

<u>thomas.ratz@uliege.be</u> University of Liège [ULiege] -Department of Physics [BAT. B5a]

Relevance of Ge incorporation on the physics of deep defects in kesterite materials

<u>T. Ratz</u>^{1,2}, N-D. Nguyen¹, G. Brammertz³, B. Vermang^{2,3,4}, J-Y. Raty¹

CESAM | Q-MAT | Solid State Physics, Interfaces and Nanostructures, Physics Institute B5a, Allée du Six Août 19, B-4000 Liège, Belgium
Institute for Material Research (IMO), Hasselt University, Agoralaan gebouw H, B-3590 Diepenbeek, Belgium
IMEC division IMOMEC | partner in Solliance, Wetenschapspark 1, B-3590 Diepen- beek, Belgium
Energyville, Thor Park 8320, B-3600 Genk, Belgium

- 1. Introduction
- 2. Kesterite phase diagrams
- 3. Point defects in Ge-doped and Ge-alloyed kesterites
- 4. Lattice distortion upon defect incorporation
- 5. Conclusion

Introduction

- Limitations of the Cu₂ZnSnS₄ kesterite-based solar cell efficiency Ο
- Bulk point defects have been pointed out as efficient Ο recombination centres (Sn_{Zn} and/or [Cu_{Zn} + Sn_{Zn}])
- Cationic substitution as a possible route for efficiency Ο improvement

4355

What is the impact of Ge incorporation on the physics of deep defect in kesterite ?

From a perfect kesterite crystal to a defected system – supercell approach (64-atom calculations)

Motivation: reduction of the *V*_{oc} deficit following Ge incorporation into kesterite materials

Goal: Study of the point defect physical behaviour in Ge doped and alloyed kesterites

Point defect calculations using DFT

Phase diagram - Kesterite synthesis

Thermodynamic conditions

$$\circ \mu_{Cu} < 0, \mu_{Zn} < 0, \mu_X < 0, \mu_S < 0$$

5

 $\circ 2\mu_{Cu} + \mu_{Zn} + \mu_X + 4\mu_S = \Delta H_F(\text{CZXS})$ Kesterite materials is desired

 $\circ \quad \sum_{i} n_{i} \mu_{i} < \Delta H_{F}(\text{Secondaries}) = E(A_{x}B_{y}) - xE(A) - yE(B) \quad \text{No secondary phases}$

Point defect formation energies (point E)

- Fermi energy level under thermodynamic equilibrium condition
- o p-type intrinsic conductivity of kesterites
- $\circ~V_{Cu},\,Cu_{Zn},\,Zn_{Cu},\,X_{Zn}$ (X=Sn,Ge) low formation energies

Point defect formation energies

Evolution of the point defect formation energies according to the synthesis conditions:

- $\circ~V_{Cu},\,Cu_{Zn},\,Zn_{Cu},\,X_{Zn}$ (X=Sn,Ge) low formation energies
- \circ Ge_{Sn} most abundant doping defect
- $\circ~$ From Sn_{Zn} to the dopant Ge_{Zn} to the Ge_{Zn} substitutional defect in the Ge-based kesterite

7

Point defect transition levels

Physical behaviour of the defects previously identified as abundant in the materials

- o V_{Cu}, Cu_{Zn}, Zn_{Cu} acting respectively as acceptor and donor for the later
- \circ X_{Zn} (X=Sn,Ge) acting as recombination centres
- The formation energy is not the only key ingredient impacting the physical behaviour of a defect

Defects and crystal lattice distortion

SPIN

What is a deep defect? Combining Shockley-Read-Hall statistics with multiphonon recombination theory

Basita Das¹, Irene Aguilera¹, Uwe Rau, and Thomas Kirchartz^{1,2} ¹IEK5-Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany ²Faculty of Engineering and CENIDE, University of Duisburg-Essen, Carl-Benz-Str. 199, 47057 Duisburg, Ge

(Received 25 November 2019; revised manuscript received 15 January 2020; accepted 30 January 20 published 26 February 2020)

Transition between two states: Ψ_1 the initial band state and Ψ_2 , the final defect state

Transition probability :
$$W_{1,2} = \frac{2\pi}{\hbar} \left[|\langle \Psi_1 | H_{int} | \Psi_2 \rangle|^2 V N(E_2) \right]$$

electron-lattice interaction

Article pubs.acs.org/cm

9

Effective and Noneffective Recombination Center Defects in Cu₂ZnSnS₄: Significant Difference in Carrier Capture Cross Sections

Jiqiang Li,^{†,‡} Zhen-Kun Yuan,^{†,‡} Shiyou Chen,^{*,§}[©] Xin-Gao Gong,^{*,†,‡} and Su-Huai Wei^{||}[©]

[†]Department of Physics, Key Laboratory for Computational Physical Science (Ministry of Education), State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China [‡]Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, Jiangsu, China

[§]Key Laboratory of Polar Materials and Devices (Ministry of Education), East China Normal University, Shanghai 200241, China ^{||}Beijing Computational Science Research Center, Beijing 100193, China

 ${\rm Sn_{Zn}^{+1}}$ (+1/0) and ${\rm Sn_{Zn}^{+2}}$ (+2/+1) are not equivalent recombination centres as $\sigma_{Sn_{Zn}^{+1}} \ll \sigma_{Sn_{Zn}^{+2}}$

The larger the structural relaxation, the larger the carrier capture cross section σ

What is the impact of the Ge incorporation on the lattice distortion ?

Lattice distortion upon defect incorporation

Relation between the lattice distortion upon defect incorporation and the defect carrier capture cross section

$$e_p = \sigma_p < v_p > N_V \exp\left(-\frac{E_T - E_V}{k_B T}\right)$$

Defect emission rate e_p depends on

- The energetic position of the defect within the band gap and with respect to the CBM or VBM
- \circ Carrier capture cross section σ_p related to the electron-phonon interaction

→ Reduction of the lattice distortion induced by the formation of the Ge_{Zn} substitutional defect in comparison to its Sn_{Zn} parent in the Sn-based kesterite

Conclusion

- o Similar physical behaviour of intrinsic point defects in Sn-based and Ge-based kesterites
- Via Ge-doping in CZTS, Ge_{Sn} has been identified has the most abundant defect
- Sn_{Zn} and Ge_{Zn} are identified as recombination centres providing energy levels within the materials band gap

- $\circ~$ Net reduction of the lattice distortion upon Ge_{Zn} formation both for Ge-doping and alloying in comparison to its Sn counterpart
 - \rightarrow Possible explanation for the V_{OC} improvement reported experimentally

Thank you for your attention