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Information concerning the global smoothness of a signal can be
grasped via its Holder spectrum, which relies on the Holder spaces.
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Information concerning the global smoothness of a signal can be
grasped via its Holder spectrum, which relies on the Holder spaces.

A locally bounded function f belongs to A%(xp) (with @ > 0 and
xo € R") if there exist a constant C and a polynomial Py, of
degree less than « such that

(%) = P (X)] < Clx — X0l

in a neighborhood of xp.
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Information concerning the global smoothness of a signal can be
grasped via its Holder spectrum, which relies on the Holder spaces.

A locally bounded function f belongs to A%(xp) (with @ > 0 and
xo € R") if there exist a constant C and a polynomial Py, of
degree less than « such that

(%) = P (X)] < Clx — X0l
in a neighborhood of xp.
The Holder exponent of f at xg is defined as

he(xo) =sup{a>0:f € A%(xp)}.
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The sample path B = {By}xcr of a Brownian motion belongs to
the Holder space AY/2¢(xo) almost surely for any ¢ > 0, but not
to /\1/2(X0).
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The sample path B = {By}xcr of a Brownian motion belongs to
the Holder space AY/2¢(xo) almost surely for any ¢ > 0, but not
to /\1/2(X0).

The Khintchin law of the iterated logarithm implies that for almost
every xg € R, there exists a constant C > 0 such that, for any x in
a neighborhood of xp, one has

’BXo — By < Clxo — X|1/2W(|X — xol),

with w(h) = /| log|log h~1||.
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The sample path B = {By}xcr of a Brownian motion belongs to
the Holder space AY/2¢(xo) almost surely for any ¢ > 0, but not
to /\1/2(X0).

The Khintchin law of the iterated logarithm implies that for almost
every xg € R, there exists a constant C > 0 such that, for any x in
a neighborhood of xp, one has

’BXo — By < Clxo — X|1/2W(|X — xol),

with w(h) = /| log|log h~1||.

Is it possible to numerically detect this correction w?
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Under some general assumptions, there exist a function ¢ and
2" — 1 functions (w(’))1§;<2n, called wavelets, such that

{o(x —k): ke Z"y U {pD(2x —k):1<i<2" keZ"jeN}

form an orthogonal basis of L2(R").
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Under some general assumptions, there exist a function ¢ and
2" — 1 functions (w(’))1§;<2n, called wavelets, such that

{o(x —k): ke Z"y U {pD(2x —k):1<i<2" keZ"jeN}

form an orthogonal basis of L2(R").

Any function f € L?(R") can be decomposed as follows,

)= Golx— K+ D3 ST D (@ix— k),

kezn JEN keZn 1<ij<2n

where

and
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On the torus R"/Z", we will use the periodized wavelets

v @Ix—k) = Y oD@ (x—1)—k) (€N, ke{o,...,20-1}")

lezn

to form a basis of the one-periodic functions on R” which locally
belong to L2(R").

The corresponding coefficients (',Z are naturally called the

periodized wavelet coefficients.
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On the torus R"/Z", we will use the periodized wavelets

v @Ix—k) = Y oD@ (x—1)—k) (€N, ke{o,...,20-1}")

lezn

to form a basis of the one-periodic functions on R” which locally
belong to L2(R").

The corresponding coefficients (',Z are naturally called the

periodized wavelet coefficients.
We will write ¢; x instead of cj(",z; the sequence (c;j x) will be
denoted by c.
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In this talk, v will refer to
@ a right-continuous increasing function

@ for which there exists amin € R such that
{—o0} if a < amin
v(e) € { [0, ] if @ > amin.
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In this talk, v will refer to
@ a right-continuous increasing function

@ for which there exists amin € R such that

{—o0} if a < amin
v(e) € { [0, ] if @ > amin.

The idea is to define the multifractal spectrum as follows :

/
T G R L
d(h) = we@,n h h>amn v(h) .
n otherwise
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In this talk, v will refer to
@ a right-continuous increasing function

@ for which there exists amin € R such that

{—o0} if a < amin
v(a) € { [0, n] if @ > amin.

With these notations being fixed, one define the S” space as

follows:

SV={c:VaeRYe>0VC >0
4/ >0V > J, #E(C,a)(c) < 2(”(a)+ﬁ)j}7

where

E(C.a)(c) = {k:|gul = C27}.

9
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In this talk, v will refer to
@ a right-continuous increasing function

@ for which there exists amin € R such that

{—o0} if a < amin
v(o) € { [0, ] if @ > amin.

With these notations being fixed, one define the S” space as
follows:
S"={c:VaeRVYe>0VC>0
3J>0V) > J, #E(C,a)(c) < 2+,
where '
E(C.0)() = {k: [giul = C27}.

If one considers the wavelet coefficients ¢; x as a sequence, the
space S” is a sequence space and one can study its topological
properties.
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Definition

|

For any a € R, let ¢(®) = (aj(a )jeN be a sequence of positive real
numbers. We define

5o = fc:Va e R Ve>0VC >0
3J>0V) > J, #E(C,0@)(c) < 20)+eiy

where
E(C,o)(c) = {k : gul > Cat™}.

9

K eyntssens o . Statistical results for the multifractal formalism based on the S¥



The space %7 is a complete topological vector space.
p g
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The space 5*°" is a complete topological vector space.
p g

Definition
The generalized profile of a sequence c is defined by

. (ate)
y:a € R~ lim limsup log #E;(1, 0 )(C)

1% 7

c,cr(‘

This definition is well-founded if we suppose that for any o < o/
there exists J € N such that oja) < a}a) for any j > J.
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Suppose that a < o/ implies a}a/)/aj(a) — 0 as j — +o0o. We have
the following properties:

1. the function v () is right-continuous and increasing;
moreover, we have v ()() € [0, n] U {—o0},
2. the constant 1 appearing in the definition of v () is arbitrary,

3. a sequence c belongs to 5" if and only if () < v(a)

for any a € R,

c,ol

4. if for any a < 3, we have O'J(B) < UJ(O‘) for any j € N, then

there exists ¢ € $*7") such that Ve g() = V.
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Theorem

Suppose that a < o implies o /5@ g as j — +oo. If for
J J

any a € R, the sequence o(®) is admissible, then 5o is a linear
robust space.

Besides, for any ¢ € 577 the function Ve o() i robust, i.e.
Ve o) = Vac o) for any quasidiagonal matrix A.
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We approximate ng(.)(a) with the slope of

log #E;(C, 0*T9)(c)
H
log 2

)

for large values of j as soon as & > @min.

This slope will be denoted ucc ().

)

K eyntssens o . Statistical results for the multifractal formalism based on the S¥



In practice, the constant C is not arbitrary because we only have
access to a finite number of wavelet coefficients.
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In practice, the constant C is not arbitrary because we only have
access to a finite number of wavelet coefficients.

If the typical value of these coefficients is too large (resp. too
small) with respect to C, not enough (resp. too many) of them
will be taken into account; the detected value of ucca(_)(a) will thus

be very different from the theoretical value v () ().
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Consequently, for a fixed «, we construct the function
C
C>0— Z/C’U(A)(Oé)

to approximate the value of v ()(a).
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Consequently, for a fixed «, we construct the function
C
C > 0 — Z/C,o'(‘)(a)
to approximate the value of v ()(a).

If & < amin, this function should be decreasing. If & > amin, there
should exist an interval / for which the values VCCU(A)(Oé) with C € |
are close to each other.
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Consequently, for a fixed «, we construct the function
C
C > 0 — Z/C,o'(‘)(a)
to approximate the value of v ()(a).

If & < amin, this function should be decreasing. If & > amin, there
should exist an interval / for which the values VCCU(A)(Oé) with C € |
are close to each other.

We use a gradient descent to detect this interval.
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Consequently, for a fixed «, we construct the function
C
C > 0 — Z/C,O'(‘)(Oé)
to approximate the value of v ()(a).

If & < amin, this function should be decreasing. If & > amin, there

should exist an interval / for which the values VCCU(A)(Oé) with C € |

are close to each other.
We use a gradient descent to detect this interval.

We chose the length of the interval / to be at least the median of
the values |cj,k|/aj(a) (the worthwhile wavelet coefficients ¢; «

satisfy |cj’k|/oj(a) > C).
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We intend to build a function f with a prescribed Holder exponent
h¢(xo) at every point xg for which there exists a function w such
that

[F(x0) = F(x)] < Clx = xo " Cw(|x — xo),

for any x in a neighborhood of xj.

Such a function f does not belong to A7(0)(xq).
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The error...
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The boxplot...
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Let us denote by 7, the set of the functions from [0, 1] to the
compact K which are the lower limit of a sequence of continuous
functions. For any H € Hy, there exists a sequence (Q;)jen of
polynomials such that

{ H(t) = IjmJinf Qi(t) Vtelo,1]
Jj—4o0
Qe <J vjeN

We have a similar result if one replaces the lower limit by a limit in
the definition of H. In this case, the set is denoted by Hxk and
the lower limit in relation (1) becomes a limit.
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Proposition

Let K C (0,1) be a compact set, H € Hx and (Qj)jen be a
sequence of polynomials satisfying Relations (1), where the lower
limit is replaced by a limit. For any (j, k) € Nx {0,...,2/ —1}, set

1 k

If (aj)jen is a real sequence such that lim;_ IIOgaf =0, then

og2—J
the function f defined as

+o0 2—1

f(x) = Z Z 27 ik aj0h; i (x)

j=0 k=0

satisfies hr(x) = H(x) for any x € [0, 1].

If a; = 1 Vj, we recover the usual result.
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We can take a; = w(277) to obtain functions such that

|F(x0) = F(x)| < Clx = x0 " w(|x — xo])-
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We can take a; = w(277) to obtain functions such that

|F(x0) = F(x)| < Clx = x0 " w(|x — xo])-

Indeed, we will take a; = a’(1 + Uj«) in

+oo -1

Fx) =D 27 aup; (x),

j=0 k=0

where U; x is chosen independently with respect to the uniform
probability measure on [0, 1].
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First test: a monofractal function
with 20 simulations and Holder exponent H € {0.3,0.35,...,0.7}.

First case: no correction (w = 1)
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First test: a monofractal function
with 20 simulations and Hélder exponent H € {0.3,0.35,...,0.7}.

Second case: w(h) = +/|log|log h—1||
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First test: a monofractal function
with 20 simulations and Holder exponent H € {0.3,0.35,...,0.7}.

Third case: w(h) = |log|log |h~!||
0.05 \ \ \
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First test: a monofractal function
with 20 simulations and Holder exponent H € {0.3,0.35,...,0.7}.

Fourth case: w(h) = /| log h—1|
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Second test: a bifractal function
with 20 simulations and Holder exponents
H; € {0.2,0.25,...,0.35} and H, € {0.65,0.7,...,0.8}.

First case: no correction (w = 1)
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Second test: a bifractal function
with 20 simulations and Hélder exponents
H; € {0.2,0.25,...,0.35} and H, € {0.65,0.7,...,0.8}.

Second case: w(h) = +/|log|log h—1||
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Second test: a bifractal function
with 20 simulations and Holder exponents
H; € {0.2,0.25,...,0.35} and H, € {0.65,0.7,...,0.8}.

Third case: w(h) = |log|log h~}||
0.07 :
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0.02 1

0.01 % 1
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Second test: a bifractal function
with 20 simulations and Hélder exponents
H; € {0.2,0.25,...,0.35} and H, € {0.65,0.7,...,0.8}.

Fourth case: w(h) = /| log h—1|
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02t I 1
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Second test: a bifractal function
with 20 simulations and Hélder exponents
H; € {0.2,0.25,...,0.35} and H, € {0.65,0.7,...,0.8}.

Fourth case: w(h) = /| log h—1| with |H; — H»| > 0.3
0.07 ‘ ‘ ‘ ‘

0.06 + J
0.05 J
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Third test: a multifractal function such that

_ | Sx+a ifx<b
H(X)_{ c ifx>b

with a € {0,0.1,...0.5}, b€ {0.1,0.2,...,0.5} and
c€{0.2,0.3,...,0.8} (a < c).

9
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Third test: a multifractal function with 20 simulations.

First case: no correction (w = 1)
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Third test: a multifractal function with 20 simulations.

Second case: w(h) = /| log|log h—1||
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Third test: a multifractal function with 20 simulations.

Third case: w(h) = |log|log h™}||
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Third test: a multifractal function with 20 simulations.

Fourth case: w(h) = /| log h—1|
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The WeierstraB function
W(x) = Z > cos(2% xr)

belongs to AY/2(R).
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The Weierstral3 function

o0

Zz—j s(2%x)

j=0
belongs to AY/2(R).
The uniform WeierstraB function of parameters (a, b) is the

classical WeierstraB function coupled with a random phase.
More precisely, this process is defined by

+oo
= Z a" cos((b"x + Up)m),
n=0

where 0 < a < 1 < b with ab > 1 and where each U, is chosen
independently with respect to the uniform probability measure on
[0,1].
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The Brownian motion vs the uniform WeierstraB function.

for W (right), we set a= 0.8 and b = 1.6.
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The Brownian motion vs the uniform WeierstraB function.

For 20 simulations of a BM, we get
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The Brownian motion vs the uniform WeierstraB function.

For 20 simulations of W, we get

0.1

0.08 J
0.06 J
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0.02 J
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Let us define a process based on the Lévy-Ciesielski construction
(that allows to decompose the Brownian motion in the Schauder
basis) to obtain a multifractal process which share the same local
regularity as the Brownian motion.
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Let us define a process based on the Lévy-Ciesielski construction
(that allows to decompose the Brownian motion in the Schauder
basis) to obtain a multifractal process which share the same local
regularity as the Brownian motion.

The Schauder functions evaluated at t are the integrates of the
Haar wavelets on [0, t]. More precisely, let us set

0 ift<O
Fo(t)=< t iftel0,1] ,
1 else

and for any (j, k) € Nx {0,...,2/ — 1},

t— k2~ if t € [k2~/, k2= 4 2-U+1)]
Fix(t)=< —t+(k+1)27 ifte k2 +270F) (k+1)27] .
0 else

9
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Let us recall that we have the following properties:
O let (3 k)(j k)enx{o,...2—1} be a real sequence, ap € R and
€ € (0,1/2). If maxycqo,. 21} |ajkl = O(2¢) as j — +o0
then the function f defined by

+oo0 -1

t — aoFo(t) + Z Z aj,kzj/zl:j,k(t) (2)

j=0 k=0

is uniformly absolutely-convergent on [0, 1]. Besides, f is a
real continuous function such that 7(0) =0,

@ any continuous function f from [0, 1] to R such that 7(0) =0
can be written in the form (2). Besides, if f € A%(xp) then
there exists a constant C > 0 such that

laj 2792 < C(277 + [k27T — xo|)®
for any (j, k) e Nx {0,...,2 —1}.

9
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Let (Zj k) (j,k)enx{o,....2i—1} be a sequence of independents
real-valued A/ (0, 1) Gaussian random variables defined on the
probability space Q. Then, there exists an event Q* C Q of
probability 1 such that, for any w € Q*, the function B.(w) defined
by

400 2/—1

B(w) : £ Zo(@)Fo(t) + 3 3 Zu(w)22Fi(t)
j=0 k=0

is uniformly absolutely-convergent on [0, 1]. Besides, the process
B = {B:}+ is a Brownian motion.
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Let K be a compact of (—1/2,1/2), H € H) and (Q))jen be a
sequence of polynomials satisfying Relation (1). For any
(J,k) e Nx {0,...,2/ — 1}, set

k

Let (Zj k) (j,k)enx{o,....2i—1} be a sequence of independents
real-valued A/(0,1) Gaussian random variables defined on the
probability space Q and let us define

+o0 H—

BH(w) = +ZZz ik Z;  (w) 22 F (1)

j=0 k=0

9
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+oo 21
B'(w) = Zo(w)Fo(t) + D > 27 Z; 1 (w)2/?Fj i(t).
j=0 k=0

Theorem

There exists an event Q* C € of probability 1 such that, for any
w € Q*, we have the following properties:

@ the function t — BH(w) is a continuous function defined on
[0,1],

@ we have the following relation: hgn(,(t) = 1/2+ H(t), for
any t € [0,1],

@ let t € [0, 1]; if there exists C > 0 such that
H(t) — Qj(t) < GiL, for any j € N then there exist a
constant C’ > 0 independent of t such that

1B h(w) — B (w)] < C'2€1hY2THD \/log h—1,

for any h in a neighborhood of 0.
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Proposition

Under hypothesis of the previous theorem, there exists an event
Q* C Q of probability 1 such that, for any w € Q* and for almost
every t € [0, 1], there exists a constant C > 0 such that

|Bfin(w) — B (w)] < ClA[Y/#70) [ log |log h=1|l,

for any h small enough.
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Let us define a bifractal process, with H; € {0.2,0.25,...,0.4} and
H, € {0.6,0.65,...,0.8}.

0.05 T

0.04 f

0.03 f

0.02 f

0.01 f

SV Srot Svo2 G038
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Let us define a bifractal process, with H; € {0.2,0.25,...,0.4} and
H, € {0.6,0.65,...,0.8}.

1

0 01 02 03 04 05 06 07 08 09 1
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Let us define a bifractal process, with H; € {0.2,0.25,...,0.4} and
H, € {0.6,0.65,...,0.8}.

1

1 . . . . . . . .
0 01 02 03 04 05 06 07 08 09 1
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Let us define a bifractal process, with H; € {0.2,0.25,...,0.4} and
H, € {0.6,0.65,...,0.8}.

0.05

0.04 1
0.03 | 1

0.02 1

0.01 Q 4

Sv Sv.o1 Sv.02 Sv-03

. Kleyntssens &



Let us set again

c—a H
_ SGix+a ifx<b
H(X)_{c ifx>b "~

0 01 02 03 04 05 06 07 08 09 1

K eyntssens & . Nico ay Statistical results for the multifractal formalism based on the S¥



Let us set again

c—a H
eax+a ifx<b
H(x) = b : ,
c if x>b
0.05
0.04 | 1
0.03 + ,
0.02 | 1
0.01 | 1
N R
Sl/ Sl),{fl Sl),{?'g SU,0'3
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Let us set again

c—a H
_ SGix+a ifx<b
H(X)_{c ifx>b "~

0 01 02 03 04 05 06 07 08 09 1
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Let us set again

c—a H
eax+a ifx<b
H(x) = b : ,
c if x>b
0.05
0.04 | 1
0.03 | 1
0.02 | 1
0.01 | 1
. s
Sl} SU,(?':[ SU,”Q SU;”S
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@ The context

@ The S” spaces and their generalization

In practice

@ More evolved examples

@ A real life application
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Application: a 2D study of Mars’' topography.
We used the 128-pixel-per-degree map from the MOLA
experiment.

This map almost represents the whole planet; the latitude ranges
from 88°S to 88°N.
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The main Holder exponent

latitude
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The main Holder exponent

latitude
o

180
longitude

Statistical results for the multifractal formalism based on the S¥

. Kleyntssens & S. Nicolay



A 2D investigation of the multifractility

latitude

180
longitude
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Let us give a method for detecting the existence of a Holder
exponent h such that df(h) < n (where dr denotes the multifractal
spectrum).
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Let us give a method for detecting the existence of a Holder
exponent h such that df(h) < n (where dr denotes the multifractal
spectrum).

It suffices to find a h such that
C > O —> Vgp_(.)(h)

has a stabilisation associated to a value strictly smaller than n.
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most of these

When looking at longitudinal and latitudinal bands,
signals seem to be multifractal.

latitude

60 120 180 240 300 360

longitude

Statistical results for the multifractal formalism based on the S¥

. Kleyntssens & S. Nicolay



