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A B S T R A C T   

The energy use in buildings is highly influenced by outdoor temperature changes. In the contest of nowadays 
climate change, its impact on the energy sector is important and needs to be assessed. This study investigates how 
the heat consumption (HC) of the existing regional building stock, located in a temperate climate in the Northern 
part of Europe (Belgium), will be influenced by future climate changes. First, the Seasonal Auto-Regressive In-
tegrated Moving Average (SARIMA), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models 
are used to predict the temperature until 2050 from historical data. Second, the UK Met Office equations are 
applied for computing the heating degree-days (HDD) considering the base temperature of 15◦C. Finally, the HC 
of this building stock is projected until 2050 using the degree-days (DD) method. The decrease in HDD is about 
− 11.76% from 2012 to 2050. The HC reduction, calculated at the regional scale, is reaching − 8.82 %, − 10.00%, 
and − 11.26% for respectively residential, tertiary, and industrial buildings. The calculated HC is mapped on 
municipality, urban region, and province scales. The produced maps will help decision-makers set up efficient 
energy management strategies. The used methods can be replicated in other regions with the same kind of data.   

1. Introduction 

The actual building stock in Europe represents 40 % of its total en-
ergy consumption and is also responsible for 36% of its CO2 emissions 
(European Commission, 2017). The majority of European buildings are 
more than 50 years old amongst which nearly 75 % have very low en-
ergy efficiency (European Commission, 2018). Therefore, sustainable 
energy systems and management must be developed for decreasing the 
heat consumption (HC) of buildings over time. Buildings’ HC is influ-
enced by outdoor temperatures and thus will be impacted by climate 
change. Forecasting the level of HC increase or decrease related to 
climate change at a regional scale is becoming relevant to properly 
managing energy uses in existing buildings stocks (Cholewa et al., 
2021a). Thus, it is necessary to answer questions about how much heat 
will be consumed in the future and which factors must be considered to 
take into account the likely effects of climate change on buildings’ HC. 

This research studied the influence of climate change on the build-
ings’ HC up to 2050 for nearly 1.7 million buildings, in Wallonia 
(Belgium), under a temperate climate in the Northern part of Europe. To 
achieve this goal, historical maximum and minimum temperature data 

from 1901 to 2019 are used considering the base temperature of 15 ◦C 
mostly used in Belgium (RMI, 2021). Innovative statistical models 
including machine learning (ML) and deep learning (DL) models are 
widely used to forecast time-series data such as temperature. Due to the 
rapid development of these new technologies, ML and DL models are 
known to produce realistic predictions. This article will compare 
different methods of local temperature forecasting and use the best 
model for our case study, to assess future temperature change effects on 
the HC of the studied building stock. 

The innovation of this study is the evaluation and analysis of the 
impact of climate change on HC of a regional building stock including a 
huge database of nearly 1.7 million buildings. Contrary to many studies 
that consider one or few buildings, the authors developed a reproducible 
methodology for HC forecast starting from cadastral data and raw 
temperature data of a big area which make it possible to assess climate 
change on energy use at a regional scale. Moreover, all the building 
types present in the studied Region, namely residential, tertiary and 
industrial buildings, are considered. The methodological innovation of 
this research consists of combining an artificial intelligence (AI) model 
with other recognized scientific methods to produce decision support 
tools for territorial energy management. The HC visualization of the 
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whole regional building stock on different mapping scales is performed, 
and its usefulness for efficient energy management and planning is 
shown. The results are used to identify the relative distribution of the 
predicted HC for various geographic areas and built morphologies. 
Moreover, the results allow selecting specific parts of the building stock 
with higher HC to be targeted in smart energy management programs of 
different municipalities. Thus, this study will help policymakers and 
stakeholders to become aware of which type of building morphologies 
and geographic areas are worth investments to reach national and Eu-
ropean Union goals on building energy management. For international 
researchers, the results are representative of the buildings’ HC evolution 
that could take place in other countries located in a cold temperate 
climate. Finally, the developed method dedicated to the evaluation, 
forecast, and spatial analysis of the impact of climate change on build-
ings’ HC of large building stock can be applied in all regions for which 
data similar to those used in our case study are available, even if the 
climate and building typology is different. 

This article is structured as follows: the study is introduced in section 
1, the literature review on cities’ energy consumption forecasting is 
summarized in section 2, the research methodology employed is dis-
cussed in section 3, section 4 presents the research results and discus-
sion, then the limitations of the study are detailed in section 5, finally the 
conclusions of the study and future works are presented in Section 6. 

2. Literature review 

Climate change remains the main concern of all nations, and the 
adverse effects of this problem are enormous (Cholewa et al., 2021a; 
Nematchoua et al., 2018). The heat consumption (HC) is climate-driven. 
For many years, various weather data such as temperature, pressure, and 
wind have been integrated into statistical models to describe, analyse 
and forecast the HC (An đ elkovi ́c and Bajatovi ́c, 2020; ARAS and ARAS, 
2004; Cholewa et al., 2021b). Zhang and Feng recommend that climate 
data should be quality controlled before further computation and use 
(Zhang and Yang, 2004). The reason is that climate data are biased by 
errors from observers and observation equipment failure. The RClimdex 
is a powerful tool for daily climate data quality control procedures 
(Zhang and Yang, 2004; ETCCDI, 2020). It detects all unreasonable 
values in the dataset such as daily maximum temperature less than daily 
minimum temperature (Zhang and Yang, 2004). The data quality con-
trol and cleaning steps are very crucial since the output results from the 
models depend upon the quality of the input data. 

Based on the outdoor air temperature (OAT), Saloux and Candanedo 
employed the linear regression models to estimate the heating load of 52 
residential houses in the Drake Landing Solar Community (Canada) 
(Saloux and Candanedo, 2018). Their study concluded that the accuracy 
gained using the machine learning algorithms is relatively small 
compared to a simple linear regression model. In general, linear 
regression models are quite simple, which is a fact that makes them 
attractive to many users in various domains (Johannesen et al., 2019; 
Gorucu and Gumrah, 2004). Machine learning algorithms are very 
useful in building sectors for many applications (Hong et al., 2020). 

The models used in time series data productions can be classified 
under four main categories: regression models including Auto- 
Regressive Integrated Moving Average (ARIMA) with SARIMA as its 
seasonal component, artificial neural network approaches, numerical 
weather prediction models, as well as hybrid models. SARIMA predicts 
time-series data based on the data’s past values. Many studies in 
building science have used SARIMA methods to develop models for 
temperature and time-series weather-related data. These models have 
been conventionally popular for researchers working with time-series 
data before the proliferation of more sophisticated machine learning 
approaches (Han et al., 2021). Although SARIMA models are also rela-
tively easy to implement and typically generate reliable results and 
predictions, these classical regression models possess limitations con-
cerning assumptions of normality, linearity, and variable dependence. 
Also, SARIMA models work in the short term and they do not scale well 
in the longer term (Han et al., 2021). Long short-term memory (LSTM), 
on the other hand, is an artificial recurrent neural network (RNN) ar-
chitecture used in the field of deep neural networks (DNNs) learning 
(Kim et al., 2019). The LSTM allows fewer inputs, requires less 
computation time, and offers superior performance compared to con-
ventional methods such as SARIMA (Han et al., 2021). For example, A. 
N. Hernandez and F. A. S. Fiorelli studied the utilization of recurrent 
neural networks to forecast building energy consumption using solar 
radiation and local temperature (Neto and Fiorelli, 2008). The method 
was validated and found to perform similar to or better than conven-
tional methods such as SARIMA. 

Bourdeau et al. reported a review on six different data-driven 
building energy modelling and forecasting techniques which are statis-
tical regressions, k nearest neighbours, decision trees, support vector 
machines, artificial neural networks (ANN), and two combined ap-
proaches. Compared to other forecasting techniques, ANN ranks among 
the most accurate and applied data-driven methods. The performance 

Nomenclature 

AI Artificial Intelligence 
AMZ Alternating Migrant Zones 
ANN Artificial Neural Network 
ANFIS Adaptive neuro-fuzzy inference system 
AR Auto-Regressive 
ARIMA Auto-Regressive Integrated Moving Average 
DD Degree Days 
DL Deep Learning 
ERDF European Regional Development Fund 
ETS Error Trend Seasonality 
GHG Greenhouse Gas 
GRU Gated Recurrent Unit 
GWh Gigawatt hour 
HC Heat Consumption 
HDD Heating Degree Days 
LSTM Long Short Term Memory 
MA Moving Average 
MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 
MASE Mean Absolute Scaled Error 
ML Machine Learning 
NCDC National Climate Data Centre 
NN Neural Network 
NOAA National Oceanic and Atmospheric Administration 
OAT Outdoor Air Temperature 
RClimdex tool for daily climate data quality control procedure 
RCP Representative Concentration Pathway 
RD Relative Difference 
RMI Royal Meteorological Institute 
RMSE Root Mean Square Error 
RNN Recurrent Neural Network 
SARIMA Seasonal Auto-Regressive Integrated Moving Average 
Tavg Average temperature 
Tbase Base temperature 
Tmax Maximum temperature 
Tmin Minimum temperature 
TSA Time Series Analysis 
TWh Terawatt hour  
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evaluation of different models was based on contrariwise unit-based 
metrics such as the mean absolute error (MAE), and the root mean 
squared error (RMSE) (Johannesen et al., 2019; Bourdeau et al., 2019). 
Nowadays, researchers are considering deep learning (DL) models such 
as recurrent neural networks (RNN) for prediction because of their 
capability of predicting future trends with performance. DL models can 
remember the data throughout the prediction process. Yet, these models 
take a long time to train the data. Therefore, LSTM and GRU were 
implemented to solve deep RNN time-consuming challenges during the 
training process by realizing deep and long-term memory cells (Hossain 
et al., 2021; G é ron, 2019). Many researchers try to increase the model 
efficiency by using artificial neural networks to evaluate and forecast 
time series data (Khotanzad and Elragal, 1999; Khotanzad et al., 2000; 
Suykens et al., 1996; Tonkovi ́c et al., 2009; Tektas, 2010; Gorucu et al., 
2004). For example, Suykens et al. predicted gas consumption using 
neural networks considering different input variables such as tempera-
ture, oil price, number of clients, and consumption (Suykens et al., 
1996). Ravnik et al. forecast daily natural gas using a sigmoid regression 
and ANN models (Ravnik et al., 2021). Jung M. H. et al. study discussed 
the impact of weather files on building performance simulations (Han 
et al., 2021). They proposed a methodology using gated recurrent units 
(GRU) to generate synthetic localized weather data that are significantly 
more accurate and representative of local conditions than standard 
weather files. The predictions were validated against actual on-site 
measurements, and (GRU) performed best with a low mean squared 
error achieved, a low mean square error of 2.96 and over 185% 
improvement in validation accuracy. In their study, Nishimwe and 
Reiter predicted regional heating degree-days (HDD) trend of − 11.76% 
and cooling degree-days (CDD) of 14.04% for the same period from 
2012 to 2050 based on the gated recurrent unit (GRU) an implemented 
deep learning (DL) model (Nishimwe and Reiter, 2021a). In this paper, 
monthly maximum and minimum temperatures are forecasted, hence 
estimating HDD and HC up to 2030, 2040, and 2050 horizons. 

Years ago, some studies implemented statistical methods and ma-
chine learning (ML) models like ARIMA/SARIMA models (Seasonal 
Auto-Regressive Integrated Moving Average) to forecast their data 
(Nury et al., 2013; Box and Jenkins, 1976; Balyani et al., 2012; Anitha 
Kumari et al., 2014; Khedhiri, 2016; Liu and Lin, 1991; Durmayaz et al., 
2000; Maggio and Cacciola, 2009; Monsell, 2007; Karim, 2014; Murat 
et al., 2018; Wang and Lu, 2006; Ibrahim et al., 2009; Kumar and Jain, 
2010; Koch and Sun, 1999; El-Mallah and Elsharkawy, 2016). Most of 
them mainly considered these models for weekly, monthly, or yearly 
time series (Khedhiri, 2016; Liu and Lin, 1991; Durmayaz et al., 2000; 
Maggio and Cacciola, 2009; Erdogdu, 2010). Different methodologies 
found in literature forecasted time series data, for example, Hyndman 
and Khandakar generated automatic forecast time series using R 
(Hyndman and Khandakar, 2008). Several combined forecasting hori-
zons are also reported in the literature, where the authors predicted data 
on seasonal (Timmer and Lamb, 2007), monthly (using neural networks 
model) (Suykens et al., 1996), weekly (Khotanzad and Elragal, 1999; 
Khotanzad et al., 2000; Thaler et al., 2005; Dombayci, 2010), or daily 
(Ravnik et al., 2021) time intervals. However, the SARIMA model does 
not tend to give good results for the time series (Murat et al., 2018). 
Yamak et al. compared ARIMA, LSTM, and GRU models for time series 
forecasting. They found that based on the MAPE (mean absolute per-
centage error), the ARIMA model gave the best results, the GRU model 
worked better than LSTM, however, their study was based on bitcoin’s 
prices data and not temperature data (Yamak et al., 2019). In their 
study, Makridakis et al. assessed the performance of different classical 
ML (machine learning) techniques for several forecasting horizons 
(Makridakis et al., 2018). They evaluated ARIMA and ETS, and based on 
the MASE (Mean Absolute Scaled Error), ARIMA and ETS performed 
well compared to other methods such as LSTM and RNN (Recurrent 
Neural Network). However, they did not evaluate SARIMA and GRU. 
Aghelpour et al. estimated the monthly temperature forecast in Iran’s 
climate using 3 models namely SARIMA, SVR (Support Vector 

Regression), and SVR-FA (SVR- Firefly Optimization Algorithm). They 
found that SARIMA gave a pertinent performance in one climate zone. 
Other models performed well as well (Aghelpour et al., 2019). In the 
United States, Valipour used ARIMA and SARIMA for a long-term runoff 
forecast where SARIMA exceeded ARIMA. However, the author did not 
consider other DL (deep learning) models to compare with the SARIMA 
model (Valipour, 2015). Moeeni and Bonakdari forecasted monthly dam 
reservoir inflow using hybrid SARIMA and ANN models. SARIMA out-
performed the other models and the hybrid model diminished the 
forecast error. However, they did not consider LSTM or GRU in their 
study (Moeeni and Bonakdari, 2017). On the other hand, Chung et al. 
compared LSTM and GRU on speech and music signals, where GRU 
outperformed other RNN models (Chung et al., 2014). Further, Nam 
et al. forecasted renewable energy scenarios using DL models by 
comparing them. In their study, they found that GRU gave the best 
prediction performance (Nam et al., 2020). The models above found in 
the literature, are necessary for the energy management on a city, a 
region, or a country scale. For example, Paiho et al. reviewed the impact 
of new technologies on energy demand management and concluded that 
the models increase the flexibility of electricity and heat systems (Paiho 
et al., 2018). In our case study, the models implemented will help with 
energy management on a regional scale. 

Based on different backgrounds and literature reviews, it is hard to 
tell a user which kind of model to choose for a good prediction unless the 
users have the same kind of data as a previous user to replicate the same 
model. Nevertheless, the GRU model performs well in most cases 
(Hossain et al., 2021; Wang et al., 2021). In this study, the authors have 
chosen to evaluate and compare 3 AI models which are an ML model 
SARIMA and DL-based models LSTM and GRU, to choose the best per-
forming model for monthly temperature forecast. This methodology can 
be replicated elsewhere with the same kind of data. 

Furthermore, the heating degree-days (HDD) are accurately calcu-
lated using the meteorological equation method, which considers the 
outside daily average maximum and minimum temperature (Liang et al., 
2022) concerning the base temperature (Day and Karayiannis, 1998). 
This is the standard method for HDD calculation. The base temperature 
of 15◦C is mostly used in Belgium (RMI, 2021). Given the weather in our 
study area (Wallonia Region of Belgium), the comfort temperature in 
buildings is 18◦C: the base temperature is mostly set to 15◦C and the 
additional 3◦C comes from internal (persons, appliances, cooking, etc.) 
and solar gains. Thus the Royal Meteorological Institute (RMI) of 
Belgium recommends using the base temperature of 15◦C (Moustris 
et al., 2011; Fleiter et al., 2016). The degree-days (DD) are presented as 
yearly, monthly, as well as weekly, or on a daily interval. The Annual 
HDD values are computed as the cumulated sum of daily, weekly, or 
monthly HDD values for the heating season. In general, for European 
countries, this heating period is defined as 6 months from 1 October to 
31 March. However, the heating season can last longer in northern 
Europe than in southern Europe (Spinoni et al., 2018). Thus, heating 
zonation based on each country’s laws on heating can be applied. Spi-
noni et al. (2018) applied the UK Met Office equations for computing the 
daily HDD: the calculations of the HDD were based on a comparison of 
daily minimum and maximum air temperatures with the selected base 
temperature. 

The HDD are often used as a climatic measure in building energy 
calculations (Spinoni et al., 2018). Matzarakis and colleagues explained 
that the HDD derives from daily air temperature observations and re-
flects the energy requirements to heat a home, business, or other issues. 
They concluded that there is an increase in air temperature over the 
years, resulting in a lower number of heating days, degree days, and 
heating energy consumption, which may be reduced between 18 and 28 
% from 1961 to 2100 (Matzarakis et al., 2009). In the residential sector, 
space heating constitutes the biggest share of energy consumption 
amounting to above 80% in colder climates (European Commission, 
2016). The share of hot water use in buildings is 25% of total heat 
consumption in the residential sector and 14% in the tertiary sector. The 
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European commission projected a decrease in hot water consumption 
under European Union (EU) decarbonisation scenarios (European 
Commission, 2016), but other studies projected on the contrary that hot 
water consumption would remain stable in the future decades at around 
the same level as today. Heat consumption data collected in EU coun-
tries in the industrial sector showed a distribution of HC for space 
heating of 85% and HC for water heating of 15% in many European 
countries (Fleiter et al., 2016). 

Spinoni et al. investigated the impact of climate change on the en-
ergy demand for heating buildings (Spinoni et al., 2018). For this pur-
pose, the evolution of the HDD indicator has been analysed based on 
both European climate scenarios RCP4.5 and RCP8.5 emission pathways 
until the end of the 21st century. The RCP4.5 simulation is moderate and 
considers that the greenhouse gas (GHG) emissions will peak around the 
early 2050s and then stabilize, causing a CO2 equivalent of about 650 
ppm (parts per million) and a temperature increase of approximately 
1.8–2.0 ◦C in 2100. On the other hand, RCP8.5 is more extreme and 
predicts a continuous rise of GHG emissions until 2100, causing a CO2 
equivalent larger than 1370 ppm and a temperature increase close to 
4 ◦C. They showed that for northern Europe, the projected HDD was 
reducing, ranging from − 17 to − 23% under RCP4.5, and − 21 to − 28% 
under RCP8.5. For central Europe, on the other hand, they showed more 
homogeneous spatial patterns, and the reduction in HDD was about 
− 18% under RCP4.5 and − 22% under RCP8.5 (Spinoni et al., 2015, 
2018). 

The degree-day (DD) method has been widely used in energy con-
sumption (Durmayaz et al., 2000; Sarak and Satman, 2003). 
Degree-hours, DD, degree-months, or degree-years are often used as 
helpful parameters in forecasting energy consumption (RMI, 2021; 
Ibrahim et al., 2009; Koch and Sun, 1999; Chung et al., 2014; Nam et al., 
2020; Paiho et al., 2018; Wang et al., 2021). Other researchers also 
focused on the degree-hour or DD calculation methods to compute the 
HDD (Anitha Kumari et al., 2014; Durmayaz et al., 2000; Sarak and 
Satman, 2003). The forecasting of energy consumption was investigated 
on regional scales, in cities, and even on individual building scales 
(Sarak and Satman, 2003). 

Throughout this literature review, this paper is aiming at answering 

the following questions:  

(1) How to forecast temperature data to different horizons? The time 
series analysis such as temperature series analysis can be pre-
dicted using different AI models, to select the best performing 
model for the forecast.  

(2) Can HDD data forecast be estimated using temperature data? The 
HDD is affected by the temperature changes and the base tem-
perature for building comfort.  

(3) Could the HC forecast of Wallonia building stock be estimated 
based on the HDD calculation method? The proposed method-
ologies from the literature review can also be applied to Wallonia 
cadastral energy data to forecast the HC. 

Many references in the literature studying impacts of climate change 
on HC of buildings treat the subject by focusing merely on historical HC 
data and forecast but ignoring the effect of climate change on temper-
ature and HDD (Sarak and Satman, 2003). The authors in this research 
lay down reproducible methods for HC forecast starting from raw tem-
perature data. Moreover, regarding the temperature forecast, the sea-
sonality of the observed temperature data is exploited using 3 AI models 
to produce more realistic predicted temperature values. In the first 
modelling using SARIMA, the authors avoided the linear pattern that 
characterizes predicted values resulting from simple ARIMA models and 
linear regression models, often used in the literature. For example, 
El-Allah and Elsharkawy used ARIMA (3-1-2) and ARIMA (3-2-3) models 
to carry out short-term predictions, from 2010 to 2020, of annual surface 
air temperatures in Libya (Tektas, 2010). They did not consider the 
seasonality of the temperature, leading to a higher maximum absolute 
percentage error of 4.8%, which may be reduced for example by 
applying SARIMA models. However, in the second and third modelling, 
our study used more modern RNN units specifically LSTM and GRU. 
Finally, the mapping of the HC of the studied building stock is performed 
considering the whole Wallonia region on 3 scales (municipality, urban 
region, and province), and not on building scale as found in some pre-
vious studies. 

The estimation and evolution of energy use in buildings, relative to 

Fig. 1. Summary of combined methodology to estimate the evolution of buildings heat consumption on different horizons namely 2030, 2040, and 2050.  
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climate change, require local temperature data. Thus, the accuracy of 
HDD calculations depends on the quality and resolution of the temper-
ature change data at the building scale. Although the Global Climate 
Models (GCMs) such as the Coupled Model Intercomparison Project 
(CMIP5 and CMIP6) can provide historical and projected temperature 
data, these models have limited resolution and give better results at 
large scale (>2000 km) (Kamruzzaman et al., 2021). Moreover, the in-
crease in complexity of these models is a source of biases during climate 
parameters prediction. This research presents the simplest method for 
assessing the future impact of the calculated HDD from the predicted 
temperature at a local scale using historical temperature data. 

The innovation key of our study is predicting future HC starting from 
the temperature data, then mapping the predicted HC on different ter-
ritorial scales. As the longer historical data of the HC were not available 
for our case study, this study is helpful to other scientists wanting to 
predict the HC, based on the temperature historical data, without HC 
historical data. The results of these predictions are useful for urban 
planners and decision-makers in terms of sustainable energy manage-
ment of a region or a country. 

3. Methodology 

This study used a combination of scientific and calculation methods: 
the first one is AI modelling which is ML modelling: SARIMA and DL 
modelling: LSTM and GRU for maximum and minimum temperature 
predictions. This study analyses the use of three models namely SAR-
IMA, LSTM, and GRU which are currently the leading models in the use 
of artificial intelligence models for predictions, and proposes a meth-
odology to generate highly accurate localized temperature predictions, 
suitable for building stock energy consumption simulation applications. 
The study also compares the performance of these models and validated 
the GRU model for its outperforming results compared to SARIMA and 
LSTM models. 

The second method consists of applying the UK Met office equations 
for HDD calculation using forecast temperatures and considering the 
base temperature of 15◦C, mostly used in our case study, Belgium’s 
south part. The third is the degree days method for HC calculation using 
the HDD forecast values, and finally visualization of the HC spatial 
distribution by mapping the current HC of residential, tertiary, and in-
dustrial buildings and their projected 2050 scenarios. The three pre-
diction models will be compared on their production results and 
evaluated by calculating the mean absolute error (MAE) and the root 
mean square error (RMSE) values between real and test data. The 4 used 
methods are explained below as well as the description of the case study, 
which consists of the Walloon building stock (Belgium), in a temperate 
climate in the northern part of Europe. The proposed methodology is 
summarized in Fig. 1. 

3.1. Data preparation 

Python programming is used for the time series analysis (TSA) and 
forecast method considering the monthly maximum (Tmax) and mini-
mum (Tmin) temperature data from 1901 to 2019 collected in Belgium by 
the “Royal Meteorological Institute” (RMI). The daily temperature data 
are available on the official website of the National Oceanic and At-
mospheric Administration (NOAA) (NOAA, 2020). In this study, how-
ever, this data is aggregated to monthly temperature data. Next, the 
temperature data is loaded in RClimdex (1.0) to be cleaned by finding 
the unreasonable values such as Tmin > Tmax (see Table 3). The python 
software is used for the execution of AI models processes. 

3.2. ML modelling: SARIMA 

SARIMA (p, d, q) (P, D, Q)s combines three mathematical models:  

⁃ auto-regressive (AR): p  

⁃ integrated (I): d  
⁃ and moving-average (MA): q 

The (P, D, Q)s are the seasonal components of SARIMA and s is the 
number of periods in the season. Firstly, the monthly temperature series 
are differenced d-times to make them stationary. Secondly, the monthly 
temperature values from the stationary process (Tx) are modelled by 
including auto-regressive terms p: 

Tx = c +
∑p

i=1
φitx− i + εx (1)  

Where: c is the constant coefficient, φi represents autoregressive co-
efficients, tx is the monthly average Tmax or Tmin at month x and εx stands 
for the error term. Thirdly, q is the moving-average term that takes into 
account previous errors in temperature observations. 

Tx = εx +
∑q

j=0
θjεx− j (2)  

Where: θj is the moving average coefficient and εx is the error term at 
month x. 

Finally, by combining these three models (differenced or integrated, 
auto-regressive, and moving-average), we get the ARIMA model. The 
form of SARIMA (p, d, q) (P, D, Q)s model used can be written in 
backshift notation as: 

φAR(B)φSAR
(
BS)(1 − B)d ( 1 − BS)DTx = θMA(B)θSMA

(
BS)εx… (3)  

Where:  

⁃ φAR = non-seasonal AR- parameter,  
⁃ θMA = non-seasonal MA- parameter,  
⁃ φSAR = seasonal AR-parameter,  
⁃ θSMA = seasonal moving average parameter,  
⁃ and B = backward shift operator. 

The backward operator B is defined as: 

Bk(Tx)= Tx− k x  > k;  x,  kєN (4)  

Where: k is the index denoting how many times backward operator B is 
applied to time series Tx characterized by the time interval x, and the 
total number N of time intervals. 

3.3. DL modelling: LSTM 

Fig. 2 illustrates the LSTM model flowchart at the cell state t which is 

Fig. 2. LSTM model flowchart.  
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the present or current state. The parameter Xt is the current input tem-
perature (Tmax & Tmin), Ct-1 and Ct are previous and current memory 
states with their previous (ht-1) and current (ht) hidden state respec-
tively, Wf is the weight at forget gate (fG), Wi and Wc are the weights at 
current input gate (iG) and Wo the weight at output gate (oG). The tanh 
and sigmoid (σ) are activation functions. 

Table 1 summarizes the main components of the LSTM cell. 
Input data transformations were performed on Tmax and Tmin using 

the sigmoid and tanh activation functions. Temperature data are fed in 
the model by a segment of 12 months at any step (current input Xt = 12 
months), i.e., the model looks back 12 months to predict one month 
forward (the thirteen-month). 

The forget Gate (fG) controls how much of the memory is kept. After 
receiving the input temperature data, the fG runs the ft calculation using 

the sigmoid function (σ), whose results will ultimately affect the long- 
term memory called cell state (C: …, Ct-1, Ct, Ct-1, …). The weights (W: 
Wf, Wi, Wc, Wo) values are calculated during the training step of the 
model. The weight assigns estimated values to information that should 
affect the current cell state. 

Next, the model decides through the Input Gate (iG) which temper-
ature information from hidden state ht-1 and the input Xt will be recorded 
in the long-term memory (C). The input gate values are calculated 
through sigmoid activation σ and are transformed to falls between 0 and 
1. Next, the iG scales the input between − 1 and 1 using tanh activation. 
Finally, the new cell state Ct is estimated by adding both results. The 
output gate (oG) layer is calculated using the temperature input at any 
step t (e.g., Xt for the current state) and hidden state ht-1 of the last step. 
It is important to notice that the obtained current hidden state (ht) and 
current cell state (Ct) will be used in the next step (t+1) as ht-1 and Ct-1 
respectively. 

Finally, the result Ct is stored as the new long-term memory (cell 
state) which keeps the long-term memory updated. 

3.4. DL modelling: GRU 

GRU model is almost similar to LSTM except that it has two gates: 
reset gate (rG) and update gate (uG). GRU does not use the memory unit 
to control the flow of information like the LSTM. It directly makes use of 
the all-hidden states without any control. 

The rG determines how to combine new input (Tmax & Tmin) to 
previous memory (ht-1) running the sigmoid function σ to calculate rt. uG 
determines how much of the previous state to keep by calculating zt. The 
uG in GRU is what the input gate and forget gate were in LSTM. 

As shown above in Fig. 3, both state vectors (ht and ) are merged 
into a single vector ht. There is no output gate; the full state vector is 
output at every time step. 

3.5. Models evaluation 

To evaluate the performance of the models, the root mean squared 
error (RMSE) and mean absolute error (MAE) are defined respectively 
by the formulas: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

x=1
ε2

x

√

(5) 

And, 

Table 1 
Components of LSTM cell.  

Component Representation Nature Description 

Forget Gate fG NN with 
sigmoid 

Control what to put in the cell 
state from short term memory 
and input Tmax & Tmin 

Input Gate iG NN with 
sigmoid and 
tanh 

Adds input to short term 
memory 

Output Gate oG NN with 
sigmoid and 
tanh 

Produces output short term 
memory for the next cell state 
Ct+1 

Hidden 
state 

H Vector Short term memory 

Memory 
state 

C Vector Long term memory  

Table 2 
UK Met Office equations (Spinoni et al., 2018) were applied to the computation 
of the monthly HDD using the monthly maximum and minimum temperatures, 
the average monthly temperature, and the base temperature.  

Case Weather Condition HDD =

1 Uniformly cold 
month 

Tmax ≤ Tbase (Tbase − Tavg) (7) 

2 Mostly cold 
month 

Tavg ≤ Tbase 

< Tmax 

[(Tbase − Tmin)/2] − [(Tmax − Tbase) /4]
(8) 

3 Mostly warm 
month 

Tmin < Tbase 

< Tavg 

(Tbase − Tmin)/4 (9) 

4 Uniformly 
warm month 

Tmin ≥ Tbase 0 (No heating is required)  

Fig. 3. GRU model flowchart at the cell state t. Wr is the weight at reset gate (rG), Wz is the weight at update gate (uG), and Wt is the weight cell state vector ( ).  
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MAE =
1
n

∑n

x=1

⃒
⃒
⃒
⃒
⃒
εx

⃒
⃒
⃒
⃒
⃒

(6)  

Where n is the number of periods and εx = tx - t^x is the predicted error 
between the temperature actual value tx and the predicted value t^x. The 
smaller the RMSE or MAE values, the better is the model. See Table 4 for 
the results from the models’ evaluation. 

The data are split into train and test sets. The test set is equal to the 
forecasting set which corresponds to thirty-one years for this study. This 

forecasting period is divided into three sets: for 11 first years to get the 
forecasting horizon of 2030, next, another 10 years for the 2040 horizon, 
and finally another 10 years for the 2050 horizon. On the other hand, the 
train set is the remaining data. AI models are fitted on the train set, then 
evaluated on the test set to check for model accuracy. The models are 
refitted on the entire data set for predictions. Finally, the temperature 
data are forecasted first for horizon 2030, next for 2040, and then next 
for 2050. 

3.6. HDD calculation 

The UK Met Office equations method is used to calculate the monthly 
HDD. The following table explains how the HDD are calculated based on 
temperature data. 

In this table, Tbase (15 ◦C) is the fixed base temperature, Tmax and Tmin 
are the outside forecast average maximum and minimum temperatures 
given by SARIMA, LSTM, and GRU models, and Tavg is the monthly 
average temperature. The HDD is calculated using the forecast tem-
perature data. The formula for HDD calculation is applied related to the 
conditions specified in Table 2. The months are categorized into four 
different cases related to the weather conditions. 

3.7. HC estimation 

The degree-day method is applied to forecast the estimation of the 
building heating consumption (HC) using previously obtained HDD 
values. 

For residential buildings: 

HCy,r =
(
0.75 * HCref ,r

)
*
(
HDDy∕HDDref

)
+
(
0.25 * HCref ,r

)
(10)  

Where: HCref,r, and HDDref are respectively referencing annual values of 
HC and HDD for the year 2012, and HCy,r, and HDDy are present annual 

Table 3 
Temperature observation errors: Tmax is lower than Tmin. The RClimdex (1.0) 
package of the R software was used for Tmax and Tmin observation errors 
identification.  

Year Month Day Tmax Tmin Tmax-Tmin 

1941 1 1 − 2.9 − 2.8 − 0.1 
1944 1 10 5.1 7.2 − 2.1 
1978 5 2 9.6 9.9 − 0.3 
1981 12 15 − 1.9 − 1.8 − 0.1  

Table 4 
Models evaluations: Tmax and Tmin RMSE and MAE.  

Period Errors SARIMA LSTM GRU 

Tmax Tmin Tmax Tmin Tmax Tmin 

2020–2030 MAE 1.44 1.17 1.43 0.97 1.21 0.81 
RMSE 1.81 1.48 1.77 1.2 1.46 1.01 

2020–2040 MAE 1.41 1.18 1.44 1.01 1.29 0.9 
RMSE 1.79 1.48 1.72 1.26 1.6 1.12 

2020–2050 MAE 1.45 1.22 1.58 1.11 1.42 1.01 
RMSE 1.83 1.54 1.88 1.39 1.77 1.25  

Fig. 4. Wallonia’s geographic situation in Europe and presentation of Wallonia’s 40 big cities. Wallonia is the southern region and French-speaking part of Belgium, including 
262 cities and municipalities. (Source (Nishimwe and Reiter, 2021b):). 
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values of HC and HDD respectively. The correction factor of 0.75 cor-
responds to 75% of heating consumption and that of 0.25 corresponds to 
25% of domestic hot water production. 

For tertiary and industrial buildings: 

HCy,t =
(
0.85 * HCref ,t

)
*
(
HDDy∕HDDref

)
+
(
0.15 * HCref,t

)
(11)  

HCy,i =
(
0.85 * HCref ,i

)
*
(
HDDy∕HDDref

)
+
(
0.15 * HCref ,i

)
(12)  

Where: HCref,t, and HCref,i respectively reference values for tertiary HC 
for the year 2012 and industrial buildings’ HC for the year 2016, and 
HCy,t, and HCy,i are present annual values of HC for tertiary and indus-
trial buildings respectively. For tertiary and industrial sectors, the 
correction factors of 85% for heating consumption and 15% for the 
production of domestic hot water are applied. These repartition factors 
between the heating consumption and domestic hot water production 
for residential, tertiary and industrial buildings were investigated by 
Fleiter et al. (2016) and the European Commission (European Com-
mission, 2016) in European countries with cold climates. 

3.8. HC mapping 

QGIS and Python software are used for mapping. The authors first 
mapped the residential, tertiary, and industrial buildings HC 
(Figs. 13–15) on a municipality scale. In QGIS, the natural breaks 
(Jenks) classification for graduated symbols is applied considering 6 
classes for the residential sector, 8 classes for the tertiary sector, and 7 
classes for the industrial sector. The Natural breaks of Jenks group better 
similar data values and optimize the differences between the classes. 
They reduce the variance within classes and maximize the variance 
between classes, and consider the natural data trends to classify them. 
The thresholds are fixed for each building sector (residential, tertiary, or 
industrial). Whilst fixing the threshold, a significant jump is seen in 
classes which helped to choose the number of classes for each building 
sector. This method of classification highlights with colours the spatial 
distribution of HC classes for 2012/2016 maps and 2050 maps for each 
building sector. Secondly, the residential, tertiary, and industrial HC are 
aggregated on urban regions scale and mapped using graduated symbols 
with natural beaks for classification and also using the diagrams to 
compare actual and forecast HC for each Wallonia urban region 
(Fig. 16). Lastly, with python programming, the residential, tertiary, and 
industrial buildings HC is aggregated based on the structure of the urban 
area defined by Van Hecke et al. (Van Hecke et al., 2009) for each 
province. The results are plotted with Python software and then mapped 
(Fig. 17) on each province in QGIS software. 

3.9. Case study 

The Belgian Cadastral database has more than 6.6 million buildings 
(Nishimwe and Reiter, 2021b). In Wallonia, which is the region located 
in the South part of Belgium (see Fig. 4), the building stock consumes, in 
terms of annual HC, approximately 29.39 TWh for residential buildings, 
11.9 TWh for tertiary buildings, and 34.86 TWh for industrial buildings. 
Nishimwe and Reiter found that for a 1% increase in the number of 
existing buildings in a statistical sector (SS), the HC increases by the rate 
of about 0.93% for the residential sector, 1% for the tertiary sector, and 
2.01% for the industrial sector (Nishimwe and Reiter, 2021b). Dense 
cities and important industrial areas, which mostly are located in the 
northern part of the Walloon Region, have higher HC in general, 
compared to the rural areas. The following figure represents the studied 
region (Wallonia), its main cities, and all its municipalities. 

4. Results and discussion 

4.1. Data cleaning and preparation 

The outdoor maximum and minimum temperature data, in Fig. 5, 
recorded in Belgium from 1901 to 2019 are used for creating suitable 
artificial intelligence models. 

The identified bias in the temperature data recordings in Table 3 are 
typical errors that are often committed by the observers during the 
thermometer reading. The values are shifted between the Tmax and Tmin 
observations of the day when the error was committed as recommended 
by the National Climate Data Centre (NCDC) in the NOAA user manual 
(Zhang and Yang, 2004). 

4.2. Models evaluation and temperature (Tmax & Tmin) prediction and 
forecasting 

The 3 models implemented are evaluated based on RMSE and MAE 
for each prediction horizon (2030, 2040, and 2050). Based on the results 
presented in Table 4, LSTM and GRU perform better than SARIMA, and 
GRU has the best performance compared to the other models. For this 
case, the authors have chosen to map the results based on GRU forecast 
results. 

Two approaches were combined to determine the SARIMA parame-
ters: ACF and PACF plots, and the Akaike Information Criterion (AIC) 
metric. The ACF and PACF plots were used to investigate the tempera-
ture data characteristics and then a grid search was used to identify the 
best parameters. The lower out-of-sample (test data) prediction error 
(AIC), the more predictive is the SARIMA model. Thus, the chosen 
SARIMA models for Tmax and Tmin are respectively (1, 1, 1) (0, 1, 1)12 
and (1, 1, 1) (0, 1, 1)12. Regarding LSTM and GRU, the used activation 

Fig. 5. Monthly maximum (Tmax) and minimum (Tmin) temperature data from 1901 to 2019. These are national data collected in Belgium by the RMI. They are 
available on the official website of the NOAA (Day and Karayiannis, 1998). 
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functions used to run the models are sigmoid and tanh, with the opti-
mizer adam. 

First, a few epochs were chosen but the loss did not converge. As the 
models were running, the loss started to converge at 200 epochs, 
consequently, in this study, the authors stopped at 200 epochs for LSTM 
and GRU models (see Fig. 6). 

Fig. 7 displays the predictions from the 3 models. Throughout the 
prediction process, it is found that the predictions are fit to the test data 
for all models. Visually it is hard to tell which is the best model, that is 
why it is advised to evaluate the models either on RMSE or MAE (see 
Table 4). 

The following 2 figures (Fig. 8 and Fig. 9), illustrate the predictions 
and forecasts from LSTM and GRU models for Tmax and Tmin up to the 
2050 horizons. These two models are performing well but visually GRU 
emphasises more seasonality trends than LSTM. 

Moreover, from 2012 to 2050, the authors assessed the temperature 
increase based on the results from the 3 implemented models. The UN 
Framework Convention on Climate Change report projects the global 
temperature increase of 1.5◦C by 2100 under scenario RCP2.6 and for 
the RCP4.5 scenario, the global temperature will surpass 2◦C beyond 
2100 (UNFCCC, 2015). Table 6 shows the average temperature increase 
based on 3 models. SARIMA model is overestimating the temperature 

Fig. 6. GRU and LSTM train loss for Tmax and Tmin. The loss is converging to an unchanging value as the epochs increase.  

Fig. 7. GRU, LSTM, and SARIMA predictions. For all the 3 models, visually the predictions fit the test sets.  
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increase, LSTM is underestimating and GRU is giving more realistic 
temperature projections. 

The average temperature will increase by 0.75◦C from 2012 to 2050 
if the current human activities don’t change. Based on this, the authors 

used GRU results only for mapping. 

Fig. 8. Tmax prediction and forecast up to 2050 horizon for LSTM and GRU models.  

Fig. 9. Tmin prediction and forecast up to 2050 horizon for LSTM and GRU models.  
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4.3. Heating degree days assessment 

In the considered case study, nine months (from 1st September to 
31st May) are classified as the heating season for the Belgium region. 
During that period, from 2020 to 2050, the monthly HDD values vary 
from 20 to 342 for SARIMA, from 7 to 394 for LSTM, and from 20 to 413 
for GRU. However, for June, July, and August, the HDD values are not 

taken into account, because no heating is required (Table 5). 
Furthermore, the comparisons of average temperature and HDD 

projections and their trends from the 3 executed models are presented in 
Fig. 10. The GRU model outperformed other models. 

The visualization of the above plots show that LSTM and GRU models 
performed well but not SARIMA which is showing the temperature in-
crease and HDD decrease without considering seasonality trends. The 
decrease in yearly HDD over the considered case study corresponds to 
− 17.23 % for SARIMA, − 8.93% for LSTM, and − 11.76% for GRU during 
the studied period from 2012 to 2050. The results are compared with 
other European studies for the period from 1981 to 2100. For the near 
future in northern Europe, they projected a decrease in HDD ranging 
from − 17 to − 23 % under RCP4.5 (650 ppm, 9 billion of population and 
temperature increase between 1.8 and 2.0 ◦C in 2100), and − 21 to − 28 
% under RCP8.5 scenarios (1370 ppm, 15 billion of population and 
temperature increase of 4 ◦C in 2100) (Spinoni et al., 2018). The SAR-
IMA model HDD decrease is close to projected values from the RCP4.5 
scenario up to 2100, whereas the LSTM and GRU models HDD decreases 
are reasonable because our study goes up to 2050. These findings show 
that the SARIMA model overestimates the HDD reduction in 2050. 
However, if nothing is done to reduce GHG and thus stop the effect of 
climate change on the increase of temperature, the decrease in HDD may 
increase considerably. 

4.4. Heat consumption 

The energy needed for internal heating is approximately projected 
inferred from HDD values in this study. Regarding the spatial distribu-
tion of HDD in Wallonia, there is a clear decrease in HC related to that 
pattern. The HC decreases at horizon 2050 for all building types are 
summarized in Table 6. A study in Germany, which used linear regres-
sion, forecasted a decrease in buildings heating energy consumption 
between − 18 and − 28% from 1961 to 2100 (Matzarakis et al., 2009), 
whereas our study gave a decrease in HC of the three building sectors of 

Table 5 
The heat season’s categorization is related to the conditions specified in Table 1. 
Months are classified by comparing the monthly Tmax and Tmin to the base 
temperature Tbase and monthly average temperature Tavg.  

Period Case Category Season 

1 November – 31 March 1 Uniformly cold 
month 

Heating season 

1 April – 31 May, October 2 Mostly cold month Heating season 
September 3. a Mostly warm month Heating season 
1 June – 31 August 3. b Mostly warm month No heating is 

required  

Table 6 
Average temperature increase, average annual HDD and annual average HC 
(TWh) decrease based on SARIMA, LSTM, and GRU models, for residential, 
tertiary, and industrial buildings, from 2012 to 2050 for residential and tertiary 
buildings, and from 2016 to 2050 for industrial buildings.   

SARIMA LSTM GRU 

Tavg (◦C) 10.38% (+
2.28◦C) 

4.06% (+
0.17◦C) 

5.35% (+
0.75◦C) 

HDD − 17.23% − 8.93% − 11.76% 
Residential HC 

(TWh) 
− 12.92% − 6.70% − 8.82% 

Tertiary HC (TWh) − 14.64% − 7.59% − 10.00% 
Industrial HC (TWh) − 15.83% − 8.90% − 11.26%  

Fig. 10. Average temperature and HDD projections (in blue) and trends (in orange) up to the 2050 horizon. Top: average temperature, bottom: HDD. From left to 
right: SARIMA, LSTM, and GRU models respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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− 12.92 to − 15.83%, − 6.70 to − 8.90% and − 8.82 to − 11.26% for 
SARIMA, LSTM, and GRU respectively from 2012/2016 to 2050. 

In Wallonia (our case study), the HC for industrial and residential 
buildings is higher compared to the HC for tertiary buildings (Fig. 11). 
Industrial and residential sectors are key sectors to target to reach the 
European goals in terms of reduction of the HC in buildings. 

The spatial distribution of the forecasted HC for existing residential, 
tertiary, and industrial buildings in 2050 is presented in Figs. 13–17. For 
residential buildings, the HC is higher in big cities mainly located in the 
northern part of the Wallonia Region. The HC of tertiary buildings is 
more extended in the whole region, while the HC of industrial buildings 
is concentrated in industrial municipalities, often located on the out-
skirts of the main Walloon cities. The maps clearly show a decrease in 
buildings HC from 2012 to 2050 for residential and tertiary buildings 
and from 2016 to 2050 for industrial buildings. 

Fig. 12 presents the building stock HC from 2012/2016 to 2050 
based on the chosen model GRU which performed well. 

From Figs. 13–15, there are variabilities between classes. For resi-
dential buildings, the HC relative difference (RD) from 2012 to 2050 of 
− 8.84% based on the minimum HC value and − 8.82% based on the 

maximum HC value (Fig. 13) on the municipality scale, is similar to the 
value in Table 7 (a): -8.82% on a regional scale. The reduction of HC 
from 2012 to 2050 is the same in higher or lower heat-consuming mu-
nicipalities. Nevertheless, for tertiary buildings in Fig. 14, there are 
significant irregularities in classes specifically from class 2 to class 5 
related to the different tertiary functions existing or not in the munici-
palities. For example, there is a strong difference in consumption be-
tween small tertiary buildings (e.g. shops or schools) and big tertiary 
buildings (e.g. hospitals or swimming pools). For industrial buildings, 
however, in Fig. 15, similarities between classes are noticed and the RD 
of HC reduction from 2016 to 2050 is − 11.26% on the municipality 
scale which is also equal to the value in Table 7 (b): -11.26% on a 
regional scale. 

Fig. 16 illustrates the difference in the aggregated annual HC of 
residential, tertiary, and industrial buildings in the urban region from 
2016 to 2050. As the HC for residential and tertiary buildings have been 
calculated for 2012 and HC for industrial buildings have been calculated 
for 2016, the authors used predicted data up to 2016 for residential and 
tertiary buildings to compare them with the calculated industrial 
buildings HC for 2016. The reduction of HC, calculated on the sum of HC 

Fig. 11. Yearly average residential, tertiary, and industrial buildings HC projections (blue) and trends (orange) up to 2050 from the SARIMA, LSTM, and GRU 
modelling. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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of all residential, tertiary, and industrial buildings of each urban region, 
varies from − 10.39 % to − 10.91%. The highest reduction of an urban 
region HC, in Namur urban region, is mainly caused by the highest 
reduction of industrial buildings HC. 

Fig. 17 shows the distribution of annual HC of the aggregated 
building stock in each province, based on the structure of urban areas 
defined by Van Hecke et al. (Van Hecke et al., 2009): agglomeration, 
suburbs, and alternating migrant zones. Where a municipality was not 
classified in this structure, the authors classified it in other areas, which 
stand for rural, semi-rural, and low-density peri-urban areas, as well as 
small cities or villages, regional landscape cities, industrial furrow, and 
border municipalities with neighbouring countries. The impact of 
climate change on the HC of the various structures in built-up areas is 
almost identical regardless of the built morphology or the province. The 

difference seems negligible: it is less than 0.54% between the different 
built structures in the same province and it is less than 0.42% between 
the values obtained for the same built structure in the different 
provinces. 

The residential buildings HC change from 2012 to 2050 varies from 
− 7.01% in 2020 to − 8.82% in 2050 and the tertiary buildings HC 
change varies from − 7.94% in 2020 to − 10% in 2050, while the change 
in industrial buildings HC from 2016 to 2050 varies from − 9.24% in 
2020 to − 11.26% in 2050. The industrial buildings have the highest HC 
values which are obviously related to the larger heated area but also to 
larger heat loss surfaces of these buildings per volume unit compared to 
residential and tertiary buildings. Industrial buildings are often less 
compact than residential and tertiary buildings, which notably include a 
large number of joined buildings. Thus, at a similar temperature increase 

Fig. 12. Total HC for residential (blue), tertiary (orange), and industrial (green) buildings up to 2050 based on GRU projections results. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 13. HC values of 2012 for Wallonia existing residential buildings (a) and forecast HC values of Wallonia existing residential buildings for horizon 2050 (b). The 
northern part of the Wallonia region with big cities has higher HC values. 
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trend, the decrease in the HC rate of the industrial buildings is more 
significant compared to the HC reduction in residential and tertiary 
buildings. 

5. Limitations of this study 

In this research, the authors used historical temperature data to 
forecast HC. It could be interesting to use historical HC data during the 
forecast but that data is not available. Moreover, other variables like 
humidity, precipitation, the behaviour of occupants in the buildings 

Fig. 14. HC values of 2012 for Wallonia existing tertiary buildings (a) and forecast HC values of Wallonia existing tertiary buildings for horizon 2050 (b). The HC is 
more distributed to the whole Wallonia region except few cities in the northern part of the region that present higher HC values. 

Fig. 15. HC values of 2016 for Wallonia existing industrial buildings (a) and forecast HC values of Wallonia existing industrial buildings for horizon 2050 (b). Nearly 
all the HC for industrial buildings is located in the northern part of the Wallonia Region, in industrial municipalities, often located on the outskirts of the main cities. 
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(Attia et al., 2022; Almeida et al., 2021), and other exogenous variables 
(An đ elkovi ć and Bajatovi ć, 2020), as well as influencing weather 
parameters such as solar heat and wind (Bilous et al., 2018) could be 
interesting inputs for the models in forecasting the data. 

This study did not consider the evolution of the building stock. The 
main goal of this study was to study the HC evolution of the existing 
building stock considering the climate data evolution, namely temper-
ature data from 2019 to 2050. But the evolution of the building stock, 
heating system improvement of buildings, energy efficiency increase of 
the buildings’ envelope thanks to renovations, etc. have to be taken into 
account for HC estimations in future studies. The impact of energy prices 
and population income variables on future buildings’ HC should also be 
interesting to study. 

6. Conclusion and further research 

This article presents a reproducible methodology for HC forecast 
starting from cadastral data and raw temperature data, combining 
recognized scientific and calculation methods to produce decision sup-
port tools for territorial energy management, and its application in a 
case study in a temperate climate of the Northern part of Europe. These 
used scientific and calculation methods are: (1) the forecast of 

temperature using SARIMA, LSTM, and GRU prediction models, (2) the 
estimation of HDD using the predicted temperature, (3) the assessment 
of HC using energy equations applied to residential, tertiary and in-
dustrial buildings, and (4) the HC cartography at a regional scale. 

The real maximum (Tmax) and minimum (Tmin) temperature obser-
vations data from 43,464 days in the period between January 1, 1901, 
and December 31, 2019, have been used in this study. The dataset was 
cleaned and divided into a training set and a test set. All the observations 
from January 1, 1901, to December 31, 1989, were used as a training set 
and the test set includes the remaining data, i.e. from January 1, 1990, to 
December 31, 2019, which corresponds to thirty years. SARIMA (1, 1, 1) 
(0, 1, 1)12 model was selected, LSTM and GRU models used sigmoid and 
tnah activation function with adam as an optimizer for Tmax and Tmin 
forecasting. These 3 models are compared on temperature, HDD, and HC 
predictions and forecasts and then evaluated based on MAE and RMSE to 
see which model is the best. GRU model performed very well compared 
to the other models and was chosen as the most appropriate model in 
this study. All the model predictions of the Tmax and Tmin are performed 
at a 95% confidence interval. 

Over the studied period from 2012 to 2050, the yearly HDD in 
Belgium decreased by − 8.82 % for residential, − 10.00 % for tertiary, 
and − 11.26 % for industrial buildings HC. The findings show the tem-
perature increases by 5.35% (+0.75◦C) and HDD decrease by − 11.76% 
based on GRU modelling from 2012 to 2050. These findings were 
compared to results found in other European studies. It should be noted 
that the heating season can last longer in northern Europe than in 
southern, which justifies the nine months of heating found from the 
temperature historical data in this study. The temperature will contin-
uously rise beyond the year 2050, consequently, the HC will further 
decrease. 

The respective decreases in HC generally follow the corresponding 
temperature trends. The geographical factors such as the regional 
location and the latitude have also a noticeable impact on the building 
HC (Khedhiri, 2016). Although only the temperature variable was 

Table 7 
(a) and (b). HC reduction for residential, tertiary, and industrial buildings 
expressed in %. The existing (original) HC data for residential and tertiary 
buildings are for the year 2012, while for industrial buildings they are for the 
year 2016 (Nishimwe and Reiter, 2021b).  

(a) (b) 

Period Residential Tertiary Period Industrial 

2012–2020 − 7.01 % − 7.94 % 2016–2020 − 9.24 % 
2012–2030 − 7.64 % − 8.66 % 2016–2030 − 10.00 % 
2012–2040 − 8.50 % − 9.63 % 2016–2040 − 10.90 % 
2012–2050 − 8.82 % − 10.00 % 2016–2050 − 11.26 %  

Fig. 16. Sum of the residential, tertiary, and industrial HC on the scale of the urban region. The diagrams show the difference in the Walloon building stock HC 
between 2016 and 2050 in % (graduated colour). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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investigated during this study, the visualization of the HC results shows 
variations at the urban region and municipality scales. 

The applied methodologies in this study can also be used in any re-
gion of the World as long as the same kind of data exists. Nevertheless, 
buildings’ energy consumption depends on many other factors. Apart 
from temperature changes and HDD, some researchers have found sig-
nificant correlations of the HC with the energy prices and population 
income variables (Ruth and Lin, 2006), type and insulation of buildings 
(Kurekci, 2016), and national laws on heating (Moustris et al., 2011; 
Wang et al., 2009). As a solution to reduce the energy consumption of 
the building stock, the renovation of buildings, as found in the studies 
done by Ruellan et al. and Paiho et al. (Ruellan et al., 2021; Paiho et al., 
2019), or the use of smart technologies on the municipality level are 
suggested. Assessing energy efficiency at the district scale presents 
several benefits compared to the building scale, such as reducing energy 
cost and implementing energy and sustainability strategies (Paiho et al., 
2019). In further research, the deeper analysis of the HC forecast should 
be extended by including realistic and regulatory scenarios as well as 
multi-criteria analysis. 

Data availability  

• The temperature data can be found on: https://www.ncdc.noaa.gov/  
• The HDD data are found on: https://energie.wallonie.be/fr/les-de 

gres-jours-pour-vous-guider-a-travers-les-caprices-du-climat.html? 
IDC=9480&IDD=12611  

• The Wallonia shapefiles can be accessed via: https://geoportail.wa 
llonie.be/home.html 
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