
Towards a Closed-Looped Automation for Service
Assurance with the DXAGENT

Korian Edeline, Thomas Carlisi, Justin Iurman
Montefiore Institute
Université de Liège

Liège, Belgium

Benoît Claise
Intelligent Operations & Management

Huawei
Liège, Belgium

Benoit Donnet
Montefiore Institute
Université de Liège

Liège, Belgium

Abstract—Recently, Intent-Based Networking (IBN) has known
an increasing interest from both the industry and research
communities. IBN comes with the advantage of easily expressing
the desired state of a network. In parallel, service assurance,
through observability, has been becoming more prevalent to
maximize the business continuity. In that spirit, Service Assurance
in Intent-based Networking (SAIN), is under standardization at
the IETF and proposes a general framework towards closed-loop
automation for service assurance. This paper introduces the Diag-
nostic Agent (DXAGENT), an open-source SAIN implementation
whose purpose is to determine symptoms and health levels of the
different subservices of a network service. As such, the DXAGENT
appears as a first step towards closed-loop automation for service
assurance. This paper describes the DXAGENT implementation
and demonstrates its efficiency through use cases.

Index Terms—Intent-Based Networking; SAIN; DXAGENT;
closed-loop automation;

I. INTRODUCTION

Intent Based Networking (or IBN) [1], [2], [3] has been
recently introduced to allow a network administrator to formu-
late the desired state of the network in a high-level manner and
have the network orchestration done automatically. The IBN
market is fast growing as its size exceeded USD900 millions in
2019 and is estimated to grow to USD4.5 billions by 2026 [4].

In parallel to the rise of IBN, the last fifteen years have
witnessed a strong evolution of the Internet. from a hierar-
chical, relatively sparsely interconnected network to a flatter
and much more densely inter-connected network [5], [6],
[7] in which hyper giant distribution networks (HGDNs, -
e.g., Facebook, Google, Netflix) are responsible for a large
portion of the world traffic [8]. HGDNs are becoming the
de-facto main actors of the modern Internet. The very same
set of actors have fueled the move to very large data center
networks (DCNs), along with the evolution to cloud native
networking. For those networks, the Command Line Interface
(CLI) is no longer the norm for configuring their networks.
Indeed, networks must be automated and data model-driven
management, with more and more data models, from which
APIs are generated, being standardized. The Yang catalog1

follows that example.

This work has been funded by a Cisco grant CG# 1717376, a Cisco grant
CG# 2713379 and CyberExcellence project funded by the Walloon Region,
under number 2110186.

1See https://yangcatalog.org/private-page

In addition to configuration automation, the networking
industry has been adopting (model-driven) observability as a
compulsory step to stream any monitoring information to a
collector [9], [10]. However, there are challenges with the data
collection, transport, analysis, and performance in scaled-out
implementations of networked devices with high volumes of
telemetry. Collecting all the observability information into a
centralized manner in order to analyze all information to find
the network degradation root cause is certainly a possibility
but suffer from the “finding a needle in the haystack” issue,
on top of being reactive. The assurance should be done closer
to the network and domain per domain in order to scale and
be efficient.

This paper focuses on the issue of using telemetry as a
closed loop mechanism for service assurance, as a foundational
step towards IBN. In particular, we follow the Service As-
surance for Intent-based Networking Architecture (SAIN) [11]
for developing a prototype tool responsible for building an
assurance graph and detect symptoms based on metrics col-
lected on the device and in the network. Our prototype is
called the Diagnostic Agent (DXAGENT) [12]. To the best
of our knowledge, the DXAGENT is the first open-source
implementation of the SAIN framework and can be used as
a building block towards closed-loop automation for service
assurance.

Our DXAGENT is able to retrieve data from multiple
sources, on the machine on which it runs itself (e.g., CPU
information, memory information) but also on other devices
on the network thanks to telemetry observation [13], [14],
[15]. Next, those observations are normalized and the various
subservices are discovered in order to build the assurance
graph. As a last step, the DXAGENT checks for potential
symptoms based on user-defined rules applied to the normal-
ized metrics and propagates the corresponding health scores
along the subservice assurance graph. This paper describes
the DXAGENT implementation and demonstrates its usefulness
through use cases. All our implementation is open-source and
freely-available [16].

The remainder of this paper is organized as follows: Sec. II
discusses the required background for this paper, focusing
on the SAIN framework; Sec. III describes our DXAGENT
implementation; Sec. IV introduces use cases that demonstrate
the DXAGENT efficiency; finally, Sec. V concludes this paper



Tunnel Service

Peer1 Tunnel
Interface

Peer1 Physical
Interface

Peer1 Device

IP Connectivity

IS-IS Routing
Protocol

Peer2 Tunnel
Interface

Peer2 Physical
Interface

Peer2 Device

Fig. 1. Assurance graph – tunnel example [11].

Service Configuration Orchestrator

SAIN Orchestrator SAIN Collector

SAIN Agent

Monitored Entities

network service
instance configuration

feedback loop

configuration

health status

metric collection

Fig. 2. SAIN architecture [11].

by summarizing its main achievements.

II. SAIN

The Service Assurance for Intent-based Networking Archi-
tecture (SAIN) [11] is a generic architecture developed by the
IETF for assuring that service instances are running correctly.
In particular, it allows to answer where is the fault when a ser-
vice degrades, focusing on the symptoms and the root cause.
Further, when a network component fails, it helps pointing
the impacted services. Those services are provided by SAIN
by, first, decomposing the problem into smaller components,
i.e., the subservices. An assurance graph (typically a directed
acyclic graph) is built to link those subservices in order to map
service intent. In particular, the root of the graph represents
the service to be assured, while the children represent the
subservices directly dependent on the service. The different
subservices are assured independently and a service health
score is possibly inferred.

Fig. 1 shows an example of assurance graph for a tunnel
service: the tunnel service depends on the two peer interfaces
of the tunnel but also on an IP connectivity that, itself, depends
on its routing protocol. We can add to this that the peers
interfaces depend on their physical interfaces, themselves
depending on the devices behind the interface.

One main principle of the SAIN architecture is to maintain
a correct assurance graph despite possible changes in services
or network conditions. The SAIN framework is then able to
highlight the problematic component in the graph when a
service is degraded. The hierarchy of assurance graph helps to
correlate a service degradation with the network root cause.

Fig. 2 illustrates the SAIN architecture. The Service Config-
uration Orchestrator is the system implementing the configu-

DXTOP DXWEB

shared memory GNMI EXPORTER

Input

Metrics

Rules
e.g., “Low Fan Speed”,
/node/bm/sensors/sensor,
Red, input_fanspeed<100

e.g., “rx_bytes, Net/Rate/Rx”

e.g., IOAM, OWAMP, /proc, netlinkinput.csv

metrics.csv

rules.csv

Fig. 3. DXAGENT architecture.

rations to perform the service setup (i.e., it is an intent-based
system). The SAIN Orchestrator retrieves the configurations
of service instances and, then, convert them into an assurance
graph. The SAIN Agent allows one to communicate with one
or several devices (possibly also with another Agent) in order
to build the assurance graph by performing the necessary
computations. An Agent also interact with monitored entities
to retrieve metrics that will be later used to compute the health
score. Finally, the SAIN collector retrieves the agents output
to display it in a user friendly form.

In this paper, we propose what is, to the best of our
knowledge, the very first open source implementation of the
SAIN framework called Diagnostic Agent (DXAGENT) [12].

III. DXAGENT

A. General Overview

The Diagnostic Agent (DXAGENT) is a SAIN framework
implementation in charge of computing the health scores by
monitoring the devices useful to a service. The DXAGENT has
been developed in Python and is freely available [16]. The
overall architecture of the DXAGENT is illustrated in Fig. 3.

The DXAGENT operations are divided in three steps. First,
the DXAGENT retrieves input from multiple sources. This cor-
responds to the Input module on Fig. 3. The data is collected
directly on either the physical or virtual machine on which
the DXAGENT is run but through telemetry measurements for
VPP [17] and IOAM [14], [15] (see Sec. III-B and III-C). The
data taken into account can be the number of packets received
on an interface, the temperature of the computer components,
the CPU usage, the current idle or sleeping process number,
but also VirtualBox VMs and VPP [17] data. The Input
module relies on a scheduler for harvesting data at a certain
pace. By default, the Input module scheduler retrieves data
every three seconds but this can be tuned according to needs
and to a balance between data accuracy and device load. The
file input.csv provides information on the type of data to
collect and where it is available. With respect to the SAIN
framework (see Fig. 2), the Input module corresponds to
the metrics collection on monitored entities.

Once the data has been retrieved, it is possible to deter-
mine the set of subservices running on the machine or the
network. For example, the list of active network interfaces is
retrieved through the Input module, so we can determine
that each interface is a subservice. In addition, inferring



(a) DXTOP– health tab opened. (b) DXWEB
Fig. 4. DXAGENT displaying results.

the dependencies between subservices allows the DXAGENT,
through the Metrics module, to build the assurance graph.
Note that, here, the DXAGENT differs from the SAIN general
framework as the graph should be built and sent by the SAIN
Orchestrator to the SAIN Agent (see Fig. 2). Thus, the Input
and Rules modules allows both the DXAGENT to act as
the SAIN Orchestrator. Further, the Metrics module is also
characterized by the normalization of the extracted data. It
is important to gather data from different sources under the
same variable and the same unit. For example, the number of
bytes sent by an interface is retrieved from different sources
depending on whether it is a physical or virtual machine. Since
the third step is to create rules from the metrics, we only need
one variable, in other words, a single metric that we could
call rx_bytes for example. The normalization information
is provided to the module by the file metrics.csv.

Finally, the Rule module checks for symptoms based on
user-defined rules applied to normalized metrics, computes
subservices health scores, and propagates health scores along
the subservice assurance graph. Rules are provided to the
module thanks to the file rules.csv. A typical rule is made
of four elements (as illustrated in the dashed box next to the
Rule module on Fig. 3): (i) the symptom name, (ii) the path
to the subservice in the graph, (iii) the severity (two possible
values: Red – health score decrease of 50% – and Orange –
health score decrease of 10%), and (iv) the condition to be
evaluated. For the example provided in Fig. 3, it means that
a “Low Fan Speed” symptom will be triggered on a “sensor”
subservice with a “Red” severity if the fan speed is below 100
RPM.

The DXAGENT is a daemon run in background and, as such,
cannot be used as a user interface. Instead, it communicates
with two other modules for displaying results. First, DXTOP,
a console application, uses shared memory to communicate
with the DXAGENT to get useful data to display, as illustrated
in Fig. 4a. DXTOP proposes several tabs, most of them
being dedicated to a given subservice. The last one, “Health”,
displays the symptoms of the monitored device.

Even if it is useful, the DXTOP does not offer a view of the
assurance graph as a whole. Therefore, a graphical view of
the assurance graph is provided by the DXWEB. It also shows
the health scores and symptoms, as illustrated in Fig. 4b. The
green portion of a circle indicates the health percentage of its
subservices. It is possible to click on each of them to know

the symptoms with a non-maximum health score.
With the DXTOP and DXWEB, the DXAGENT differs again

from the general SAIN framework as both the DXTOP and
DXWEB correspond to the SAIN Collector in (see Fig. 2).

Some network-related metrics provide insights about the
health but are not necessarily enough to accurately predict
performance degradation of a specific service. By including
the network forwarding path into these metrics, thanks to
telemetry (see Sec. III-B and III-C), the DXAGENT is able
to enhance the reported health and allows for a more precise
issue detection. For example, one could retrieve the current
size of a queue and see that it is almost full. However, it
does not specify, for instance, which flows are impacted,
why, since when, or for how long. With network telemetry,
the DXAGENT gathers more data, therefore improving and
clarifying the context of a problem.

B. IOAM

Multiple Operations, Administration, and Maintenance
(OAM) tools have been developed, for various layers in
the protocol stack [18], going from basic traceroute to
Bidirectional Forwarding Detection (BFD [19]) or recent Udp-
Pinger [20] and Fbtracert [21]. The measurement techniques
developed under the OAM framework have the potential for
performing fault detection and isolation and for performance
measurements. The DXAGENT includes support for In-Situ
OAM (IOAM) [14], [15] with IPV6, which we have imple-
mented in the Linux kernel. It is available [22], [16] since
version 5.15. IOAM is considered as a hybrid OAM type that
records telemetry data within packets. It is deployed in a
given domain between the ingress and the egress or between
selected devices within the domain. Each IOAM node on the
path may insert or update IOAM data, e.g., node ID, interface
IDs, timestamps, queue size, buffer occupancy. Having such
telemetry data to enhance the network health is definitely a
plus.

We have also implemented an IOAM Agent [16] that
collects IOAM data from packets and reports them. To re-
trieve such a data, both the DXAGENT and the IOAM
Agent use gNMI [23] (gRPC Network Management
Interface), i.e., a gRPC [10] wrapper for network-related
stuff such as telemetry streaming. Once a connection is estab-
lished between an IOAM Agent and the DXAGENT, the latter
fetches IOAM data every 10 seconds (it is totally tunable and



Video streaming infrastructure

Server

R1

R2

R3

Internet ...

Clients

Fig. 5. Streaming service topology. The server runs the DXAGENT while
the OWAMP server is running at R3. Green arrows refer to server incoming
packets. Red arrows refer to server outgoing packets.

can be changed), and so for each IOAM Agent it is connected
to. The DXAGENT finally gathers and enhances the network
health report with IOAM data freshly collected.

C. OWAMP

The DXAGENT also includes an implementation of the One-
Way Active Measurement protocol (OWAMP) [13]. OWAMP
relies on a client/server architecture. While the protocol allows
for many possibilities, the OWAMP implementation [24] can
only measure the link between the client and the server. In
particular, we focus on the server and the client implement-
ing the ping utility. Doing so, one is now able to retrieve
information about link characteristics (delay, loss, etc) at any
time. OWAMP offers the possibility to ping a list of hosts on a
recurring basis. This is achieved thanks to a tunable scheduler
that is in charge of pinging every address of the list at a certain
pace (e.g., one ping every 20 seconds).

We have developed a Python wrapper for integrating
OWAMP into the DXAGENT [16]. The data retrieval is done by
means of a file that will contain the ping OWAMP information.
The callback function, contained in the DXAGENT, sent to the
OWAMP scheduler will ask the scheduler to start writing the
output to a file (one file per different addresses to ping). It is
worth noticing this writing process is atomic, i.e., writing takes
place in a temporary file and when the writing is finished, the
temporary file is renamed by the file one wants to overwrite.
In this way, when an input retrieval is scheduled by the
DXAGENT, it is enough to read this file. Doing so, it is not
necessary to synchronize both schedulers. Using any other
method, such as shared memory or message passing, would
not only complicate the procedure by adding synchronization
concerns, but would be inconsistent with the way DXAGENT
works.

IV. USE CASES

In this section, we develop several use cases demonstrating
how the integration of OWAMP with the DXAGENT works and
how useful it can be. Sec. IV-A discusses our experimental
methodology while Sec. IV-B illustrates our results.

A. Methodology

We place ourselves in the context of a small network
infrastructure offering, for instance, a video streaming service
to its customers. The infrastructure, illustrated in Fig. 5 is an
intent-based networking architecture and the streaming service
has been set up using an intent. Our objective is to show that

Fig. 6. Delay observation scenario. The whole experiment lasts 300. Green
areas correspond to the initial state, orange ones to one-way delay set to
50ms in both directions, and red ones are degraded situation (one-way delay
is 100ms in both directions).

the DXAGENT can observe if an intent drift is present or about
to appear by analyzing the network continuously.

In Fig. 5, the server (that could encompass a complete data
center infrastructure) hosts the DXAGENT. It is thus from the
server that measurements will be initiated and retrieved. Also,
the OWAMP server is running at router R3 to analyze the traffic
between this router and the server.

The intent that was proposed for the streaming video service
is the following: “One wants a connection between the server
and R3 such that outgoing packets go through a different path
than incoming packets and the one-way delay (whatever the
direction) does not exceed 50 ms”. This intent explains why
outgoing traffic (red arrows on Fig. 5) goes through R1, while
incoming traffic (green arrows on Fig. 5) goes through R2.

It is worth noticing that the intent shows a delay requirement
only in the direction of packets leaving the server. This
makes sense because the service provider wants to ensure that
video packets are received quickly while the delay for client
acknowledgment is potentially less important.

Finally, the OWAMP scheduler has been setup to three
seconds, the packet size to 100 bytes, and the timeout to
0.5sec. The DXAGENT scheduler (i.e., the rate at which it
updates its metrics) has been setup to the default value (i.e.,
three seconds). Finally, the OWAMP and DXAGENT scheduler,
while they share the same value, are not synchronized and
work independently of each other.

B. Results

1) Observing Delay: The first scenario aims at demonstrat-
ing that the DXAGENT reacts well to delay changes. This
scenario is inspired by the intent used to build the streaming
video infrastructure, i.e., outgoing one-way delay (whatever
the direction) should not exceed 50 ms. The experiment
scenario is provided in Fig. 6. States 1 and 7 are initial
states in which the one-way delay between the server and R3

(whatever the direction) is 2ms. States 2, 4, and 6 correspond
to a situation in which the one-way delay is replaced by 50ms
in both directions. Finally, States 3 and 4 refer to strongly
degraded situations in which the one-delay is 100ms in both
directions. This scenario is motivated by the fact that the
DXAGENT should able to determine a higher or lower delay
rise and also to detect the return to a normal state which should
be materialized by an absence of symptom. The DXAGENT
rules (Rules module) for identifying those states are provided
in Fig. 7.

It is simply a matter of returning a symptom of orange
severity when the maximum RTT of a OWAMP ping exceeds
100ms and of red severity if it exceeds 200ms. It is worth



Owamp delay > 100 : (from_ow_del_max+to_ow_del_max <= 200) and (from_ow_del_max+
to_ow_del_max > 100)

Owamp rtt > 200 : from_ow_del_max+to_ow_del_max > 200

Fig. 7. DXAGENT rules for observing delay changes.

0 50 100 150 200 250 300

Time (s)

rtt > 100

rtt > 200

S
y
m

p
to

m
s

1 2 3 4 5 6 7

event rtt > 100ms rtt > 200ms

Fig. 8. Symptoms for the delay changes scenario. The color scheme is the
same as in Fig. 6

5min(dynamicity(to_ow_del_med) + dynamicity(from_ow_del_med)) > 2

Fig. 9. Example of more complex rule for observing delay.

Fig. 10. Duplicates and reordering scenario. The whole experiment lasts
150sec. Green areas refer to the initial state. Rx refers to router R1 and R3

in the scenario topology (see Fig. 5).

noticing that, for OWAMP, the RTT is the sum of the one-way
delay in both path directions.

Fig. 8 shows the DXAGENT reaction with respect to the
different states. We can see that symptoms are indeed ob-
served when delay changes take place. Fig. 8 shows that the
DXAGENT, thanks to the OWAMP input, is able to recognize
the delay changes slightly after the beginning of the issue
and it maintains information about the symptoms a little bit
after the end of the issue (i.e., we are back to normal state).
Those delays are due to the way we configure the DXAGENT
scheduler, i.e., at which time interval the DXAGENT reads
input file provided by OWAMP. This scheduler value could
be, obviously, reduced to react more quickly to issues. But this
would naturally lead to more processing from the DXAGENT
perspective. It is thus up to the administrator to find the best
balance between symptoms recognition and input readings.

It is worth noticing that the DXAGENT allows one to express
more complex rules than the ones provided in Fig. 7. For
instance, one may desire to observe a symptom in which the
sum of the averages of the median one-way delays in both
directions would be greater than two seconds for at least five
minutes. This rule is illustrated in Fig. 9.

2) Duplicates and Reordering: The second scenario aims
at determining whether the DXAGENT can identify packets
duplication or reordering. The experiment scenario is provided
in Fig. 10. Each state in the experiment lasts 30 seconds.
States 1, 3, and 5 corresponds to the initial state, where
everything is working as expected (i.e., no reordering and no
duplicates). One minute after the start of the experiment, every
second packet from R1 to R3 is duplicated, corresponding to
state 2. In addition, after the one minute and a half, every

Owamp Duplication : to_pkts_dup >0
Owamp Reordering : to_reordering >0

Fig. 11. DXAGENT rules for identifying duplicates and reordering.

0 20 40 60 80 100 120 140

Time (s)

duplicate

reordering

S
y
m

p
to

m
s

1 2 3 4 5

event duplicate reordering

Fig. 12. Symptoms for the duplicates and reordering scenario.

Fig. 13. Link failure scenario. The whole test lasts 430sec. The grey zone
between state 5 and 6 corresponds to R3 shutdown.

second packet from R1 to R3 is delayed by 100ms in order to
create reordering. The DXAGENT rules (Rules module) for
identifying duplicates and reordering are provided in Fig. 11.

These two rules ensure that if at least one packet is
duplicated or reordered, the corresponding symptom will be
reported by the DXAGENT. It is worth noticing that, R1 being
on the path from the server to the border router (R3), it is
the one-way duplicate and reordering of that direction that is
observed.

Fig. 12 shows the DXAGENT reaction with respect to the
different states. As expected in the scenario, packets duplicates
appear after 30sec. Fig. 12 shows that the DXAGENT, thanks
to the OWAMP input, is able to recognize the presence of
duplication four seconds after the beginning of the issue and it
maintains information about the symptoms until three seconds
after the end of state 2 (i.e., we are back to normal state). The
same applies for packets reordering (i.e., state 4).

3) Link Failure Discovery: The last scenario aims at
demonstrating how the DXAGENT, thanks to OWAMP input,
can detect link failures. The experiment scenario is provided in
Fig. 13. Each state in the experiment lasts 60 seconds. States 1,
3, 5, and 7 are intended to serve as a reference state (i.e., every-
thing is working as expected) between the various anomalies
we will introduce into the network. The first link failure (state
2) corresponds to the shutdown of the OWAMP server located
on R3 before being turned on again 60 seconds later. The
second anomaly (state 4) is to test the ICMP ping for 60
seconds by simply blocking the echo_request packets at
the firewall. The last anomaly (state 6) is to shut down the
container representing R3. Shutting it down takes some time
(close to ten seconds); the real time has been calculated and
is visible on Fig. 15. The DXAGENT rules (Rules module)
for identifying those link failures are provided in Fig. 14.

Fig. 15 show the results for the second experiment. As ex-
pected, when the OWAMP server is off (State 2), OWAMP pings
do not reach their destination while classic ICMP ping does
not encounter any problems. But when the echo_request



Owamp - not reachable : owamp_accessible=="no"
Icmp - not reachable : icmp_accessible=="no"

Fig. 14. DXAGENT rules for identifying link failures.

0 50 100 150 200 250 300 350 400

Time (s)

Owamp not reachable

ICMP not reachable

S
y
m

p
to

m
s

1 2 3 4 5 6 7

event Owamp not reachable ICMP not reachable

Fig. 15. Symptoms for the link failure discovery scenario.

Owamp - not reachable : owamp_accessible=="no" and icmp_accessible=="yes"
Icmp - not reachable : icmp_accessible=="no" and owamp_accessible=="yes"
Machine not reachable : owamp_accessible=="no" and icmp_accessible=="no"

Fig. 16. Improved DXAGENT rules for identifying link failures.

is blocked (State 4), it is the opposite. Finally, the most
interesting case to analyze is when the router is turned off
(State 6). First of all and fortunately, neither of the two pings
reach their destination. This result is interesting because by
multiplying the sources we can establish a better vision of the
network that we want to diagnose.

To better discriminate between OWAMP server and router
issues, we could improve the DXAGENT rules as illustrated in
Fig. 16. Of course, the fact that the machine is not accessible
for both protocols does not necessarily mean that the machine
is off, but we are getting closer to the truth than with only
one source. Moreover, we notice that OWAMP observes more
quickly that the machine has been turned off (State 6) and
takes more time to realize that it has started up compared to
traditional pings. This additional delay corresponds to the time
required for the server to boot, on the contrary to the classic
ping that is part of the TCP/IP stack.

V. CONCLUSION

This paper introduced the Diagnostic Agent (DXAGENT),
a SAIN framework implementation for service assurance. Our
DXAGENT collects data both vertically (i.e., on the machine
itself) but also horizontally (i.e., telemetry data obtained with
OWAMP and IOAM) and, then, discovers the various subser-
vices to build an assurance graph. Based on the retrieved data,
the DXAGENT checks for potential symptoms and spreads the
corresponding health scores on the assurance graph. Use cases
have demonstrated how useful is the DXAGENT. All our code
is freely available.

The DXAGENT described in this paper is the first building
block towards closed-loop automation for service assurance.
In the near future, we plan to investigate how machine learning
and artificial intelligence may help in automatically correlating
metrics with the DXAGENT assurance graph but also possibly
in automatically infer initial rules for symptoms. Also, an
important step towards closed loop is to ensure that symptoms

are not seen as another log message. One possibility would be
to improve rules and symptoms such that it contains a pointer
towards the data model information.

REFERENCES

[1] A. Clemm, L. Ciavaglia, L. Granville, and J. Tantsura, “Intent-based
networking – concepts and definitions,” Internet Engineering Task
Force, Internet Draft (Work in Progress) draft-irtf-nmrg-ibn-concepts-
definitions-06, December 2021.

[2] E. Zeydan and Y. Turk, “Recent advances in intent-based networking:
A survey,” in Proc. IEEE Vehicular Technology Conference (VTC), May
2020.

[3] B. K. Saha, D. Tandur, L. Haab, and L. Podleski, “Intent-based networks:
An industrial perspective,” in Proc. International Workshop on Fugure
Industrial Communication Networks, October 2018.

[4] Global Market Insights, “Intent-based networking market,”
April 2020, see https://www.gminsights.com/industry-analysis/
intent-based-networking-ibn-market (last access: Feb. 17th, 2022).

[5] P. Gill, M. Arlitt, Z. Li, and A. Mahant, “The flattening Internet
topology: Natural evolution, unsightly barnacles or contrived collapse?”
in Proc. Passive and Active Measurement Conference (PAM), April 2008.

[6] A. Dhamdhere and C. Dovrolis, “The Internet is flat: Modeling the
transition from a transit hierarchy to a peering mesh,” in Proc. ACM
CoNEXT, December 2010.

[7] H. Zhao and J. Bi, “Characterizing and analysis of the flattening
Internet topology,” in Proc. International Symposium on Computers and
Communications (ISCC), July 2013.

[8] T. Böttger, F. Cuadrado, G. Tyson, I. Castro, and S. Uhlig, “Open connect
everywhere: A glimpse at the Internet ecosystem through the lens of
the netflix CDN,” ACM SIGCOMM Computer Communication Review,
vol. 48, no. 1, January 2018.

[9] A. Clemm and E. Voit, “Subscription to YANG notifications for datastore
updates,” Internet Engineering Task Force, RFC 8641, September 2019.

[10] gRPC, “A high performance, open source universal RPC framework,”
see grpc.io (Last Access: Feb. 23rd, 2022).

[11] B. Claise, J. Quilbeuf, D. Lopez, D. Voyer, and T. Arumugam, “Service
assurance for intent-based networking architecture,” Internet Engineering
Task Force, Internet Draft (Work in Progress) draft-ietf-opsawg-service-
assurance-architecture-02, October 2021.

[12] K. Edeline, “Diagnostic agent,” 2021, see https://github.com/
Advanced-Observability/dxagent.

[13] S. Shalunov, B. Teitelbaum, A. Karp, J. Boote, and M. Zekauskas, “A
one-way active measurement protocol (OWAMP),” Internet Engineering
Task Force, RFC 4656, September 2006.

[14] F. Brockners, S. Bhandari, and T. Mizrahi, “Data fields for in-situ OAM,”
Internet Engineering Task Force, Internet Draft (Work in Progress) draft-
ietf-ippm-ioam-data-17, December 2021.

[15] S. Bhandari, F. Brockners, C. Pignataro, H. Gredler, J. Leddy, S. Youell,
T. Mizrahi, A. Kfir, B. Gafni, P. Lapukhov, M. Spiegel, S. Krishnan,
R. Asati, and M. Smith, “In-situ OAM ipv6 options,” Internet Engineer-
ing Task Force, Internet Draft (Work in Progress) draft-ietf-ippm-ioam-
ipv6-options-07, February 2022.

[16] J. Iurman, K. Edeline, T. Carlisi, and B. Donnet, “Advanced observabil-
ity,” 2021, see https://github.com/Advanced-Observability.

[17] “VPP technology,” FD.io Vector Packet Processing, see https://fd.io/
gettingstarted/technology/.

[18] T. Mizrahi, N. Sprecher, E. Bellagamba, and Y. Weingarten, “An
overview of operations, administration, and maintenance (OAM) tools,”
Internet Engineering Task Force, RFC 7276, June 2014.

[19] D. Katz and D. Ward, “Bidirectional forwarding detection (BFD),”
Internet Engineering Task Force, RFC 5880, June 2010.

[20] Facebook, “Udppinger,” see https://github.com/facebook/UdpPinger.
[21] ——, “fbtracert,” see https://github.com/facebook/fbtracert.
[22] J. Iurman, “Support for the IOAM pre-allocated trace with IPv6,”

LWN.net, July 2021, see https://lwn.net/Articles/863746/.
[23] Cisco Innovation Edge, “cisco-gnmi-python,” see https://github.com/

cisco-ie/cisco-gnmi-python (Last Access: Feb. 23rd, 2022).
[24] “OWAMP implementation,” see https://github.com/perfsonar/owamp.


