled
projections (spherical and cylindrical), thus increasing the chances of correct predictions.
The cubemap generated after the cubic projection was subdivided into six distinct facets,
and then each facet was introduced individually into the Mask R-CNN network. The facet
presented in the Figure 28 gave the best result compared to the other facets of the cubemap.
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Figure 27. Instance segmentation on different point cloud panoramic images: (a) Office point cloud;
(b) Female Statue point cloud; (c) Bed point cloud; (d) Boardroom point cloud.

We notice that there is an improvement in detection on the facet above compared to
the first panoramic image in tiled projection. More ‘book’ objects as well as the ‘ball’ object
(in green) have been detected. The COCO library does not take into account the ‘closet’
object, which is why it was detected as a refrigerator (in orange and red).
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Figure 28. Instance segmentation of the cubemap right facet (the office scene): (a) point cloud; (b) cubemap; (c) instance
segmentation on the cubemap right facet.

The last example also represents an indoor environment (Figure 27), but it is a much
denser and clearer cloud, containing fewer overlapping objects. In fact, most of the objects
in the COCO database have been detected and segmented, notably the objects ‘armchair’,
‘vase’, ‘plant’, and ‘chair’, with prediction values between 0.74 and 0.98.

Results were validated by using the quality measures, such as Precision, Recall, and
F1-score. The extracted objects are classified into the following three classes: True Positives
is the surface in the extracted result which is correctly classified; False Positive is the surface
in the extracted result which is incorrectly classified; and False Negative is the region which
is present in the reference data as a specific object but is absent in the extracted result.
The classes defined before are used to calculate the well-known quality measures such as
Precision, Recall, and F1 score as shown below. Figure 29 illustrates the adopted method to
calculate the quality measures.

Figure 29. Examples of the adopted method to calculate quality measures. Blue, red, and green
colour represent FN, FP, and TP, respectively.

Only the first, second, and forth point clouds (Figure 27) have been taken into consid-
eration for quality measures, as the third point cloud was too complicated for the algorithm
to extract good results. Since it is an instance segmentation method, we proceeded to
calculate the quality measures for each separate object in each point cloud. Lastly, we
calculated the average, minimum, and maximum for the Precision, Recall, and F1-score
values (Table 3).
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Table 3. Numerical results.

Point Cloud Object Precision Recall F1 Score

1 #1 0.787 0.971 0.869

2 #1 0.989 0.948 0.968

#1 0.952 0.899 0.925
#2 0.94 0.869 0.903
#3 0.864 0.986 0.921

4 #4 0.969 0.945 0.957
#5 0.744 0.86 0.798
#6 0.874 0.895 0.884
#7 1 0.768 0.869
#8 0.999 0.748 0.855

Average 0.917 0.871 0.889
Min 0.744 0.748 0.798
Max 1 0.986 0.957

4.6. Comparison with the Approach Developed by Tabkha in 2019

In the first row (Figure 30), we notice that thanks to the adoption of the spherical
projection followed by the equirectangular cylindrical projection in the current study, a
considerable part of the point cloud was recovered, notably the ceiling and the floor. Thus,
we preserve the richness of the initial point cloud in its entirety. In the second row, we
notice that the upper and lower facet were deformed due to the lack of data at floor and
ceiling level in the panoramic image generated by Tabkha (2019) [20]. On the other hand,
the cubemap generated by our approach gives a geometrically correct image.

Figure 30. Generation of panoramic images, Tabkha’s approach on the left and the current approach on the right: (a,b) 360◦

panoramic image; (c,d) cubemap.
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For matters of comparison, we performed classification tests using the same ‘Imagga’
API used by Tabkha in 2019 [20]. The first table below (Table 4) shows the classification
result of the panoramic image generated by Tabkha’s approach. The second table below
(Table 5) shows the classification result by our approach using the cubemap band generated
from the 360◦ panoramic image of the present approach (using spherical and cylindri-
cal equirectangular projections). We notice a considerable improvement in classes and
prediction values.

Table 4. Prediction results of the panoramic image generated by Tabkha’s approach.

Class Prediction (%)

Interior 41
Room 27

Modern 25
Architecture 24

Building 22
Device 21

Hall 20
Seat 19.9
Wall 19.2
Light 18

Table 5. Prediction results of a band extracted from a cubemap generated by the approach of the
present study.

Class Prediction (%)

Room 80.28
Interior 53.94

furniture 50.33
Bedroom 48.21

House 42.60
Home 42.26

Modern 29.43
Table 28

Design 27.56
Floor 26.95

Living 26.53
Wall 26.07

Decor 25.63
Chair 25.46
Lamp 24.97
Sofa 23.20

Indoors 21.95

5. Discussion

Extracting semantics from point clouds has led to several approaches based on DL
being investigated. Many state-of-the-art methods have been developed that process
point cloud directly despite the challenging aspect of its unstructured and irregular
format [4,32,34–38]. Other approaches convert the point cloud data into a structured
form [50–53], and our research goes in the same direction. We have developed an ap-
proach based on an indirect process. Rather than having a point cloud in raw 3D format as
the input of the neural network, we applied a transformation on the cloud to extract a 2D
raster representation in the form of panoramic images. Then, these images were introduced
as inputs of the adopted neural network.

This research’s strengths consist of, first, avoiding the challenges that come with
working on DL in a 3D environment such as the irregular and unstructured format of
point clouds. Secondly, we chose to use a pretrained neural network for the classification,
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which is one of the most important reasons to work in a 2D environment, as many labelled
datasets with a large number of classes are available online. Third, according to the tests
performed in the previous parts, our approach gives good results for instance segmentation.
Most of the objects taken into account by the COCO dataset used to train the Mask R-
CNN network have been well classified and segmented. For further investigation, it is
very recommended to train Mask R-CNN on other available datasets and see how the
algorithm responds to the new tests, thus supporting the validation of the segmentation
and classification step. We also believe that the algorithm can give good detection results
for larger-scale point clouds, but they must remain simple in terms of the number of objects
and their superimpositions in the cloud.

Regarding the time and power constraints, the projection part of the algorithm is
largely dependent on the size of the initial point cloud: the larger the size of the point
cloud and the resolution chosen for the panoramic images, the more time it would require,
which can easily go from a few minutes for small point clouds (first, second, and third
points clouds in Figure 27, for instance) to half an hour or even more for very large ones
(fourth point cloud in Figure 27). For the segmentation/classification step and since we
use a powerful pretrained neural network, the detection usually takes a few seconds, even
while using the computing power of Google Colaboratory, which allows one to run the
code in the cloud and enables us with a free access to GPU (Nvidia K80/T4).

The objective of improving the predictive system used by Tabkha (2019) [20] was also
largely achieved by completely changing the panoramic projection logic and adopting a
robust neural network for instance segmentation. In fact, the solution adopted in this study
allows three main improvements compared to Tabkha’s solution:

• The projection of all the points of the cloud on the panoramic image by adopting a
spherical projection followed by another cylindrical one, which cannot be achieved if
only by a cylindrical projection.

• The addition of the cubic projection first allowed to get rid of the alterations caused
by tiled projections (spherical and cylindrical projections). Secondly, the cubemap has
allowed more input image options that we can use as a basis for instance segmentation
(cubemap itself, strips, and individual facets).

More generally, the most significant advantage of our approach is that it opens the
door to all the research carried out over the last decade on 2D images to 3D point clouds.
This is exactly what has been proven using the Mask R-CNN neural network initially
designed for the instance segmentation of 2D data only (images/videos).

Although the process developed has given good results, the approach does not escape
certain imperfections:

• The influence of the projection centre position choice on the results of the instance segmentation.
• The need to multiply the projections from several positions to allow the segmentation

of a point cloud composed of many “subspaces”. A single projection from a single
virtual camera position is not enough to segment the entire cloud, given the depth
condition (only points in the foreground view of the camera can be segmented).

• The difficulty of choosing a good panoramic image resolution that allows one to have a
balance between preserving the richness of the initial point cloud without generating a
great number of empty pixels. Therefore, it is necessary to carry out several projection
tests to find the optimal resolution.

• The scattered structure of the cloud’s points decreases the accuracy of object segmentation
(example of the segmentation of the ‘computer’ object in the previous chapter).

6. Conclusions

We propose a complete workflow for the instance segmentation of 3D point clouds by
using a deep learning architecture trained on radically different data modalities and con-
texts. Our workflow starts by projecting 3D point clouds into optimised 2D images, using
different types of panoramic projections. These are then used as input of the Mask R-CNN
neural network pretrained on the Microsoft COCO dataset of 2D images. Finally, we project
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the predictions of the semantically segmented images back to the initial point clouds, based
on the retained links between panoramic image pixels and 3D points. Our approach tested
on different point clouds demonstrates promising research directions by leveraging robust
deep learning models to identify objects in 3D scenes. On one hand, our current application
allows one to: (1) detect and segment objects composing a scene with an accuracy above
70%, (2) attach robust scene classification for point cloud contextualisation, and (3) extend
to domain-specific instance segmentation with a potentially unlimited number of detected
classes. On the other hand, the approach developed has demonstrated a considerable
improvement over that of Tabkha’s (2019) in terms of preserving the information richness
of the initial point cloud, since it is first projected on a sphere and not a cylinder that
causes the elimination of the upper and lower parts of the cloud, and also, improvements
in detection results have been noticed that come down to the fact that with our approach,
more parts of the point cloud scene are preserved which help a better context detection by
the API Imagga neural network.
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