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a b s t r a c t 

Falling asleep is a dynamical process that is poorly defined. The period preceding sleep, characterized by the 
progressive alteration of behavioral responses to the environment, which may last several minutes, has no elec- 
trophysiological definition, and is embedded in the first stage of sleep (N1). We aimed at better characterizing 
this drowsiness period looking for neurophysiological predictors of responsiveness using electro and magneto- 
encephalography. Healthy participants were recorded when falling asleep, while they were presented with con- 
tinuous auditory stimulations and asked to respond to deviant sounds. We analysed brain responses to sounds 
and markers of ongoing activity, such as information and connectivity measures, in relation to rapid fluctuations 
of brain rhythms observed at sleep onset and participants’ capabilities to respond. Results reveal a drowsiness 
period distinct from wakefulness and sleep, from alpha rhythms to the first sleep spindles, characterized by di- 
verse and transient brain states that come on and off at the scale of a few seconds and closely reflects, mainly 
through neural processes in alpha and theta bands, decreasing probabilities to be responsive to external stimuli. 
Results also show that the global P300 was only present in responsive trials, regardless of vigilance states. A 

better consideration of the drowsiness period through a formalized classification and its specific brain markers 
such as described here should lead to significant advances in vigilance assessment in the future, in medicine and 
ecological environments. 
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. Introduction 

Falling asleep is a dynamical process characterized by blurred per-
eptions, hypnagogic hallucinations, and decreased responsiveness to
he environment ( Casagrande et al., 1997 ; Foulkes and Vogel, 1965 ;
gilvie et al., 1989 ; Yang et al., 2010 ). This drowsiness period may last

everal minutes before entering in effective sleep, defined behaviourally
s the moment when subjects cease to be responsive. At the electrophys-
ological level, brain activity changes from rapid wakefulness rhythms
o slower ones, and to the occurrence of phasic events specific to sleep,
uch as K-complexes and sleep spindles. Yet, the precise time course of
esponsiveness fading during this wake-sleep transition and the corre-
ponding electrophysiological markers remain unknown. 
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The current reference classification of sleep stages (American
cademy of Sleep Medicine and Iber, 2007 ) does not define any drowsi-
ess period, but embeds it in both wakefulness and the first stage
f sleep (N1 sleep). Moreover, N1 sleep appears as a heterogeneous
tage that regroups different behavioural, cognitive and conscious states
 Bareham et al., 2014 ; Goupil and Bekinschtein, 2012 ; Strauss et al.,
015 ;). Especially, in a previous study ( Strauss et al., 2015 ) where we
onitored responsiveness in healthy subjects during wakefulness and

leep using a nearly-continuous behavioural measure, the participants’
otor response to auditory deviant stimuli (local-global paradigm, see

lso figure 1. A), we observed that in N1 sleep subjects could be re-
ponsive or not to stimuli. Simultaneous brain activities recorded using
lectro- and magneto-encephalography (M/EEG) showed that subjects
uelich.de (F. Raimondo). 

3 February 2022 

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.neuroimage.2022.119003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2022.119003&domain=pdf
mailto:melanie.strauss@erasme.ulb.ac.be
mailto:f.raimondo@fz-juelich.de
https://doi.org/10.1016/j.neuroimage.2022.119003
http://creativecommons.org/licenses/by/4.0/


M. Strauss, J.D. Sitt, L. Naccache et al. NeuroImage 251 (2022) 119003 

Figure 1. Experimental Design. A. Experimental paradigm. Auditory sequences 
of 5 sounds were presented with local and global deviancies, defined respec- 
tively as sequences with a deviant 5 th sound (sound B), and rare sequences pre- 
sented 20% of time (in red). B. Hori stages (labelled with H) of drowsiness and 
their simplified version (labelled with D). Ongoing brain activity (power spec- 
trum density, permutation entropy, weighted symbolic mutual information) and 
response to local and global deviancy were recorded with electro-and magneto- 
encephalography during wakefulness, drowsiness and sleep. 
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ho were still responding kept exhibiting a P300, a brain response as-
ociated with predictive coding and consciousness ( Bekinschtein et al.,
009 ; Dehaene and Changeux, 2011 ; Wacongne et al., 2011 ), while
hose who were not responding did not exhibit any P300. There were
hen clear-cut differences in behavioural and brain responses to exter-
al stimulations within this same stage of N1 sleep, raising the question
f the real electrophysiological markers of sleep onset. Improving our
nowledge of those markers seems critical in order to properly assess
igilance and related cognitive and behavioural states, whether it be in
he fields of medicine, research or public health, such as in the evalua-
ion of drowsiness while driving or operating machinery. 

Such a fuzziness in behavioural and brain responses observed in N1
leep is largely favoured by the large time window used for sleep scor-
ng (typically 30 sec.), which necessarily leads to the averaging of mul-
iple brain activities, and implies that what is called N1 sleep (and pre-
eding wakefulness) is likely to include periods of wakefulness, drowsi-
ess and sleep. Indeed, N1 sleep may regroup within the same 30 sec.
poch alpha rhythms, alpha suppression with a flattening of the sig-
al, theta rhythms, and grapho-elements such as vertex sharp waves
r incomplete sleep spindles. The presence of those different electro-
ncephalographic (EEG) patterns before entering N2 sleep, when occur
he first sleep spindle or K-Complex, has already been described a few
2 
ecades ago (Gibbs and Gibbs, 1950 ; Hori, 1991 ; Santamaria and Chi-
ppa, 1987 ). Hori and colleagues ( Hori, 1991 ; Hori et al., 1994 ) devel-
ped a 5 seconds-epoch classification of drowsiness based on the differ-
nt EEG patterns ( figure 1. B), enabling to better reflect the rapid rhythm
odifications that occur during the wake-sleep transition. They showed

hat both hypnagogic perceptions and reaction times evolved in correla-
ion with these successive EEG modifications. More recently, alpha sup-
ression and the occurrence of theta rhythms have been associated with
ecreased brain connectivity ( Noreika et al., 2020 ) and modifications
n conscious threshold ( Noreika et al., 2017 ), and the theta-alpha ratio
as shown to discriminate non-responsive periods in deep drowsiness

rom responsive wakefulness ( Comsa et al., 2018 ). 
We then propose here to go further in the definition of sleep onset, in

pecifying the time-course of responsiveness fading in association with
hysiological markers, and trying to extract the physiological predic-
ors of responsiveness at each given time. We re-analysed the wake-sleep
ransition of our above-mentioned study ( Strauss et al., 2015 ) taking ad-
antage of the detailed Hori classification ( Hori et al., 1994 ) and its sim-
lified version ( Nittono et al., 2001 ) ( figure 1. B), and extracted related
arkers of ongoing activity reflecting information and connectivity in

he brain ( Denis A. Engemann et al., 2018 ; Sitt et al., 2014 ) and event-
elated responses (ERFs) to stimuli. We used machine learning methods
o extract the predictors of responsiveness. We demonstrate here the ex-
stence of a period of drowsiness distinct from wakefulness and sleep,
haracterized by transient brain states that come on and off at the scale
f a few seconds and where brain activity and long-distance communi-
ation in specific frequency bands, especially the alpha band, are the
est predictors of responsiveness. 

. Materials and Methods 

.1. Procedure 

The current paper is a reanalysis of data described in Strauss
t al. (2015) . Subjects were recorded in magneto- and electro-
ncephalography (M/EEG) in wakefulness and sleep during a morning
ap, after a night of sleep restriction (4h of sleep, controlled by actime-
ry - Actiwatch 7, Sleepwatch software 7.5 CamNtech). 

.2. Stimulation 

Stimuli were pairs (AB) of phonetically distant French vowels (100
s duration). Each pair was used to form 2 types of blocks with 100 se-

uences of 5 vowels (150ms stimulus onset asynchrony (SOA) between
owels). Sequences were separated by silent gaps of variable duration
700 to 1000ms inter-trial interval (ITI), 50ms steps) . In one block type
aa), the 5 vowels within the sequence were identical (aaaaa, ‘local stan-
ard’ sequence, LS) in the 10 first sequences of habituation and then in
0% of the sequences of the block, defining then the ‘global standard’
GS) sequence (cf figure 1. B). In the 20% remaining sequences (‘global
eviants’, GD), the 5 th vowel differed from the 4 first ones (aaaa B , ‘local
eviant’, LD). In the other block type (a B ), reversely ‘local deviant’ se-
uences were used as ‘global standards’, and ‘local standards’ sequences
s ‘global deviants’. The global effect was then computed contrasting
he global deviant sequences to the global standard ones, and the lo-
al effect contrasting the local deviant sequences to the local standard
nes. Each type of blocks was repeated twice in order to counterbalance
owels. 

Auditory sequences were presented during sleep and during wake-
ulness before and after the nap. To monitor responsiveness to the envi-
onment, subjects were asked to give a motor response whenever they
eard a global deviant (in pressing a button, hand was balanced across
ubjects), and to try to continue responding even as they were falling
sleep during the sleep session. As we asked subjects to respond as soon
s they were aware of deviant sounds, responsiveness and consciousness
ere confounded in this study. We confirmed this association in showing
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hat the M/EEG global effect (P300) was not present in non-responsive
rials (cf figure 3 .). Importantly, we controlled in a previous publication
 Strauss et al., 2015 ) that the presence of the P300 was associated with
onscious detection and not only with motor responses by asking sub-
ects not to respond but to be attentive to GD sequences in half of the
locks during wakefulness. We confirmed that a P300 was still elicited
fter global deviant sequences in those no-report but attentive blocks. 

.3. Subjects 

31 healthy right-handed subjects and good sleepers between 18 and
5 years old were recruited on a voluntary basis after giving written
nformed consent. The study was approved by the Ethical Committee
le de France VII (Comité de Protection des Personnes 08-021). They
ad no history of neurological, psychiatric or sleep disorders, and were
efrained to use stimulating beverages (coffee, tea, energy drinks) in
he 24h before the experiment. Only subjects who correctly applied the
otor detection task when falling asleep and who had enough N1 tri-

ls to extract a clear auditory event-related field were kept for analysis
N = 15). Those reporting having stopped on purpose to respond to global
eviant sequences in order to fall asleep were rejected (for detailed sleep
arameters see table S1). We then excluded one of the remaining sub-
ects because of the absence of alpha rhythms during eyes-closed calm
akefulness (which is the case in about 10% of the general population
 Santamaria and Chiappa, 1987 )), which prevented to score the Hori
tages before the occurrence of theta waves. 

.4. Simultaneous M/EEG Recording 

MEG and EEG signals were simultaneously recorded with the Elekta
euromag system in supine position (204 planar gradiometers and 102
agnetometers) and its built-in EEG system (60 channels, referenced

o an additional nose electrode). Electrocardiogram (ECG), electro-
culogram (EOG) (horizontal and vertical) and chin electromyogram
EMG) were recorded as auxiliary bipolar channels. During the acquisi-
ion the signal was low-pass filtered at 330 Hz, high-pass filtered at 0.1
z and sampled at 1 KHz. EEG, EOG and EMG signals were used to mon-

tor sleep stages on-line. The head position in the MEG sensor array was
ontinuously acquired during each block thanks to four head-position
ndicator coils attached to the scalp and previously digitized with re-
pect to three anatomical landmarks (nasion and preauricular points,
olhemus Isotrak system). 

.5. Data analysis 

.5.1. Sleep Onset Analysis 

Wakefulness and sleep stages were scored off-line (Noxturnal soft-
are, v.4.4.2) on EEG, EOG and EMG signals by a sleep expert according

o both the reference 30s-epoch sleep classification (American Academy
f Sleep Medicine and Iber, 2007 ) and the Hori scale of drowsiness
 Hori et al., 1994 ), based on epochs of 5 sec. ( fig. 1. A). We also de-
ned different sub-stages within N2 sleep: in addition to the Hori stage
 (H9), that we scored as epochs containing the first sleep spindles in
he first 15 s. of N2 sleep, we separated the ‘early-N2’ from the consoli-
ated or ‘late-N2’, with epochs respectively in the first 5 minutes of N2
r later. We also differentiated epochs with sleep spindles, K-complexes
r slow waves in addition to the theta background, which were manually
etected. 

The time spent in each Hori stage were not similar and some of them
ere only poorly represented ( Tanaka et al., 1996 ) (ex: H6 to H8, cf
g. 1. C). In order to increase the number of trials per condition and
o be able to compute event related fields (ERFs), we used a simpli-
ed drowsiness (D) classification regrouping some of the Hori stages
ith similar EEG activity, thus ending up with only 4 D stages (see also
 Nittono et al., 2001 )). Epochs containing alpha rhythms (H1 to H3)
ere grouped in D1. Epochs with flattening of the signal (H4) and theta
3 
aves (H5) were kept apart in D2 and D3. Epochs with sharp waves or
ncomplete spindles (H6, H7 and H8) were grouped in D4. 

.5.2. Behaviour 

Statistical analysis for response rates and reaction times were per-
ormed with Kruskal-Wallis ANOVA tests for comparison across mul-
iple stages, and with paired Wilcoxon sign rank tests for comparison
etween two stages. 

.5.3. MEG preprocessing 

Signal analyses are only reported on MEG data considering its much
igher number of sensors, better source localization and signal-to-noise
atio compared to EEG. Data were preprocessed with successively signal
pace separation correction, continuous head movement compensation
nd bad channels correction (MaxFilter, Elekta Neuromag). Signal was
hen down-sampled (250Hz), filtered (0.3-80Hz) and epoched from -200
o 1450ms around the sequence onset. Bad trials were visually detected
nd excluded. 

.5.4. Event Related Fields (ERFs) 

ERFs for local and global effects were computed for each drowsi-
ess stage with subjects presenting at least 10 trials in the consid-
red stage. Statistical analyses were performed with cluster permuta-
ion tests corrected for multiple comparisons over time and sensor space
or each type of sensors (magnetometers and gradiometers, with Field-
rip, Monte-Carlo method, 1000 permutations). Search windows were
efined between 0 and 400ms after the 5 th deviant sound for the lo-
al mismatch effect (MMN time window) and between 48 and 700ms
or the global effect (P300 time window). For simplicity and based on
trauss et al. (2015) , we report topographies, time series and statistical
nalyses conducted on one type of MEG sensors (gradiometers oriented
n the dy axis). If several clusters were significant for the same effect, we
eported the time of the significant time-window over the different clus-
ers, and the p-value and effect size (Cohen’s d) of the biggest cluster (see
I table S3 for complete results with all clusters and sensor types). Based
n previous MEG studies using the same paradigm ( Bekinschtein et al.,
009 ; Wacongne et al., 2011 ; Strauss et al., 2015 ), a sensor lying next to
he auditory cortex and lateralized to the left hemisphere was selected
o display MEG time series for local and global effects. ERFs amplitude
nalysis are performed on the average of 4 sensors in the left temporal
rea. 

.5.5. Measures of ongoing brain activity 

To assess ongoing brain activity, we computed three classes of mea-
ures based on oscillations: 1) spectral power, comprising raw and
ormalized Power Spectral Density (PSD), Median Spectral Frequency
MSF), spectral edge 90 (SEF90), spectral edge 95 (SEF95) and the
heta/alpha ratio, 2) metrics quantifying the information content of
he MEG signal, comprising Spectral Entropy (SE), Kolmogorov-Chaitin
omplexity (K) and Permutation Entropy (PE; ( Bandt and Pompe, 2002 ))
nd 3) functional connectivity measures, including Symbolic Mutual In-
ormation (SMI) and weighted Symbolic Mutual Information (wSMI)
 King et al., 2013 ), that quantify the amount of information shared be-
ween distant sensors. PSD markers were computed in delta (1-4), theta
4-8Hz) alpha (8-12Hz), beta (12-30Hz), gamma (30-60Hz) and high
amma (60-80Hz) bands. PE was computed in theta, alpha, beta and
amma. SMI and wSMI were computed in theta and alpha bands. All
arkers were computed for each epoch and channel, using the interval

etween the baseline and 600 ms (the onset of the last stimulus). 
PSD was computed using the welch method ( Welch, 1967 ), divid-

ng the signal into segments of 512 ms, with 400ms overlap between
egments. Segments were windowed using a Hanning window and zero
added to 4096 samples. The power in each band was computed by
ntegrating the power within the band. 

Kolmogorov-Chaitin complexity was computed by compressing a dis-
retization of the signal using a histogram approach with 32 bins. Per-
utation Entropy was obtained by computing the entropy of a symbolic
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ransformation of the signals ( King et al., 2013 ). SMI and wSMI is then
omputed from the same symbolic transformation, but data was first fil-
ered using Current Source Density estimates ( Kayser and Tenke, 2006 )
o diminish the volume conduction. 

Subject’s markers were computed by averaging across sensors
mean) and epochs (80% trimmed mean) for each of the Hori stages.
or the connectivity metrics, each sensor’s connectivity was estimated
s the median connectivity to all other sensors. Group statistics were
alculated using Page’s L test for multiple comparisons between ordered
orrelated variables ( Page, 1963 ). 

.5.6. Decoding 

To relate the ongoing brain activity to the subjects’ responsiveness,
e employed a multivariate decoding approach. We computed each
f the previously described markers and averaged across sensors, ob-
aining 26 values for each epoch. As predictive model, we used an Ex-
remely Randomized Trees classifier (ET) ( Geurts et al., 2006 ). We used
he Area Under the Receiver-Operator Characteristic curve (ROC-AUC)
s the performance metric. To assess its variability, we used repeated
10) stratified 10-fold cross-validation (when training and testing in the
ame stage) and the percentile bootstrap approach ( Efron and Tibshi-
ani, 1994 ) repeated 1000 times (for training and testing in different
tages). In each of the bootstrap repetitions, we randomly subsampled
ach subject’s data independently, maintaining the same number of re-
ponsive and unresponsive epochs. Each time we trained the ET classi-
er, we also trained a ‘dummy’ classifier to obtain the empirical chance

evel of the training samples distribution. This type of classifier gener-
tes predictions based on the distribution of training samples for each
lass without accounting for the features. Finally, we computed the dif-
erences between the ET and the empirical chance level estimation for
ach test case and computed the 2.5 and 97.5 percentiles of the distri-
ution to test if the model’s predictive capacity was above chance level
s equivalent to p < 0.05 ( Tan, 2010 ). 

.6. Software and Data 

MEG data was preprocessed with Fieldtrip ( Oostenveld et al., 2011 ).
arkers were computed using NICE ( Denis A Engemann et al., 2018 )

nd MNE-Python ( Gramfort et al., 2013 ). Decoding was computed us-
ng scikit-learn ( Abraham et al., 2014 ; Pedregosa et al., 2012 ;). All
cripts used for the analysis after pre-processing the data are available at
ttps://github.com/fraimondo/lg _ sleep _ paper . Raw and epoched MEG
ata are subject to the data privacy, ethics requirements and informed
onsents signed by the participants at the moment of acquisition. It
an be shared upon reasonable request to authors and with a formal
ata sharing agreement. The MEG-extracted markers for the analysis are
vailable from figshare with the DOI: 10.6084/m9.figshare.14039315. 

. Results 

.1. Behaviour 

Subjects were continuously presented during wakefulness and the
ransition to sleep with sequences of five sounds (local-global paradigm,
ee figure 1. A) embedding local (low-level, within sequences) and global
high-level, between sequences) violations of regularities. They were
sked to give a motor response to global deviancies as soon as they
ere aware of them, until they fell asleep. 

Behavioural results relative to drowsiness classifications ( figure 1. B)
re presented in figure 2 and table S2. All subjects emitted motor re-
ponses to global deviant sequences in wakefulness and in the first
rowsiness stages, when alpha rhythms were present (Awake and H1-
3/D1: 100%). Then, during the descent to sleep, we observed a pro-
ressive decrease in the number of responsive subjects, with a clear drop
oinciding with the occurrence of sharp waves (from 85.7% in H5/D3 to
8.6% in H6/D4). In the first few minutes of N2 sleep, few subjects were
4 
till responding (H9 and early-N2: 14.3%), but no subject continued to
espond during consolidated N2 sleep (late-N2). The motor response rate
o global deviants, computed over all the subjects, also decreased with
rowsiness depth (Page’s L = 1159, p < 1e-15, see table S2), with an im-
ortant decrease coinciding with the occurrence of theta waves (from
4/D2: 38.8% to H5/D3: 13.1%). In parallel, reaction times increased

Page’s L = 325, p = 0.006). 

.2. Event related fields 

.2.1. Local effect 

The local mismatch response (MMR) was analysed by comparing
rain responses elicited by standard and deviant sounds (aaaaa vs

aaaB). We showed previously ( Strauss et al., 2015 ) that during wake-
ulness the MEG MMR was composed of 3 parts: the early and the late
omponents (respectively < 100ms and > 200ms post deviant sounds)
hat reflect adaptation processes and are preserved during sleep, and the
ntermediate one (100-200ms, the proper mismatch negativity – MMN
in EEG) that reflects the prediction error signal and vanishes as the

epth of sleep increases during N2 and REM sleep. We confirmed here
hat adaptation was preserved during drowsiness and sleep ( figure 3 ),
ith a significant early and/or late MMR, except in D4 (Awake: late 196-
44ms, p = 0.026, d = 1.21; D1: early 68-116ms, p = 0.033, d = 0.68 and late
88-332ms, p = 0.001, d = 1.37; D2: late 224-280ms, p = 0.021, d = 1.22;
3: early 88-180ms, p = 0.024, d = 1.60 and late 228-372ms, p = 0.006,
 = 2.11; D4: NS; N2: late 164-324ms, p = 0.006, d = 2.17; n = 14 except
or N2 n = 13). Adaptation processes may vanish during sharp waves
D4) and be recovered during N2 sleep, but more probably the effect
ailed to reach significance because of insufficient and noisier data in
his stage (with only few trials per subject, cf figure 2. B). On the con-
rary, the prediction error signal (intermediate MMR/MMN in EEG) de-
reased progressively in amplitude (in x10 − 12 T/m 

2 , Awake: 2.56, D1:
.97, D2: 1.47, D3: 1.03, D4: 1.24, N2: 0.15, Page’s L = 1073, p = 7e-06)
nd was slightly delayed through drowsiness stages (Awake: 157ms, D1:
59ms, D2: 169ms, D3: 171ms, D4: 170ms, N2: 167ms, Page’s L = 1026,
 = 0.005). It failed to reach significance at the moment of the occurrence
f theta waves (D3) (cluster analysis, Awake: 116-168ms, p = 0.016,
 = 1.79; D1: 120-184ms, p = 0.016, d = 1.33; D2: 120-184ms, p = 0.038,
 = 1.12; D3, D4 and N2 NS; n = 14 except for N2 n = 13). 

Note that this analysis of the local effect combined responsive and
on-responsive trials, while the MEG-MMR may behave differently de-
ending on responsive states. The decrease in amplitude with drowsi-
ess could be explained by an absence of MMR in non-responsive trials,
hose number increases with drowsiness depth. We therefore computed

he local effect only in blocks where responsiveness could be monitored
when local deviants are also global deviants, aaaaa/aaaaB blocks, see
gure S1). Indeed, we found that the amplitude of the MMR peak was
ignificantly modulated by the responsive state, with significant effects
nly in the responsive conditions and not in non-responsive conditions,
nd with significant increased amplitude of the MMR peak within the
ame drowsiness stage in the responsive compared to the non-responsive
ondition (for example in D1, p = 0.035). Within a given responsive state,
he MMR peak was actually only slightly modulated by vigilance. 

.2.2. Global effect 

The global effect was analysed comparing brain responses elicited by
tandard and deviant (rare) sequences, an effect known to be associated
ith the P300 in EEG ( Bekinschtein et al., 2009 ; Wacongne et al., 2011 ;
trauss et al., 2015 ). Data were split according to the subject’s respon-
iveness to global deviant sequences ( figure 3 ), which was, critically,
eflecting the presence or absence of awareness of those sequences. The
lobal effect when subjects were responsive could be computed only
ntil D3, since too few sequences were detected after this stage to com-
ute an ERF ( < 10 trials per subject and condition). Until D3, a signifi-
ant global effect was found in all stages (Awake: 140-900ms, p = 0.003,
 = 2.61, n = 14; D1: 144-900ms, p = 0.001, d = 2.10, n = 14; D2: 188-584ms,

https://github.com/fraimondo/lg_sleep_paper
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Figure 2. Behavioural Results. A. Example of the sleep onset period in one given subject, from top to bottom: spectral analysis, AASM 30 sec. sleep scoring, 
behavioural responses, Hori 5 sec. epoch drowsiness scoring, theta/alpha ratio. B. Total number of trials in the different vigilance states (Hori stages). C. Percentage 
of subjects responding, response rate and reaction times to global deviants are shown for the different Hori stages (top) and the simplified drowsiness stages (bottom). 
When falling asleep, both the number of subjects responding and the response rate per subject decrease, and reaction times increase. Responses are no longer emitted 
in consolidated N2 sleep (after the first 5 minutes of N2 - late N2 Sleep) and in epochs containing spindles or K-complexes (Sp/KC). Error bars represent standard 
error to the mean (sem). 
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 = 0.006, d = 3.69, n = 7; D3: 128-192ms, p = 0.035, d = 5.02, n = 5). The
ffect started over bilateral temporal areas and spread to anterior ar-
as in later latencies ( > 350ms). This late anterior effect was shortened
hrough drowsiness stages and failed to reach significance in D3. Of
ote, the more advanced stages of drowsiness were also associated with
 decreased statistical power, with fewer subjects and trials in each con-
ition, and a lower signal to noise ratio, especially in D3, characterized
y an increase in physiological noise with slower rhythms of larger am-
litude (for example, the same global effect analysis repeated 10 times
n subsampled data of 5 randomly different subjects from wakefulness
o D2 retrieve non-significant results 3 times in wakefulness, 5 times in
1 and 1 time in D2). Contrary to the responsive condition, no global,
300 effect was detected in the non-responsive condition, whatever the
igilance stage (Awake: n = 4, D1: n = 14, D2: n = 11, D3: n = 14, D4: n = 12,
2: n = 13, NS). 

.3. Information and connectivity decreases accompanying drowsiness 

To assess ongoing brain activity in the wake-sleep transition, we
omputed for each subject on each vigilance stage 26 markers across fre-
uency bands, encompassing three classes of measures: spectral power,
nformation metrics and functional connectivity measures. We first con-
idered the signal during constant stimuli between the onsets of the 1 st 

nd the 5 th sounds (before the deviant sound). In line with the visual
lassification, Power Spectral Density (PSD) measures significantly and
rogressively decreased in alpha band from wakefulness to N2 ( figure 4
ottom; Page’s L trend test = 3794, p < 1e-14) but increased in theta
and (Page’s L = 3766.0, p < 1e-14, figure 4 ; top). However, information
PE) and connectivity (wSMI) significantly decreased in both frequency
ands across Hori stages (alpha: L = 3989, p < 1e-14 for PE, L = 4002,
 < 1e-14 for wSMI; theta: L = 3963, p < 1e-14 and L = 3755, p < 1e-14 re-
5 
pectively), pointing towards a general loss of integrated information
nd more local processes. An alternative visualization can be found in
igure S2, comparing the absolute change in the markers value between
ach of the Hori stages and wakefulness. 

Similar results were obtained when considering the neural responses
fter the deviant sound (see supplementary figure S3). The theta/alpha
atio, which has been proposed as a marker of drowsiness and a predic-
or of responsiveness ( Comsa et al., 2018 ), also presented a significant
ositive trend (L = 3983, p < 1e-14; see supplementary figure S4). For ad-
itional spatial information, see figure S5. 

.4. Responsiveness is driven by the ongoing brain state 

We then tested if responsiveness during these vigilance stages could
e related to the overall ongoing brain state. We evaluated the capacity
o distinguish the responsive (MR + ) from non-responsive (MR-) trials
n a trial-by-trial basis, based on the MEG markers computed just be-
ore the global deviant stimuli (between the onsets of the 1 st and the 5 th 

ounds). To this aim, we trained Extremely Randomized Trees classifiers
ET) to distinguish between markers computed during trials where the
ubject did respond (MR + ) and trials where the subjects’ response was
bsent (MR-). We first measured the ROC-AUC using cross-validation
n separate classifiers trained with data from single drowsiness stages.
e found above chance classification in every stage, namely AUC = 0.67

95% CI = [0.58 0.75]) in Awake, 0.61 (95% CI = [0.52, 0.70]) in H1,
.64 (95% CI = [0.50, 0.76]) in H2, 0.68 (95% CI = [0.58, 0.79]) in H3,
.73 (95% CI = [0.63, 0.80]) in H4 and 0.75 (95% CI = [0.64, 0.85]) in
5. Furthermore, we tested if a model trained in one Hori stage could
lso decode responsiveness in the other stages. Overall, we found that
odels trained in the awake state were able to achieve higher perfor-
ance in decoding responsiveness in states of lower vigilance (H3 to
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Figure 3. Event Related Fields to auditory deviancies. A. The MEG-Mismatch response (the prediction error signal) peaks at around 160 ms after deviant sound 
(vertical line on time series, time of topographies) in wakefulness and progressively decreases through drowsiness stages. It fails to reach significance from the 
occurrence of theta waves (D3). At the contrary, earlier and later effects, that reflect adaptation processes, are preserved in drowsiness and sleep. B. The P300 is 
present in the responsive but not in the non-responsive condition, whatever the vigilance state. Significant clusters are shown ( x p < 0.05, ∗ p < 0.01) on topographies 
(t = 350ms) with green lines on time series for significant effects in the left temporal sensor (p < 0.05). 
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S8. 
5), a model trained in H1 was only able to decode responsiveness in
akefulness, a model trained in H2 was capable of decoding responsive-
ess in states of lower vigilance and H3 to H5 presented similar decod-
ng capabilities between them. Results are summarized in figure 5 and
able S4. Additionally, we tested the models using the markers com-
uted on the signals after the global deviant stimuli. We obtained lower
UC values and less generalizable models with higher variability (see
upplementary figure S6 and table S5). 

Finally, to test for the existence of a common pattern able to pre-
ict responsiveness across all stages, we used a single model trained on
ata encompassing wakefulness and H1 to H5. We employed the same
ethodology, but keeping data balanced across stages for each bootstrap

epetition. None of the models presented higher accuracy than any of
he stage-specific models, neither with the pre-stimulus nor the post-
timulus data (see supplementary figure S7). Indeed, only the model us-
ng the post-stimulus data presented a confidence interval above chance
evel, implicating that creating general models encompassing all stages
re not possible with the hereby employed markers and data. 

The uni-directional transfer of decoding means that the best decoder
or a given Hori stage is also capable of decoding in other stage. Given
6 
he hereby employed markers, it means that at a given stage, the in-
eraction between spectral, information and connectivity markers that
est predict responsiveness are indeed also capable of doing so in an-
ther stage, indicating a common pattern that is present in both stages.
n the other hand, failure to transfer decoding means that the neu-

al signatures that best decode responsiveness on a given stage are not
resent in the other stage. While this proves that there are distinctive
atterns, it cannot be used to conclude that there are no common pat-
erns. Furthermore, in case of set of stages with bi-directional transfer,
s for the decoders for H3, H4 and H5, one could argue that this is
ue to the fact that this stages are, in terms of markers, equal. To fur-
her test if these predictive models were indeed capturing common pat-
erns across distinct Hori stages or the Hori stages were simply not dis-
inct, we employed the same methodology, but now using the decoder
o predict the stages instead of the motor responses. We found above
hance-level classification performance across all Hori stages when con-
idering only responsive, non-responsive, or both conditions mixed,
eaning that Hori stages were indeed distinct in terms of information

nd connectivity markers. Results are summarized in table S6, S7 and
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Figure 4. Evolution of measures of oscillatory activity and information sharing throughout the successive vigilance stages. Measures of ongoing brain activity in 
theta (top panel) and alpha bands (bottom panel). Each dot depicts the mean value for the marker at each Hori stage. Each coloured line represents a subject. The 
mean for each stage are depicted in black, with the error bars representing the standard error of the mean. While spectral power decreases in alpha and increases in 
theta across drowsiness stages, entropy and connectivity decrease in both frequency bands. 
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Additionally, by inspecting the predictive models that learned to dis-
inguish MR + from MR-, we can obtain a quantification of the involve-
ent of each electrophysiological marker for the classification. This met-

ic, named feature importance, can be interpreted as the mutual infor-
ation between the marker and the outcome label, conditional to the

est of the markers. The results, summarized in figure 5 , indicate that
he results obtained in terms of transfer learning (i.e. decoding across
ori stages) reflect the fact that the same markers are ranked as highly

mportant in all stages. In particular, PE 𝛼, Theta/Alpha ratio and nor-
alized delta share highly ranked positions in most of the stages. H1, on

he other hand, presents a distinctive signature in terms of importance,
hich might be the reason why a model train in this stage is not capable
f decoding responsiveness in other stages. 

.5. Whole-brain vs modular processes? 

While markers of ongoing brain activity are able to distinguish re-
ponsiveness within and across Hori stages, we then tested if they were
eflecting overall whole-brain processes or were consequences of highly
patially-specific processes. We performed a non-parametric statistical
est on the contrasts between MR + and MR- within each Hori stage. The
btained results, summarized in table S9, indicate that not all of the im-
ortant markers present statistically significant differences. For exam-
le, gamma power is ranked second in importance for H4, but the clus-
er test indicates a p-value of 0.265. Precisely, these results indicate that
he interactions among markers is a key element that allows the distinc-
ion of vigilance stages. Furthermore, a closer analysis on the location of
hese differences between MR + and MR- trials, depicts the presence of
patially specific patterns of activity. Particularly, differences in mark-
7 
rs of spectral power and information are located in posterior regions of
he scalp (see figure S8). 

Although connectivity was not included among the relevant mark-
rs for decoding responsiveness, it is important to analyse connectivity
eparately. Obtaining a single value of connectivity across all pair of
calp sensors might not disclose specific networks of information shar-
ng across the brain. An appropriate analysis of connectivity markers in-
icates that both wSMI 𝜃 and wSMI 𝛼 show significant differences mod-
lated by the Hori stage, responsiveness and the interaction between
hem (see table S10 for ANOVA results). Post-hoc tests showed signifi-
ant differences in connectivity in theta band (wSMI 𝜃) between frontal,
emporal and parietal regions, only for the H6 to 8 stage (and in a lesser
xtend in H3 and H4, figure 6 , top). No particular connections were
eemed informative in H1, H2 and H5 or in alpha band ( figure 6 , bot-
om), suggesting that information sharing mechanisms in these stages
re highly specific and not captured by the employed metric or an inter-
ction between markers that were captured only by the decoding mod-
ls. Note however that the same analysis using the Drowsiness stages
etrieved significant differences in connectivity within the alpha band
n the D1 stage (grouping H1 to H3), in posterior regions (Figure S9).
verall, these results suggest that different regional processes occur in

he different drowsiness stages to predict responsiveness. 

. Discussion 

Falling asleep is not an on-off mechanism, nor a gradual incursion of
 unique process leading to sleep. Our results highlight the existence of
 drowsiness period in the transition to sleep, where the probability to
e responsive to the environment decreases in a stepwise manner, from
lpha rhythms to the firsts sleep spindles. This drowsiness period is char-
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Figure 5. Responsiveness during Hori stages can be decoded from the ongoing brain state prior to the stimuli. The top figure depicts the ROC-AUC values distribution 
by training and testing set. Each dot represented the ROC-AUC value for one cross-validation iteration in the case of within-stage decoding and one bootstrap iteration 
in the case of cross-stage decoding. Boxplots depict the median, inter-quartile ranges and 95% confidence intervals. The middle figure depicts the difference between 
the respective predictive models and a dummy classifier which predicts based on the number of training samples from each class, without considering the markers. 
The positive lower bound of the confidence intervals indicate that the predictive models ROC-AUC are statistically significant above chance level. The bottom figure 
reveals which electrophysiological markers are most important for the prediction of responsiveness across the different drowsiness stages . Each plot depicts the rank 
(top 6) of mean feature importance in the decoding of responsiveness in each Hori stage. 

a
a  

m  

b  

a  

t  

P  

s  

a
 

(  

m  

t  

s  

s  

a  

d  

I  

f  

d  

f  

fi  

f  

c  

f  

h  

p  

e  

e  

(  

a  

o  

w  

d
 

r  
cterized by successive and transient brain states that come on and off
t the scale of a few seconds, and where activity and long-distance com-
unication in specific frequency bands, especially the alpha and theta

and, are the best predictors of responsiveness. We also show that the
bility to respond is closely associated with predictive coding capabili-
ies of the brain, reflected by the mismatch negativity (MMN) and the
300. We clearly define here the drowsiness period in humans, with as-
ociated modifications in behaviour, cognition and physiological brain
ctivities, and demonstrate its distinction with wakefulness and sleep. 

We used a detailed 5 sec. epochs classification of drowsiness
 Hori et al., 1994 ; Nittono et al., 2001 ) to monitor precisely the rapid
odifications in vigilance and responsiveness that take place during

he wake-sleep transition, and characterized their corresponding brain
tates with MEEG methods. We showed that the probability of being con-
cious and responsive decreases progressively from wakefulness to sleep
nd in relation with drowsiness stages, with decreasing response rates, a
ecreasing number of responsive subjects, and increasing reaction times.
mportantly, this process is often non-monotonous and characterized by
8 
requent rises and falls in vigilance. This period of altered behaviour, or
rowsiness period, is already detectable in the first stage of calm wake-
ulness (with alpha rhythms, D1) and lasts until the occurrence of the
rsts sleep spindles. Stable non-responsiveness is indeed only achieved

ew minutes after the first sleep spindles, a time that appears to also
orrespond to the subjective perception of sleep onset, often delayed
rom the onset of N1 sleep ( Bonnet and Moore, 1982 ). This delayed be-
avioural onset of consolidated sleep could account for the classical mis-
erception of sleep onset when referring the usual sleep classification,
specially in patients with insomnia ( Hermans et al., 2019 ). Besides,
ven in wakefulness (H0) subjects presented a certain amount of misses
response rate of 85.4%), indicating they probably presented lapses in
ttention (without clear modifications in vigilance). In H1 in presence
f alpha waves, an early decrease in vigilance may be also possible, as
e know that other signs such as slow eye movements can be present in
rowsiness before EEG modifications ( Santamaria and Chiappa, 1987 ). 

We also explored cognitive capabilities during this drowsiness pe-
iod, by analysing the participants’ ability to extract rules and detect
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Figure 6. Connectivity in theta and alpha band depicts connectivity hubs. Each panel shows the pairwise connections between 8 regions of interest (ROI; frontal, 
parietal, temporal and occipital regions in left and right hemispheres) for wSMI in theta (top) and alpha (bottom) bands. The statistical matrixes show the corrected 
p-values of the post-hoc tests after an ANOVA model with connection, motor response and Hori stage as factors. 

9 
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uditory deviancies. We analysed the hierarchical prediction error sig-
als emitted in response to local and global auditory deviancies, char-
cterized respectively by the MMN and the P300. In line with previ-
us results ( Bekinschtein et al., 2009 ; Sergent et al., 2005 ; Sitt et al.,
014 ; Strauss et al., 2015 ), we confirmed that the ability to report the
onscious detection of global deviancies was associated with the occur-
ence of the P300, and that this P300 was absent when the subjects were
ot responsive, whatever the vigilance state (awake, drowsy or asleep).
mportantly, we previously showed that the P300 was also present in
on-responsive but attentive trials in wakefulness in a no-report task
 Strauss et al., 2015 ), and then that the P300 was not a simple marker
f the motor response, but an index of conscious detection of deviant
ounds. The absence of P300 in non-responsive trials across all vigilance
tates suggests that non-responsive trials were indeed non-consciously
etected, and that responsiveness did reflect conscious access in our
tudy, as expected by the nature of the task (subjects should respond
hen conscious, and subjects who reported having voluntarily stopped

esponding when falling asleep were discarded from analysis). These re-
ults highlight the dissociation between vigilance and consciousness and
heir related brain markers. 

Considering the MMN (MEG MMR peak), overall across vigilance
tates, we found that its amplitude decreased progressively with drowsi-
ess depth and failed to reach significance from the occurrence of theta
aves (D3). These results replicate those of Nittono et al. (2001) , who
escribed the MMN at sleep onset using the Hori classification and its
implified version, as such as we did in this study. We note never-
heless a residual pic still present at the time of the MMN. It would
hen be possible that a small effect persists in drowsiness and sleep,
hich could explain other findings in the literature of a MMN present

n various non-conscious states ( Atienza et al., 1997 ; Bekinschtein et al.,
009 ; Fischer et al., 1999 ; Heinke et al., 2004 ; Naccache et al., 2005 ;
ashida et al., 2000 ; Schlossmacher et al., 2020 ). Those analyses, how-
ver, did not systematically take into account the effect of conscious
ccess of deviant sounds on the MMN (but see ( Schlossmacher et al.,
020 )). When we analysed the MMN in trials where responsiveness
ould be monitored, we found that the MMN was actually mostly driven
y the responsive state, i.e. here conscious access, and only weakly by
igilance. While these last results may be interpreted with caution, they
re in line with other studies having shown the important modulation
f the MMN by conscious access ( Chen et al., 2020 ; Kimura et al., 2010 ;
ei et al., 2002 ). When falling asleep, the brain’s low (MMN) and high

P300)-level prediction capabilities seem to be largely determined by
he conscious access of deviancies. 

In addition to brain responses to deviances, we analysed the brain
ngoing activity specific to the different drowsiness stages. When char-
cterising drowsiness and sleep, frequency-selective brain activity play
 key role. In fact, the currently employed classification relies on the
resence or absence of alpha and theta rhythms. The functional as-
ects of those rhythmic activities are still a matter of debate. Previ-
us work shows evidence for alpha-band activity as attention-related
nhibitors of sensory input that facilitate the suppression of distracters
 Sokoliuk et al., 2019 ) and as a supporter of brain idling, while
ther works indicate that particular rhythms in alpha band are de-
endent on the task and scalp location ( Nunez et al., 2001 ). Very re-
ently, functional connectivity in the alpha band was also suggested
o reflect the level of disconnection from the external environment
n sleep ( Imperatori et al., 2021 ). Overall, whole-brain reduction in
lpha activity points towards the predominance of local brain pro-
esses over globally coordinated ones. As concerns the theta band,
his frequency range has been linked to phased-locked neural infor-
ation exchange ( Buzsáki, 2002 ; King et al., 2013 ), coupling sensory

nd memory-activated neurons ( Buzsáki, 2002 ). Interestingly in the
ake-sleep transition, while overall alpha power decreases and theta
ctivity increases, results indicate that both theta and alpha rhythms
ecome more predictable and localized within the brain across the
rain. 
10 
In order to determine which electrophysiological markers of brain
ctivity are predictive of consciousness and responsiveness during
rowsiness, we analysed the relations between MEG markers, drowsi-
ess (Hori) stages and responsiveness at the single-trial level. We first
ound that a classifier trained with these markers can predict respon-
iveness given the Hori stage. We then found that while the markers
an still capture the visually-detected differences across stages, there
re still common components across stages that predicts responsiveness.
ndeed, responsiveness could be decoded in several Hori stages in deep
rowsiness using the same model, pointing toward a common underly-
ng set of brain mechanisms responsible for conscious responsiveness.
evertheless, it is important to remark that each Hori stage presented a
ifferent set of features as part of the optimal decoding model. This in-
icates that each stage has a distinctive neural signature with respect to
onscious responsiveness. Detailed investigation of the decoding algo-
ithms and markers indicate that these brain mechanisms are evidenced
y rhythms in delta, theta, alpha and beta bands, with a major compo-
ent of information in alpha band particularly located in posterior scalp
egions. Connectivity analyses confirmed this critical posterior-parietal
ub in alpha band for responsiveness, while theta band evidenced re-
ponsiveness through fronto-temporo-parietal information sharing. Two
ecent studies ( Bourdillon et al., 2020 ; Imperatori et al., 2021 ) high-
ighted also the functional connectivity (wSMI) in high delta-theta band
s a marker of consciousness across vigilance states. Our results in theta
ay partially overlap with those findings, with the limit that the contin-
ous stimulation constrained our analyses to too short epochs to analyse
onnectivity in the delta band. 

Interestingly, depicting the existence of a set of transient brain states,
ach one with a diverse set of properties that predict the subjects’ re-
ponse, is a first step towards shedding light on deeper research ques-
ions. Future works could focus on studying the relation between the
ransitions across these states and the subject’s response: is the stimu-
ation/response changing the state of the brain? What are the dynamic
roperties of these states? It is also interesting to note that the brain
arkers best predicted responsiveness in the pre-deviant period than in

he post-deviant period, suggesting that the ongoing brain state drove
esponsiveness to sounds more than the sound drove the ongoing brain
tate. This also shows that brain responses to stimulations (such as in
he pre-deviant period) did not mask the ongoing physiological activ-
ty, and that rhythms driven by physiological modifications of vigilance
ere predominant. The specific context of auditory stimulations, which
ay change the brain state that we want to characterize, appears then

o not critically influence physiological rhythms and should not invali-
ate the visual classification of drowsiness, nor the electrophysiological
arker analyses. Although we are aware that experimental conditions
ay slightly influence our measures, such as described in the context of

he "Psychological Uncertainty Principle" ( Lindsay and Anderson, 2000 ),
e believe that this limitation is inherent to our question of research.
lso, even ecological conditions for sleep are varied and not devoid of
nvironmental stimulations and constrains. 

Overall, these results depict the existence of a diverse set of tran-
ient brain states in the wake-sleep transition, reinforcing the increas-
ng evidence for a transient and local modulation of vigilance and
leep ( Andrillon et al., 2021 ; Siclari and Tononi, 2017 ). This study
ighlights the high variability of brain patterns over time, across and
ithin drowsiness stages, but also over brain space. In the future, us-

ng distinct spatial filters may help to capture those local sleep pat-
erns. Along with those local and transient modulations, capabilities
f humans to integrate sensory stimuli, learn rules, predict input, up-
ate priors, consciously access information and execute motor actions
re progressively impaired. This period of rapidly changing brain states
efines the drowsiness period, distinct from wakefulness and sleep,
.e. stable non-responsiveness, but currently embedded in calm wake-
ulness and N1 sleep when referring to the reference sleep classifica-
ion (American Academy of Sleep Medicine and Iber, 2007 ). Hetero-
eneity of N1 sleep has already been highlighted in other behavioural
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nd neuro-imaging studies ( Bareham et al., 2014 ; Magnin et al., 2010 ;
gilvie, 2001 ; Stevner et al., 2019 ; Strauss et al., 2015 ), and shows the

ower inter-scorer reliability ( Rosenberg and Van Hout, 2013 ). While
his classification based on 30 sec. time windows (American Academy
f Sleep Medicine and Iber, 2007 ) is convenient for manual scoring and
o identify sleep disorders in consolidated sleep, finer-grained EEG mon-
toring with shorter epochs appears to be critical when assessing vigi-
ance and the falling asleep process. In this line, micro-sleep episodes,
efined as alpha suppression of less than 15 sec., have been very re-
ently explored for evaluating vigilance ( Hertig-Godeschalk et al., 2019 ;
korucak et al., 2020 ). We demonstrate here , supported by behavioural
nd in-depth brain activity measures, that using shorter epochs is indeed
elevant, but that the different EEG patterns should also be analysed to
ssess the level of drowsiness. The proposed classification of drowsiness,
onsidering alpha suppression, theta activity and sharp waves can easily
e monitored in routine EEG. If it originates from descriptions of sleep
nset made few decades ago ( Hori et al., 1994 ; Santamaria and Chi-
ppa, 1987 ;), recent data suggest it reflects clear behavioural and brain
odifications ( Bareham et al., 2014 ; Noreika et al., 2020 ;) and we here
emonstrate it nicely reflects the decreasing probability to be conscious
nd responsive. In addition to visual scoring that may be time consuming
n clinical routine, more dynamical measures should also be considered,
uch as the theta-alpha ratio, strongly correlated with this drowsiness
lassification ( Noreika et al., 2020 , 2017 ), along with other methods of
utomatic scoring ( Jagannathan et al., 2018 ). And finally, the extraction
f even finer information through brain makers described here, such as
ntropy in the alpha band, will enable to significantly increase the pre-
iction of responsiveness and associated cognitive capabilities. 

. Conclusion 

In conclusion, evaluating vigilance is a general concern, in clinical
outine in neurological or sleep disorders (such as in insomnia or when
erforming maintenance of wakefulness tests), as well as in ecological
nvironments. The present research brings significant advances in our
nderstanding of the wake to sleep transition, and advocate for a bet-
er recognition of the drowsiness period. Currently embedded in calm
akefulness and the first stage of sleep (N1), it should be recognized

n itself as a transition process leading to but different from sleep, i.e.
rom a stable minimally responsive brain state. Using a formalized clas-
ification of drowsiness or related brain markers such as described here
hould significantly improve vigilance assessment in the future. And fi-
ally, if we aim to match behavioural, perceptive and electrophysiologi-
al definitions of sleep onset, sleep itself should starts after the first sleep
pindles or K-complexes. 
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