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Abstract 

Background: Recent advances in biotechnology enable the acquisition of high-dimensional data on individuals, 
posing challenges for prediction models which traditionally use covariates such as clinical patient characteristics. 
Alternative forms of covariate representations for the features derived from these modern data modalities should be 
considered that can utilize their intrinsic interconnection. The connectivity information between these features can 
be represented as an individual-specific network defined by a set of nodes and edges, the strength of which can vary 
from individual to individual. Global or local graph-theoretical features describing the network may constitute poten-
tial prognostic biomarkers instead of or in addition to traditional covariates and may replace the often unsuccessful 
search for individual biomarkers in a high-dimensional predictor space.

Methods: We conducted a scoping review to identify, collate and critically appraise the state-of-art in the use of 
individual-specific networks for prediction modelling in medicine and applied health research, published during 
2000–2020 in the electronic databases PubMed, Scopus and Embase.

Results: Our scoping review revealed the main application areas namely neurology and pathopsychology, followed 
by cancer research, cardiology and pathology (N = 148). Network construction was mainly based on Pearson correla-
tion coefficients of repeated measurements, but also alternative approaches (e.g. partial correlation, visibility graphs) 
were found. For covariates measured only once per individual, network construction was mostly based on quantifying 
an individual’s contribution to the overall group-level structure. Despite the multitude of identified methodological 
approaches for individual-specific network inference, the number of studies that were intended to enable the predic-
tion of clinical outcomes for future individuals was quite limited, and most of the models served as proof of concept 
that network characteristics can in principle be useful for prediction.

Conclusion: The current body of research clearly demonstrates the value of individual-specific network analysis 
for prediction modelling, but it has not yet been considered as a general tool outside the current areas of applica-
tion. More methodological research is still needed on well-founded strategies for network inference, especially on 
adequate network sparsification and outcome-guided graph-theoretical feature extraction and selection, and on how 
networks can be exploited efficiently for prediction modelling.
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Network analysis, Genomics, Neurology, Pathopsychology, Biomarker
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Introduction
Prediction modelling is essential to an individual-
ized approach to risk assessment, diagnosis, prognosis, 
and medical decision-making. While the conventional 
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approach of model development is mainly based on a 
small set of patient characteristics, recent developments 
in biotechnology (e.g. high-resolution imaging modali-
ties and high-throughput sequencing methods) have 
accelerated the generation of individual-specific data 
at an unprecedented level generally characterized by 
a high-dimensional variable space for each individual 
and complex correlation structures between the vari-
ables. Common methods of prediction modelling are 
not well suited to deal with such complex data structures 
in particular in small to moderately sized studies [1–3]. 
Hence the question arises how the abundance of bio-
logical information available per individual can be used 
most efficiently to provide accurate predictions of health 
outcomes.

Increasingly, it becomes possible to represent indi-
vidual patient data as individual-specific networks that, 
apart from individual-specific node measurements, 
allow to capture connectivity information between vari-
ables (nodes) via their edges. Individual-specific net-
works are exemplified in Fig.  1 for a hypothetical small 
study cohort. The absence/presence of an edge, or its 
weight (strength of the connectivity) can be the same for 
all individuals in the sample (e.g. based on a reference 
or on sample estimates of a statistical measure of con-
nectivity), or can vary from individual to individual. For 
example, the individuals depicted in Fig. 1 share the same 
network structure but are heterogeneous with respect 
to the edge weights. The network representation is fur-
ther motivated by subject matter, since complex diseases 
of the human body are rarely caused by the malfunction 
of individual molecules but rather by the disruption or 

dysfunction of the underlying system behaviour or a spe-
cific set of biological units [4]. Graph-theoretical features 
can then capture the heterogeneous variability of system 
patterns across individuals by describing individual-
specific structural and topological network patterns or 
identify biological modules, a set of nodes acting as key 
drivers of disease manifestation. For the sake of clarity, 
variables that originate from individual-specific networks 
will be referred to as graph-theoretical features through-
out this work in order to distinguish them from classic 
clinical variables. Graph-theoretical features condense a 
high-dimensional predictor space into few quantitative 
and interpretable descriptors that can be used in predic-
tion models instead of or in addition to classical clini-
cal predictors in order to improve such models. Such an 
approach may lead to new insights into disease devel-
opment or progression and may even replace the often 
unsuccessful search for individual prognostic biomarkers 
in the high-dimensional space.

In the past decades, the call for a complex system-
based understanding of human disease mechanisms has 
led to a general theory and various application frame-
works of group-level networks, i.e. network inference 
based on the aggregated study cohort. For example, see 
Barabási et  al. [4] for an extensive review on ‘network 
medicine’ and Li et al. [5] for an overview of graph rep-
resentation learning in biology and medicine. However, 
a “one size fits all” approach for network inference may 
wash out the individual-specific systems behaviour. Link-
ing individual-specific patterns of connections rather 
than group-level system behaviour across biological com-
ponents to disease manifestation can not only capture the 

Fig. 1 Illustration of the potential heterogeneity inherent in 5 individual-specific networks derived from a study cohort of sample size 5. Line 
thickness between a pair of nodes indicates the strength of the association (edge weight) within that specific network due to individual-specific 
variable measurements
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heterogeneity of biological system behaviour across indi-
viduals but also pave the way for the detection of novel 
biomarkers for more individualized prediction.

To our knowledge, the potential of using graph-theoret-
ical features of individual-specific networks as predictors 
in clinical prediction models has not yet been systemati-
cally explored and hence the state-of-the-art in this rela-
tively new field of predictive research remains unknown. 
Therefore, we conducted a scoping review [6, 7] to sys-
tematically examine the scientific literature to identify, 
collate and critically appraise methodological approaches 
incorporating individual-specific networks to improve 
and advance prediction modelling of clinical outcomes 
in applied health research. We did not consider studies 
exclusively employing group-level networks and those 
which do not aim at individual outcome prediction.

The remainder of this paper is organized as follows. 
In Section 2, we discuss the methodology of the scoping 
review. The general study characteristics and findings of 
the search strategy are presented in Section  3. Further, 
we present and collate the identified approaches to indi-
vidual-specific network inference, graph-theoretical fea-
ture extraction and their usage for prediction in Section 4 
and conclude with current challenges and future aspects 
of the identified methodology in Section 5.

Methods
Search strategy
We conducted a scoping literature search in the three 
electronic databases PubMed, Embase and Scopus to 
extract peer-reviewed articles published between Janu-
ary 1st, 2000 and August 31st, 2020. The search strategy 
consisted of three sets of terms to cover the research 
intersection of network analysis and prediction model-
ling adequately but also to reduce false positive hits by 
the broad meaning of the term ‘network’. The three sets 
of terms were: 1) terms associated with network analysis, 
2) terms associated with predictive research and 3) exclu-
sion terms (see the Supplementary Material for a detailed 
overview).

Studies met the inclusion criteria if graph-theoretical 
features derived from an individual-specific network 
were considered as candidate predictors in prediction 
modelling in the medical field. Studies were excluded if 
they did not focus on prediction modelling of health out-
comes and did not consider networks constructed for 
single individuals. Therefore, we excluded studies that 
concentrated solely on the descriptive analysis of individ-
ual-specific networks without examining their potential 
association with a clinical outcome or studies consider-
ing group-level networks computed from aggregated 
data. Studies that essentially aimed at predicting network 

behaviour, link prediction or changes in network topol-
ogy or structure were also discarded.

Selection of studies
All studies identified by the search strategy were initially 
screened based on the title and then, after inclusion, 
based on the abstract to determine eligibility. Letters, 
commentaries and conference abstracts were excluded. 
Selected articles were then subjected to a full-text analy-
sis. The first author was responsible for the initial search, 
application of the exclusion criteria, screening of all 
the identified articles and the quality evaluation of the 
included papers. A random subset of studies (consisting 
of 250, 50 and 25 studies in the title, abstract and full-
text screening phases, respectively) was independently 
assessed by three additional reviewers (GH, FM, MS) 
to ensure general validity and reliability of the screen-
ing process and data extraction of the first reviewer. Any 
inconsistencies in selection among the reviewers were 
discussed and resolved to reach a general consensus., We 
refer the reader to the Supplementary Material for a more 
detailed summary of the search strategy and the extrac-
tion process. Reporting adhered to the PRISMA-ScR 
guidelines [7] to ensure methodological transparency.

Results
Search results and study characteristics
A total of 4988 studies was initially retrieved from the 
electronic database search together with the manual 
selection from other sources. After the screening of 
the titles, 488 articles remained and after reviewing the 
abstracts, only 227 articles met the eligibility criteria for 
full-text analysis of which 79 were excluded due to the 
following reasons: (1) construction of non-individual-
specific networks (N = 36), (2) the term “network” was 
used in a different context (N = 17), (3) no association 
with an outcome of interest was considered (N = 17) or 
(4) graph-theoretical features were used as dependent 
variables (N = 9). This left 148 studies (3.0%) out of the 
initial 4988 studies meeting the eligibility criteria of the 
review (see Fig. 2).

Through a synthesis of the sources of evidence, four 
medical domains of application were identified. The 
majority of the eligible studies (N = 129, 87.2%) covered 
neurological research, followed by the fields of psycho-
pathology (N  = 9, 6.1%), genomics (N  = 7, 4.7%), car-
diology (N = 2, 1.4%) and pathology (N = 1, 0.7%). The 
oldest study meeting our inclusion criteria was published 
in 2009, with the number of studies published annually 
increasing steadily thereafter (see Supplementary Fig. 
S1). Most of the studies (N = 100, 67.6%) were published 
after 2015. Out of the 148 included studies, 135 (91.2%) 
were identified as quantitative studies and 13 (8.8%) as 
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qualitative studies (e.g. reviews). Besides the process 
of data acquisition and preparation in applied health 
research, three main topics emerged in the included arti-
cles covering the intersection of network analysis and 
prediction and were addressed separately in the following 
subsections: Section 3.2 focuses on data-driven network 
inference consisting of the individual-specific network 
construction and network sparsification, Section  3.3 

on the extraction of graph-theoretical features and Sec-
tion  3.4 on predictive analytics using graph-theoretical 
features. Main modules in a general workflow of consid-
ering individual-specific networks in prediction mod-
elling and some aspects of their implementation are 
illustrated in Fig.  3. However, a detailed presentation 
of each of the identified analytics for network analy-
sis and prediction modelling as well as their theoretical 

Fig. 2 PRISMA flowchart for the scoping review of articles retrieved by the search strategy

Fig. 3 Main modules of a workflow considering individual-specific networks in prediction modelling and their related aspects of implementation
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properties is beyond the scope of this article. Instead, the 
reader will find useful references throughout this work.

Network construction and sparsification
Notation and concepts
In general, an undirected network (or graph) consists 
of a pair G = (V, E) where V denotes a finite, non-empty 
set of p nodes and E is a subset of V × V containing pairs 
of connected nodes eij ≔ (vi, vj) referred to as edges. In 
directed graphs (digraph), each edge has a direction 
such that eij ≠ eji. In weighted networks, each edge eij is 
associated with a weight wij ≔ w(vi, vj) ∈ ℝ. A subnetwork 
G′ = (V′, E′) is a network such that V′ ⊆ V and E ′  ⊆ E. The 
data structure defining a network is the adjacency matrix 
A = [aij] in which aij = 1 indicates the presence of an edge 
between vi and vj, while aij = 0 indicates its absence. For 
weighted networks aij = wij, and again aij = 0 indicates the 
absence of the respective edge. For individual-specific 
networks, we assume that for each individual s (s = 1, …, 
N) a unique network Gs = (Vs, Es) exists, where N is the 
number of individuals within the study cohort .

Global graph-theoretical features characterize proper-
ties of the entire network, while local features only take 
the information of a smaller substructure of the network 
(e.g. node, module) into account. For example, edge den-
sity is a global graph-theoretical feature defined as the 
ratio of the number of actual connections to the number 
of all possible connections in the network

See Table 1 for an overview of some global and local 
graph-theoretical features identified in the reviewed 
studies.

(1)d =
2 | E |

| V | (|V | − 1)

Construction of individual‑specific networks

ℝepeated measurements per variable per individ‑
ual Depending on the field of research, the nodes 
mainly represented regions of interest (ROIs) in the 
brain, genes or psychotic symptoms (e.g. stress, insom-
nia). In two individual proof-of-concept studies, the 
nodes corresponded to 5-min heart rate variability (HRV) 
segments [8] or ROI in muscle biopsy images [9]. A vari-
ety of methods were identified for defining connectivity 
between pairs of nodes based on data-driven structural 
learning, i.e., estimating the graphical structure from the 
data (see Fig. 4 for a schematic illustration).

The majority of identified studies conducted correlation-
based approaches (see Fig. 4A) using repeatedly measured 
continuous data (e.g. sequential data, time series) to define 
edges between the prespecified nodes [10–27]. In neuro-
logical applications, adjacency matrices most frequently 
consisted of correlation coefficients (N = 69, P = 48.9%) 
(e.g., Pearson product moment correlation coefficient) of 
time series of brain activity (e.g. blood oxygenation level 
dependent (BOLD) signal) or longitudinal cortical thick-
ness between pairs of ROIs [16]. Fisher’s r-to-z transfor-
mation was applied to Pearson correlation coefficients to 
achieve approximate normality [14, 21, 26, 28, 29]. How-
ever, correlation-based inference of the network structure 
can be subject to interfering effects (e.g. outliers, noise) and 
can only capture pairwise information. Thus, variations of 
the Pearson correlation such as spatial smoothing have 
been proposed in which the time series corresponding 
to a region is obtained by a linear mixture of neighbour-
ing time series or segmentation of the BOLD time series 
into subdivisions (e.g. snapshot graphs, sliding-window 
approach) [10, 30–32]. The sliding window or snapshot 

Table 1 Explanation of the graph-theoretical features used in ≥10 prediction modelling studies. Local features can be averaged over 
all nodes to obtain the global-scale counterpart

Graph-theoretical feature Abbrev. N Scale Explanation

Clustering coefficient CC 82 Both Ratio of the connected triangles to the maximum possible number of triangles

Characteristic path length CPL 60 Both Average of all shortest paths over all pairs of nodes

Global efficiency GE 55 Global Average of the reciprocals of the shortest path lengths

Local efficiency LE 45 Local Global efficiency applied to the neighbourhood of a node

Small-world index SWI 42 Global Ratio of the CC normalized by that expected in a random graph and the CPL normalized 
by that expected in a random graph

Degree Dg 38 Local Number of links of a node

Betweenness centrality BC 36 Local Ratio of all shortest paths with and without the node

Edge weight EW 34 Local Strength of the connection between two nodes

Modularity M 21 Global Degree to which nodes tend to form relatively independent modules

Density Ds 18 Global Percentage of observed connections from the maximum number of possible connections

Assortativity A 10 Global Pearson correlation coefficient of degree between pairs of connected nodes
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graph approach only consider small time windows of the 
full time series yielding a set of graphs Gs = {Gs1, …, Gst} for 
individual s and t time windows. Then, a presumably more 
robust final version of the individual-specific network can 
be obtained by assessing the frequency of appearance of 
each edge in each Gsj for j = 1, . . , t because only a few of 
these snapshot graphs Gsj are influenced by disruptions of 
the time series by noise artefacts [10]. Some studies also 
employed several modifications of the standard Pearson 
correlation coefficient to define connectivity [33–37].

An extension to the bivariate determination of connectiv-
ity were partial correlation-based networks [38, 39]. Partial 
correlation coefficients describe the correlation between 
two variables that cannot be explained by associations of 
the variable pair with other variables. In the case of non-
normality of the data, a transformation can be applied 
prior. Another approach to control for covariates while 
accounting for temporal information is vector autoregres-
sive (VAR) modelling that regresses the dependent varia-
ble measured at time point t on the lagged dependent vari-
able and the predictors evaluated at time point t − 1. VAR 
was only employed in psychological studies [40, 41]. This 
way directed individual-specific networks were obtained 
such that an edge weight wij associated with a directed link 
from node vi to node vj corresponds to the respective VAR 
coefficient in the model. The VAR model and resulting 
directed networks implied that in general wij ≠ wji. Only 
2 out of the 135 quantitative studies considered directed 
networks estimated using VAR models [40, 41].

A recently introduced network-based representation 
referred to as a visibility graph allows to derive indi-
vidual-specific networks from time series data if avail-
able per patient in the cohort [42]. A time series with n 
sequentially ordered data points, {xt}t = 1, …, n is trans-
formed into a network in which each time point t rep-
resents a node connected to time point s if the visibility 
criterion

holds true for an additional data point xu placed between 
them. Applications of visibility graphs were mostly found 
in context of EEG data [43–45] but also in a cardiologic 
study dealing with human heart rate variability time 
series to differentiate between wake/sleep stages [46] 
and patients of spinal cord injury [47]. A more thorough 
overview of concepts and algorithms to map time series 
data into networks can be found in Silva et al. [48].

Alternatively, various distributional similarity approaches 
were used to evaluate the similarity between two distri-
butions corresponding to a pair of nodes (Jensen-Shan-
non divergence [49], Kullback-Leibler divergence [50], 
dynamic time warping [8], generalized measure of asso-
ciation [51]). Zhang et  al. [49] employed a kernel-based 
on the Jensen-Shannon divergence to measure the simi-
larity of multivariate time series, whereas Dong et al. [8] 
assessed similarity between pairs of time series based on 
dynamic time warping.

xu < xs + (xt − xs)
s − u

s − t

Fig. 4 Distribution of (A) individual-specific network construction and (B) sparsification approaches in the identified quantitative studies
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Single measurement per variable per individual The 
approaches presented so far are only applicable if 
repeated data points of all variables per individual are 
available. In the identified studies in which all inde-
pendent variables were measured only once for an indi-
vidual, individual-specific network inference was mainly 
based on quantifying each individual’s contribution to 
the overall group-level structure either by leave-one-out 
network construction (LOONC) [52, 53] or by a differ-
ential perturbation approach [54–59]. Strictly speaking, 
these two approaches do not involve individual-level 
parameter inference per se but aim to derive individual-
specific networks from group-level networks regard-
less of the group-level network inference procedure. 
More precisely, LOONC removes a single individual 
from group-level network construction and measures 
the degree of change in all edge weights caused by the 
removal against the full group-level network. Kuijjer 
et  al. [52] proposed to reversely engineer individual-
specific networks by linear interpolation between each 
edge weight w(Cint )

ij  of the group-level network (using 
all NCint observations in the study cohort of interest 
Cint) and the corresponding edge weight w(Cint\q)

ij  in the 
network using all observations except an individual of 
interest q to obtain the edge weight estimate w(q)

ij  for a 
single individual by

where N can be a generic or individual-specific weight 
but is usually set to NCint . In contrast, differential per-
turbation analysis quantifies the extent to which an edge 
weight is perturbed by the addition of an individual com-
pared to a reference network constructed independently 
from the cohort of interest. Edge weights of the individ-
ual-specific network Gq for individual q are determined 
by computing the absolute difference in edge weights 
between the network computed from the reference pop-
ulation augmented by that individual (augmented net-
work) and the reference network as

where w
Cref

ij  denotes the edge weights in the reference 
network and w

(

Cref ∪q
)

ij  in the augmented network.

Neither of the two presented approaches to individual-
specific network construction for single measurements of 
each variable per individual relies on a particular infer-
ence method for the group-level networks. Equation (2) 
and (3) require the edge weights of the estimated group-
level networks but do not specify how these networks 
have to be inferred. Perturbation analysis in contrast to 

(2)w
(q)
ij = N

(

w
(Cint )

ij − w
(Cint\q)
ij

)

+ w
(Cint\q)
ij

(3)w
(q)
ij = w

(

Cref ∪q
)

ij − w

(

Cref

)

ij

LOONC, however, depends on an additional reference 
network to obtain individual-specific edge weights.

In the study by Zhu et  al. [54], a group-level reference 
network for the differential perturbation analysis was 
inferred using Pearson correlation coefficients of gene 
co-expression data of NCref

 cancer-free individuals of a 
reference cohort Cref. An augmented network for an indi-
vidual with cancer q was constructed by including the 
expression data of that individual in the reference cohort 
(Cref ∪ q). The approach was also found with networks 
constructed using partial correlation [57]. In Kuijjer 
et  al. [52], LOONC was implemented using group-level 
networks derived from Pearson correlation and mutual 
information, a non-linear measure of association, while 
Lopes-Ramos et al. [53] used biologically motivated regu-
latory networks. Note that since both equations quantify 
the inferred difference in edge weighting, the obtained 
individual-specific weights can also assume values out-
side the boundaries of the underlying statistic of the 
group-level networks. For example, edge weights in the 
individual-specific networks derived from LOONC or 
differential perturbation using Pearson correlation can 
yield values <− 1 and > 1 (see Eq. (2–3)). Both approaches 
were only found in cancer research [57, 59].

Only one of the identified studies using single measure-
ments per variable did not conduct LOONC or perturba-
tion analysis. Xie et  al. [39] proposed conditional Gauss-
ian graphical modelling with mean and covariance matrix 
depending on an individual’s covariates while assuming 
homogeneous network structure across individuals in order 
to infer individual-specific networks. Hence, differences in 
edge weights between individuals are covariate-dependent.

Domain‑specific techniques In neurological applica-
tion, certain high-resolution imaging methods for data 
acquisition generate domain-specific data structures that 
require a specifically designed methodology of network 
inference. For instance, tractography detects fibre path-
ways linking different anatomical brain regions [60–68]. 
Electroencephalographic (EEG)-based connectivity was 
predominantly assessed by metrics such as phase lag 
index, coherence-based similarity, or synchronization 
likelihood index [69–72]. The interested reader is referred 
to the references for more details on these applications.

Techniques for network sparsification
Network sparsification removes edges from a network 
with the intent to optimise the inference of the ‘true’ 
system by the omission of “spurious” edges, improve 
interpretability and enable computational feasibility in 
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construction and further processing of the network. In 
addition, the structural and topological properties of 
the network might be improved by removing seemingly 
spurious connections i.e. edges that are erroneously gen-
erated during network inference. Given an undirected 
network G = (V, E), sparsification yields a subnetwork 
G ’  = (V’, E’) of G with fewer edges such that |E| >  ∣ E′∣.

More than half of the quantitative studies employed 
network sparsification (N = 74, 54.8%), followed by stud-
ies analysing non-sparsified networks (N = 58, 43.0%) 
and 3 studies that considered both approaches (2.2%). 
As illustrated in Fig.  4B, the most popular strategy was 
proportional thresholding (N = 37) in which a common 
sparsity threshold (e.g. in terms of density) is defined for 
all individual-specific networks, and edges are removed 
sequentially in each network in ascending order of their 
edge weights until the prespecified sparsity threshold 
is reached [10, 21, 23–25, 29, 58, 73]. The second most 
common approach constituted weight-based threshold-
ing (N = 31) in which one common weight threshold is 
defined for all individual-specific networks such that all 
edge weights within an individual-specific network fall-
ing below (or above) the threshold are removed (Fig. 5) 
[8, 11, 67, 68, 74, 75]. The majority of the weight-based 
approaches employed binarization of all individual-spe-
cific networks (N = 21) according to the selected weight 
threshold τ such that w′

ij = 1 if wij > τ and 0 otherwise [23, 
27, 29, 75, 76]. Edges with negative weights were often 
removed due to their questionable interpretability or 
the inability to compute some graph-theoretical features 
from them (e.g. clustering coefficient or characteristic 
path length), omitting potentially meaningful inverse 
relation between nodes. In N = 6 studies, a sparse rep-
resentation of a partial correlation-based network was 
achieved individually by including an Lq-norm (q ∈ {1, 2}) 
regularization penalty to the network inference process 
in order to reinforce strong connections across individu-
als and drive weak connections towards zero [36, 37, 39, 
77, 78]. Due to the individually imposed regularization, 
inter-subject variability might then be inherently induced 

according to Wee et  al. [36]. Hence, they imposed an 
additional group constraint to encourage a common net-
work topology across the study cohort. Other studies 
selected a fixed penalty term for all individual networks 
which is why this approach can also be seen as a special 
case of weight-based thresholding [34, 37]. Group-level 
edge elimination for each individual-specific network 
was carried out by univariate testing of the edge weights 
(N = 17), either by permutation testing to control the 
probability of including spurious connections at 0.05 or 
by only including edges with weights significantly differ-
ent from zero [13, 15–19, 79–81]. Then all those edges 
that were characterized as spurious at the group level 
were removed from all individual-specific networks.

The implemented strategy of network sparsifica-
tion across studies varied substantially in terms of: 
the sparsification method, the number or combina-
tion of investigated methods, the selected sparsifica-
tion threshold(s) and the reasoning behind the chosen 
strategy. It was not uncommon for studies to combine 
several sparsification strategies [12, 21, 22, 24] or to 
examine several strategies separately [33, 34, 37]. Fur-
ther, all of the identified approaches to network spar-
sification were dependent on the careful selection of a 
thresholding parameter by the researcher. To circum-
vent the arbitrariness associated with the selection of 
a single threshold, the majority of studies employed 
multiple thresholding, meaning that a range of cut-off 
values with small incremental steps was examined such 
that a series of networks Gs :=

{

Gs,τk

}

k=1,...,T
 for each 

individual s (s = 1, …, N) was obtained with T thresh-
olds τk where k = 1, …, T [65, 73, 76, 82]. For an illus-
trated example of multiple thresholding, see Fig.  6. 
Only one study performed weight-based thresholding 
with a single, arbitrary threshold [83].

In general, there was considerable heterogeneity in 
the selection of the optimal threshold value for sparsifi-
cation in the studies evaluated:(1) a threshold yielding a 
small-world index (see Table 1 for definition) above 1 of 
the networks was chosen [65, 84], (2) an arbitrary fixed 

Fig. 5 Schematic overview of network inference with network construction-based on repeated measurements of p variables of an individual i in 
the study cohort and sparsification using a single threshold value
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threshold was chosen [39], (3) the differently sparsified 
networks corresponding to a single individual Gs were 
fused into an average individual-specific network [25], (4) 
the numerical integral or average of the graph-theoretical 
feature over the range of network Gs was computed [25, 
56, 64, 65, 76], (5) a threshold generating the best results 
in terms of classification accuracy or association with the 
outcome was selected [8, 29, 34, 51], and (6) further pro-
cessing was done including varying network sparsity lev-
els [24, 75, 85].

According to the identified studies conducting net-
work sparsification, the choice of the threshold is crucial 
to balance between noise removal (spurious edges) and 
preservation of ‘true’ edges. For instance, proportional 
thresholding may leave edges with very low edge weights 
assumed spurious, whereas weight-based thresholding 
yields different densities across the individual-specific 
networks which then may affect other graph-theoretical 
features and in turn, hinder comparability across net-
works. While the evaluated studies often adequately 
addressed the selection of the threshold parameter 
weight-based and proportional thresholding, ‘hidden’ 
threshold parameters in regularized network inference 
(i.e. penalty strength) or univariate testing (i.e. signifi-
cance level) were rarely further investigated.

Graph-theoretical feature extraction
Appropriate features describing the network after its 
construction reduce the dimensionality of the network, 
capture aspects of the graph structure and may consti-
tute valuable biomarkers for clinical outcomes in applied 
health research. The connectivity information within a 
network can be characterized on different scales: globally 
or locally. While global features capture properties of the 
whole network, local features describe their characteris-
tics in defined subareas such as nodes, edges or modules 
(i.e. clusters of nodes).

The majority of quantitative studies extracted both, local 
and global graph-theoretical features (N = 56, 41.5%), fol-
lowed by studies only focusing on local features (N = 44, 
32.6%) and studies interested only in global graph-theo-
retical features (N = 35, 26.0%). The average number of 
computed global graph-theoretical features describing 
different aspects of the network across all studies was 3.19 
with a standard deviation (SD) of 4.69 and a range of 0 to 
44, while the average number of local features was com-
paratively small with a mean of 1.62 and a SD of 1.72 and 
a range of 0 to 10. The most frequently examined graph-
theoretical features were the clustering coefficient (CC) 
(N = 84, 62.2%) [86] quantifying the tendency of cluster-
ing within the network and the characteristic path length 

Fig. 6 The variability of an individual-specific network for an individual s depending on three different threshold values with τ1 ≪ τ2 ≪ τ3 yielding 
the network set Gs in comparison with no sparsification
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(CPL) (N = 61, 45.2%) defined as the average of all short-
est paths over all pairs of nodes in a network. A total of 57 
different graph-theoretical features were identified. The 
most commonly used metrics (examined in more than 
10 studies) are briefly explained in Table 1. More detailed 
descriptions are available elsewhere [87]. In some stud-
ies, graph-theoretical features were normalized by divid-
ing them by the same metric computed from a randomly 
generated network of identical size, density and/or degree 
distribution to account for differences in network size and 
density, introducing additional computational complex-
ity. Largely, studies (N = 31, 23.8%) examined the normal-
ized clustering coefficient and characteristic path length 
obtained by dividing the CC and CPL by the CC and CPL 
of multiple randomly generated networks [18, 20, 79, 81, 
84, 88]. For instance, Imms et al. [89] highlighted the use 
of normalized CC and CPL as diagnostic biomarkers to 
differentiate between controls and patients with traumatic 
brain injury.

Feature selection and prediction modelling
Around a third of the 135 quantitative studies (N = 46, 
34.1%) conducted implicit techniques for prediction 
i.e. elementary statistical analytics (e.g. hypothesis test-
ing, correlation analysis) to identify potential biomark-
ers associated with the outcome [8, 59, 84, 90] while the 
remaining studies (N = 89, 65.9%) conducted prediction 
modelling using explicit techniques i.e. methods with the 
possibility of predicting for an unseen individual. Among 
the latter, about two thirds aimed at the supervised iden-
tification of disease subgroups using graph-theoretical 
features as independent variables (N = 57, 64.0%) and one 
third prognosticated a clinical outcome (N = 32, 36.0%). 
Despite the similarity of the methodological frameworks, 
the evaluated studies turned out to be very heterogene-
ous regarding feature selection, sample size, outcome 
types, the outcome modelling technique and the valida-
tion analytics employed.

Feature selection Feature selection approaches iden-
tified in the studies used to define an optimal subset of 
features can be classified into filter methods (e.g. univari-
able testing, Pearson correlation) and wrapper methods 
(iterative optimization of a classification algorithm) but 
hybrid approaches were also proposed [83]. The majority 
of studies used filter methods to remove features before 
training a classifier or a regression model [20, 21, 91]. 
Wrapper methods (e.g. support vector machine (SVM) 
with recursive feature elimination (RFE), repeated selec-
tion across leave-one-out cross-validation (LOOCV) 
runs) either iteratively reduced the features based on 
a ranking score (e.g. feature importance) of the feature 
in the prediction algorithm to optimize classification 

accuracy [25, 63] or selected features with the most dis-
criminative ability out of the full set of features based on 
repeated least absolute shrinkage and selection operator 
(LASSO) feature selection across LOOCV runs [77].

Prediction modelling The median sample size in neu-
rology was 68 (interquartile range (IQR) 41 to 127), in 
genomics 445 (IQR: 333–761), and in pathopsychology 
62 (IQR: 41–97) as illustrated in Fig.  7A. In pathology, 
only one study with a sample size of 70 was identified and 
two studies in cardiology with a sample size of 55 and 389 
individuals, respectively. The most commonly investi-
gated types of dependent variables across all 135 quan-
titative studies were binary (N = 86, 63.7%), followed by 
continuous (N = 37, 27.4%), categorical (N = 14, 10.4%) 
and lastly, time-to-event (N = 4, 3.0%) with some stud-
ies assessing multiple outcome types (N = 6, 4.4%). The 
considered statistical modelling techniques employed for 
the task of prediction varied accordingly. Hence, for the 
sake of clarity, we will distinguish between data model-
ling and algorithmic modelling approaches according 
to Breiman [92] (Table  2). The former group contains 
modelling techniques that connect covariates to the out-
come variable by a stochastic model (e.g. linear or logis-
tic regression), while approaches belonging to the latter 
group use an algorithm to predict the outcome from the 
covariates (e.g. SVM, random forest). For a complete list 
of the grouping of the identified methods, we refer to the 
supplementary material. In general, SVMs were the most 
popular approach (N = 40, 45.0%) [27], followed by linear 
regression (N = 25, 28.0%) [19, 22, 28, 64, 67, 81, 93, 94], 
random forests (N = 12, 13.5%) [15, 41, 58, 72, 95, 96] and 
logistic regression (N = 9, 10.1%) [41, 61, 65, 97, 98].

The majority of quantitative studies built discriminative 
classifiers for discrete outcome labels mainly using only 
local graph-theoretical features (see Table 2 and Fig. 7B). 
The most common approach extracted local graph-the-
oretical features with filter-based feature selection and 
then trained a linear SVM for outcome classification [16, 
30, 37, 62, 77, 83]. A popular choice for feature selection 
before SVM training and classification was univariable 
feature screening of statistical significance [10, 13, 14, 
34, 36, 74, 78]. However, this method is known to suffer 
from conceptual shortcomings [99]. In the case of multi-
ple thresholding [74], the use of multiple data modalities 
[14] or the extraction of multiple local features [32, 100] 
for classification, a supervised multiple-kernel learning 
approach was adopted to fuse layers of features to predict 
disease subgroups. A subset of studies even trained mul-
tiple classifiers for the binary classification of the pres-
ence of disease (e.g. SVM, k-nearest neighbour, decision 
tree, random forests, Naïve Bayes, Adaptive Boosting) 
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[11, 26, 35, 69, 96, 101]. For instance, [26] stated to have 
built 67 classifiers to differentiate between children 
with autism spectrum disorder and age-matched con-
trols and 23 advanced regression models for phenotypic 
prediction.

In terms of model validation, nearly all diagnostic stud-
ies reported model discrimination and performance of 
the classifier in terms of cross-validated accuracy, sen-
sitivity, specificity and the area under the receiver oper-
ating characteristic curve (AUC) [12, 23, 25, 27, 70, 77]. 
Some studies reported estimated predictive accuracy 

solely utilizing correlation between the predicted and 
the true values [93, 96]. In a few studies, performance 
was claimed to exceed previous approaches, but such 
a claim was often unsubstantiated and solely based on 
the comparison between their overall accuracy or AUC 
and that of the existing studies without consideration of 
other study factors (study design, set of variables, sample 
size, heterogeneity between study cohorts) [26, 102, 103]. 
Imbalanced distribution of class labels was stated as an 
issue for training accurate classifiers but was accounted 
for in some studies by assessing the balanced accuracy 
(i.e. the arithmetic mean of sensitivity and specificity) 
[58, 70, 74, 100]. Further, calibration analysis as a reliabil-
ity assessment of the predicted probability of the event 
actually occurring with the observed relative frequency 
by the means of a calibration curve was rarely reported in 
any of the evaluated studies.

Regression-based modelling was mainly performed 
by linear regression (N = 28, 60.7%), followed by logis-
tic regression (N = 8, 17.4%), Cox proportional hazards 
regression (N = 2, 4.3%) and mixed-effects modelling 
(N = 2, 4.3%). In case global graph-theoretical features 
were extracted from each individual-specific network or 
a continuous outcome type was of interest, regression-
based analytics were the preferred course of action (see 
Table  2). The majority of the studies used only graph-
theoretical features as independent variables and rarely 
adjusted for clinical characteristics (e.g. in [15, 18, 21, 22, 
67, 73, 80, 97]). Even fewer studies adjusted for network 
size and density within the regression model to account 
for their inter-subject differences affecting the extracted 
graph-theoretical features [79, 81]. Model adjustment 
by clinical information was more common in studies 

Fig. 7 A Distribution of sample size across the identified studies; B Distribution of type of feature extracted for prediction modelling

Table 2 Types of prediction modelling approach identified in 
the 89 studies conducting advanced statistical procedures based 
on graph-theoretical features

*Continuous variables stated as mean (standard deviation, SD). Categorical 
variables represent the number of approaches identified in the studies

Algorithmic modelling Data modelling

Total 56 46

Sample size 137.75 (171.46) 168.54 (232.62)

Graph-theoretical scale

 Global 9 23

 Local 45 20

 Both 2 4

Outcome

 Continuous 5 21

 Binary 46 20

 Categorical 5 3

 Time-to-event 0 2
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investigating the association of global graph-theoretical 
features with an outcome of interest rather than studies 
interested in local features. Batalle et al. [61] stated that 
the graph-theoretical features included in addition to the 
clinical-epidemiological covariates even proved to yield 
a higher contribution in terms of statistical significance 
after separate (blockwise) stepwise backward elimina-
tion of variables. However, clinical variables were not 
only used to adjust the model. For example, Xie et al. [39] 
proposed a two-stage approach consisting of first, deriv-
ing individual-specific network models from conditional 
Gaussian graphical models dependent on an individual’s 
clinical features and second, the clinical outcome model 
to estimate the graph-theoretical parameters’ effects 
on an outcome of interest adjusted by the same clinical 
features.

The sample size of studies conducting regression-based 
methods was slightly higher and showed a significantly 
greater variance in comparison with the sample size stud-
ies employing classification-based methods (Table  2). 
Furthermore, possible overfitting of predictive data mod-
elling was rarely directly addressed as in the study by 
Batalle et al. [61] who reduced preselected graph-theoret-
ical features into a single summary index or in Anderson 
et al. [98] who restricted the variables which entered the 
model to 4 to have at least 5 events per variables [104].

Only three of the 130 quantitative studies conducted Cox 
proportional hazards model to model a time-to-event 
outcome [66, 77, 79]. Tuladhar et al. [66] identified global 
efficiency instead of conventional MRI biomarkers as 
a predictor of all-cause dementia with lower global effi-
ciency associated with a higher risk of dementia onset 
while adjusting for a set of clinical features. Similarly, 
Liu et  al. [77] stated that none of the traditional clini-
cal features was consistently selected in the majority of 
the LOOCV runs for overall survival time of high-grade 
glioma patients and out of the three most important 
selected features, two were graph-theoretical features.

Discussion
In this scoping review, we identified the state-of-the-
art statistical methodology currently employed when 
using individual-specific networks for prediction in 
medicine and applied health research. We found a wide 
range of applications and methodological concepts 
in our review. We collated the key concepts identified 
across the 148 included studies considering three main 
aspects of modelling with individual-specific networks: 
(1) individual-specific network inference, (2) extrac-
tion of graph-theoretical features, and (3) prediction 

modelling. Within each of these aspects, there is con-
siderable methodological heterogeneity in the imple-
mentation, use, areas of application, and reporting. 
However, all approaches outlined in this work are in 
principle generalizable to any field of research and may 
be suitable to answer various prognostic or diagnostic 
research questions in medicine.

Individual-specific networks were frequently con-
structed by evaluating correlations between repeated 
measurements of pairs of variables (e.g. time-series 
data of two brain regions). Here we identified two main 
approaches based on bivariate and partial correla-
tion analysis, some variants thereof, and some further 
approaches that were often tied to the process of data 
acquisition itself. Furthermore, the recently proposed 
visibility graphs offer a flexible approach to individual-
specific network inference in relation to time series 
data. However, sometimes several time series are avail-
able per individual so that the individual-specific net-
work is ambiguous, which leads to a further layer of 
complexity. In the absence of repeated measurements 
per variable, two novel and promising approaches were 
LOONC and differential perturbation. Despite their 
flexibility and ease of application to continuous inde-
pendent variables, a big challenge in the latter two 
approaches remains the considerable computational 
burden, in particular in high-dimensional data settings, 
due to the repeated computation of the augmented net-
work for each individual [57].

In the pursuit to separate ‘real’ from ‘spurious’ con-
nections, in addition to the need for a reduced compu-
tational burden, network sparsification has become an 
important aspect of network analysis. However, spar-
sification not only depends on the selected technique 
but, more importantly, also on the chosen threshold, 
and hence, often multiple thresholds were employed 
to reduce the impact of a possibly flawed choice, 
yielding a sequence of networks per individual with 
varying edge weights. Various approaches were then 
applied to deal with the sequence of networks; numer-
ical integration or averaging were the most popular 
approaches together with a threshold selection yield-
ing the best AUROC. Although the majority of stud-
ies refrained from using a single, arbitrary threshold 
value, multiple edge weighting schemes and sparsifi-
cation strategies were seldom guided by model fit. In 
addition, sensitivity analyses evaluating the impact 
of threshold choice on predictive performance were 
expected but hardly found.

For the extraction of graph-theoretical features, 
we found a set of global and local features (e.g. see 
Table 2) that were used in many studies across research 
fields. For the most part, the clustering coefficient, the 
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characteristic path length and the edge weights were 
examined in the search for potential biomarkers of 
the outcome of interest. Furthermore, the extraction 
of graph-theoretical features did not follow a deliber-
ate process but often consisted of a greedy collection of 
network characteristics i.e. the computation and out-
come-associated investigation of as many graph-theo-
retical variables as possible.

Despite the multiplicity of identified methodologi-
cal approaches for individual-specific network inference 
across fields of application, the number of studies that 
proposed models actually intended to provide clini-
cal outcome prediction for future individuals was quite 
limited, and most models were estimated to provide a 
proof-of-concept that graph-theoretical features may in 
principle be useful for outcome prediction. The lack of 
deployable clinical prediction models could be either a 
consequence of the fundamental challenges in network 
inference methods shared by all areas of application, in 
particular concerning the lack of a gold standard for net-
work construction and sparsification, or of the general 
unawareness in how individual-specific networks can be 
exploited for prediction.

Through the systematic collation of the identified ana-
lytical approaches, we found some areas interesting for 
future research and which may help to reduce some of 
the arbitrariness of some analytical choices.

First, more research is needed to reduce the compu-
tational burden related to the construction and analysis 
of relatively large and dense networks and the inherent 
computational complexity of graph metric computation. 
Large omics studies generate substantial amounts of 
data which can lead to major computational difficulties 
in network inference and further analysis, if each node 
in the network represents a single variable. In particular, 
LOONC and differential perturbation approaches would 
suffer in such a data setting due to the computational 
burden caused by the repeated network computation for 
each individual in the study cohort. One possible strategy 
for reducing network complexity and facilitating network 
analysis and feature extraction could be node aggregation 
over groups of connected, non-independent nodes (mod-
ules). In this sense, variables could be combined as mod-
ules either through unsupervised clustering algorithms 
or through biological background knowledge, so that 
each node represents a group of independent variables 
and no longer a single variable.

Second, network sparsification and multivariable model 
estimation could be linked more closely by guiding the 
search for a suitable threshold or the integration over 
several thresholds by the model fit. Multiple threshold-
ing yields a set of sequential graph-theoretical estimates 
of the networks that are computed over a fine grid on 

a continuous domain using incremental steps between 
threshold values (e.g. grid searching). Ideas from func-
tional data analysis could be transferred to the area of 
modelling with individual-specific networks. Briefly, 
instead of choosing a threshold that provides univari-
ably optimal prediction performance, or integration over 
multiple pre-specified thresholds with equal weights of 
each threshold, one could interpret the individual-specific 
sequence of graph-theoretical features corresponding to 
the set of sparsified networks Gs :=

{

Gs,τk

}

k=1,...,T
 as a 

functional data predictor. Then, one may define a flexible 
weighting function of τk, f(τk), through outcome-guided 
calibration to optimize clinical prediction. Consequently, 
such an analysis would also yield an estimate of the relative 
importance of different thresholds for network sparsifica-
tion. Alternatively, carefully conducted sensitivity analyses 
would allow evaluating to what extent the reported results 
depended on the choice of the selected threshold value in 
particular for studies continuing the search for the optimal 
threshold parameter by univariate analysis.

Further, the comparison of networks of varying sizes 
and edge densities can impose issues for prediction 
modelling since some graph-theoretical features are 
confounded by them [80]. The inclusion of these two 
features regardless of ‘significance’ may reduce the mag-
nitude of bias, and improve prediction performance and 
explainability of such models [105]. Omission of these 
confounding variables could mask the actual effects of 
interest in model explanation. Generally, graph-theo-
retic features are inherently associated with each other, 
and more research is needed to better understand these 
associations.

In contrast, a reoccurring problem of multivariable 
model building was found in the evaluated studies: 
“univariable prefiltering” of variables in which only var-
iables with a statistically significant association with the 
outcome are included in the model [106, 107]. However, 
a p-value above the statistical significance threshold of 
5% is not sufficient evidence for the lack of an effect of 
the independent variable [108]. The popularity of pre-
filtering across the evaluated studies can presumably 
be traced back to the greedy collection of graph-theo-
retical features or to a disproportional number of local 
graph features that were obtained relative to sample 
size. Since the actual goal of univariable preselection 
was often a considerable reduction of the number of 
independent variables proportional to the sample size 
to seemingly avoid overfit, defining a minimum basic 
set of features (MBSF) to investigate may be beneficial 
when network analysis is employed for prediction. The 
identification of such an MBSF, however, is not an easy 
task and may require investigations across a range of 
applications embedded in the respective research fields.
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Lastly, future studies should investigate the added 
benefit of graph-theoretical features in addition to 
clinical variables so as not to examine their clinical 
utility separately from traditional variables and hence, 
improve existing clinical prediction models. We have 
seen that graph-theoretical variables were mostly exam-
ined independently, which was partly due to the rela-
tively low samples across the evaluated studies but also 
due to the dominant preference of algorithmic classifi-
cation approaches with local graph-theoretical features, 
where clinical information was largely ignored. In some 
studies, in which graph-theoretical features were exam-
ined together with clinical variables, these even turned 
out to be stronger predictors than the traditional set 
of clinical variables. It remains elusive if this could be 
explained by publication bias or demonstrates the clini-
cal relevance of graph-theoretical features.

Research on the aforementioned points is essen-
tial to establish a state-of-the-art and to provide more 
evidence-based guidance in using individual-specific 
networks for the prediction of clinical outcomes to 
applied researchers. Despite the identified aspects for 
future research, our scoping review is subject to some 
limitations. First, we may have missed some relevant 
applications due to the lack of standardized terminol-
ogy to describe the intersection of network analysis (in 
particular approaches to construct individual-specific 
networks) and prediction modelling but also because 
of the ambiguity of the term ‘network’. Secondly, by 
limiting our study to applications in medicine and 
health research, we may not have captured studies that 
employed individual-specific networks in which the 
individuals do not represent patients but other individ-
ual entities. Thirdly, since the screening of 4988 studies 
and extracting data for the 148 articles included in this 
review was laborious, some time passed between iden-
tification of studies and completion of data extraction. 
Nevertheless, we decided not to update our search to 
include more recent articles (i.e. published from August 
2020 onwards) because we do not believe that there 
were substantial changes in practice in the interven-
ing time. Last but not least, this review focused on the 
use of individual-specific network analysis for predic-
tion which is why existing refinements of the presented 
methods for network construction and extraction of 
graph-theoretic ones might not have passed the inclu-
sion criteria of our search strategy.

At this juncture, it is important to emphasize that we 
have not assessed the quality of included studies and did 
not perform a risk of bias assessment. This was done in 
agreement with the general guidelines on conducting 
a scoping review. Consequently, our review is unable to 
make definitive recommendations for practice but rather 

describes the current methodological practice and possi-
ble areas of future research [7, 109].

Conclusion
Network analysis offers a flexible tool for personalized 
medicine, hence prediction with individual-specific net-
works is an emerging field full of potential for future 
research. The application in clinical research is still in its 
infancy but our findings can strengthen the methodological 
conduct to incorporate individual-specific network analy-
sis in predictive tasks. The framework still requires further 
refinement, and research must cover statistical, compu-
tational and application-specific aspects. In addition to 
methodological advances, comparative studies of proposed 
methodologies are needed to understand how methods 
compare and which method works best in a specific setting. 
This may eventually lead to establishing a state-of-the-art 
in this novel and fascinating scientific arena located at the 
cross-section of statistics, computer science and medicine.
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