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RELATIVE PARACOMPACTNESS
AS TAUTNESS CONDITION IN SHEAF THEORY
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RESUME : Nous introduisons la paracompacité@ relative. Cette notion
nous permet d'obtenir un critére de raideur qui unifie et généra-
lise les résultats classiques de [2].

INTRODUCTION

Let X be a topological space, S a subset of X, & a family of
supports in X and VS the set of the open neighborhoods of S in X,
ordered by the relation 2 . In this paper, we consider only shea-
ves of abelian groups. We say that S is ®-taut in X if the canoni-

cal morphism

(rg

. . s @
1—1>m H@“V(V’FIV) éH@ﬁS(“’FIS))
VGVS

is an isomorphism whenever F is a sheaf on X. In [2] G.E. Bredon

proves that it is equivalent to say that the canonical morphism

(r

SX

To(K ) ———T (S, 7| )

is onto and that F|S is ®NS-acyclic whenever F is a flabby sheaf
on X. The tautness appears in the hypothesis of many important
theorems of sheaf theory. So, for pratical use, we need criteria
stating that S is ®-taut in X under more explicit topological as-
sumptions on S and ®. For example, it is trivial to see that an
open subset of X is ®-taut. In [2] it is proved that S is ®-taut

in X if one of the following conditions is satisfied

a) & is paracompactifying for the pair (X,S)
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b) ¢ is paracompactifying, X is completely paracompact, S is arbi-

trary.
c) ¢ is paracompactifying, S is closed in X.

d) ¢ is maximum, S is compact and relatively Hausdorff in X.

The purpose of this paper is to prove a tautness criterion wich
unifies and generalizes the preceding ones. For this reason, we
introduce in definition 1 the notion of relative paracompactness
of S in X. We say that & is S-paracompactifying if every element

of ® has a neighorhood belonging to ® and if SNF is relatively pa-
racompact in F whenever F belongs to ®. Our main result states that

S is ®-taut in X if & is S-paracompactifying.

RELATIVE PARACOMPACTNESS

In order to avoid confusions, let us recall the following de-

finitions.

An open covering of S inm X is a set U of open subsets of X,
such that UU DO S. For a set U of subsets of X we write
U(s) = {u : U € U,u NS # @¢}. We say then that

a) U Zs punctually finite on S if U({s}) is finite for every ele-

ment s of S.

b) U Zs locally finite on S if each element of S has a neighbor-
hood V such that U(V) is finite.

c) A S-refinement of an open covering U of S in X is an open cove-
ring V of S in X such that every element of V is contdined in some

element of U.

Now let us introduce the following

DEFINITION 1. The subset S of X is

a) relatively Hausdorff im X if two distinct points of S have dis-

joint neighborhoods in X.

b) relatively normal im X if two disjoint closed subsets of S have

disjoint neighborhoods in X.

c) relatively paracompact in X if every covering of S in X has a
S-refinement which is locally finite on S and if moreover S is re-

latively Hausdorff in X.
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REMARK 2. It is clear that X is relatively Hausdorff (resp.

normal; paracompact) in X if and only if X is Hausdorff (resp. nor-

mal; paracompact).

Slight modifications of classical proofs give the following

three results.

PROPOSITION 3. If S is relatively normal in X and Zf U is an
open covering of S in X which is punctually finite on S then there

exists a family (VU) of open subsets of X, covering S and such

UEU
that vy is contained in U for every U belonging to U.

PROPOSITION 4. If F is a closed subset of S and ©f S is rela-
tively paracompact in X then every open covering of F in X has a
F-refinement which is locally fimnite on S. In particular F is re-

latively paracompact in X.

PROPOSITION 5. If S is relatively paracompact in X then S is

relatively normal in X.

The following easy results are also usefull.

PROPOSITION 6. If S is relatively paracompact in X and <f Y
is a subset of X containing S them S is relatively paracompact in

Y. In particular S is paracompact.

Proof : Let U be an open covering of S in Y. It is clear that
there exists an open covering V of S in X such that V¥V N Y = U. Thus
there exists a S-refinement W of V which is locally finite on S.
We see directly that W N Y is a S-refinement of U in Y which is
locally finite on S. To conclude, we just have to note that S is

relatively Hausdorff in Y.///

PROPOSITION 7. If S has a fundamental system of paracompact

neighborhoods in X then S <s relatively paracompact in X.

Proof : Let U be an open covering of S in X. Let us choose a
paracompact neighbourhood V of S in X contained in UU. Since U N V
is an open covering of V in V, there exists a V-refinement V of
UNV in V which is locally finite on V. Thus V N ; is a S-refine-
ment of U in X which is locally finite on S. To conclude, it re-
mains to prove that S is relatively Hausdorff in X. Let x,y be ‘two
distincts elements of S and W a paracompact neighborhood of S in X.

Since W is a Hausdorff space, there exist neighborhoods VX,Vy of x
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and y in W, such that Vxﬂvy=¢. But W is a neighborhood of x (resp.
y) so that VX (resp. Vy) is a neighborhood of x (resp. y) in X.
Thus x and y have disjoint neighborhoods in X.///

COROLLARY 8.

a) A subset S of a completely paracompact space (e.g. a metric

space) X is relatively paracompact in X.

b) A closed subset S of a paracompact space is relatively paracom-
pact in X.

Proof : a) Since X is completely paracompact, every open sub-

set of X is paracompact and we may apply proposition 7.

b) Since X is paracompact we know that X is normal and the closed
neighborhoods of S in X form a fundamental system of paracompact

neighborhoods of S in X. So we may apply proposition 7.///

PROPOSITION 9. If S is compact and relatively Hausdorff in X

then S is relatively paracompact in X.

Proof : Let U be an open covering of S in X. Since U N S is
an open covering of S, there exists a finite subset V of U N S
which covers S. Let us choose a finite subset W of U such that
W NS = TV. Clearly W is a S-refinement of U which is locally fini-
te on S. Since S is relatively Hausdorff in X, the proof is comple-

te.///

A TAUTNESS CRITERION

PROPOSITION 10. If S s relatively paracompact in X then the

canonical morphism

(r

g lim r(U,F|U)—>F(S,F|S))

>

S
U VS
18 an isomorphism for every sheaf F on X.

Proof : It is clear that Ty is injective, thus we just have
to prove that it is onto. Let 0 be a section of F over S. For
every x € S, let us choose a neighborhood UX of x in X and a sec-

. s = .
tion 5y of F over UX such that XlanS 0|ans
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We know that S is relatively paracompact in X and that
U = {UX : x € 8} is an open covering of S in X, thus there exists
a S-refinement V of U which is locally finite on S. For every V

belonging to ¥V, let us choose a an element Xy of S, such that

vV C UX . Let s! denote the section s Since S is relatively

v v XviV'

normal in X, the proposition 3 gives us a family (WV)VEV of open

subsets of X covering S and such that W. C V whenever V € V. For

A
every V belonging to V we denote by sl the section s |z Let us
v v|wV
set
= N : EW. N W > " = g"
B {y « (y € Wy 0 W) = (sy(y) = sgyN}.

U, VeV

We shall establish that B is a neighborhood of S. Let x be an ele-
ment of S. Since V is locally finite on § there exists an open

neighborhood w of x in X such that V(w) is finite. Let us set

w' = w ( UV Wv)
VEV (w)
X¢Wv

Clearly w' is still a neighborhood of x in X and x € W, if

v
Wy N w' # ¢. Let us set
w" = w' N _ N {y : yevVvn U,se(y) = Sﬁ(Y)}'
W.Nw'#9
_v
n ]
WU w'#9

We see immediately that w" is an open neighborhood of x in X and

that
c " AT N W " - n
(y €w Wy MWy = (sg(y) sy (y))

if U, V belong to V. Thus w" is contained in B and B is a neigh-

borhood of x in X. Since x is an arbitrary point of S, this pro-

o
ves that S is contained in B. Now, since V is locally finite on S,

we know that {WV : VE€ V} is locally finite on an open neighbor-
°
hood © of S in X. Let Q' be the set @ N (U WV) N B,clearly, Q' is

VeV
an open neighborhood of S in X. For overy V € V let FV be the set
W. N Q' and let sg'be the section s!! . The family (Fv) defi-

€
v v Fv vev
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nes a closed locally finite covering of Q' and sy equals

N
[Py
g if U,V € V. Thus there exists a section s of F over Q'
U|FV0FU

such that S|F = sg if V € V. This shows that S|S = 0. Since 0 is
\4

an arbitrary section of F. over S, we have proved that r_. is onto.///

S

DEFINITION 11. The family of supports ¢ is A-paracompactifying
if every element of ® has a neighborhood which belongs to & and if

F N A is relatively paracompact in F for every F belonging to @,

PROPOSITION 12. If ¢ Zs S-paracompactifying and if F is a clo-
sed subset of S then & is F-paracompactifying.

Proof : Let F' be an element of ®. We know that F' N S is re-
latively paracompact in F' and that F N F' is closed in F' N §,

thus, by proposition 4, F N F' is relatively paracompact in F'.///

PROPOSITION 13. If & <s S-paracompactifying, then
a) ® N s <s paracompactifying in S,

b) the canonical morphism,

(r, : lim F@ﬂU(U’F

S i )————e>F¢ns(S,F|S))
UGVS

|u

is an isomorphism for every sheaf F on X,

c) F|S is ® NS - soft for every flabby sheaf F on X.

Proof : a) If F € &, F N S relatively paracompact in F and

proposition 6 shows that F N S is paracompact.

b) Let F be a sheaf on X. It is clear that rg is injective, so we
just have to prove that it is onto. Let 0 be a section of F over S
with support belonging to ® N S. Let us choose an element F of &
such that supp(o) = F N S and a neighborhood F' of F belonging to
®. Since F' N S is relatively paracompact in F', proposition 10
shows that the section 0 extends to a section o' of F over a neigh-
borhood V of S N F' in F'. Let G be the set supp(c'z. By conssruc—
tion, we know that G N S C ;'ﬂ S and that ;' N 8§ C V. Thus S\V is
contained in S\ G. This proves that S is contained in the open set
(X\G) U ;. Let us denote by Q this open set and by ¢" the

section of F over Q which is equal to 0 on X\ G and to ¢ on V, We

| o
A
= ¢ and that supp(c") C G. Since G C F',

see immediately that 0|S
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"o " - . .
o" is an element of F@nQ(Q’F‘Q)’ such that rsg(o ) 0. Since ¢ is

an arbitrary element of r@ﬁS(S’F ) we have proved that rg is onto,.

|'s
c) Let F be a flabby sheaf on X, B, B' two elements of & N S such
that B C B' and o a section of F over B. Since B is closed in S,
we know, by proposition 12, that ® is B - paracompactifying and
what is proved above shows that there exists an open neighborhood
Q of B in X and an element ¢g' of T (Q,F

NQ IQ) |B
Since F is flabby, there exists a section ¢" of F over X, such

such that ¢' = 0.

that O|Q = ¢g', Let us denote by o' the section clB.. It is clear
that o = g. Since ¢g is an arbitrary section of F over B, we have

|B

proved that F|S is ¢ N s - soft.///

CRITERION 14. If & is S-paracompactifying then S is @-taut.

Proof : It is an easy consequence of the preceding proposition

if we remember that an open subset of X is &é-taut and that a d-soft

sheaf is ® - acyclic if & is paracompactifying.///

REMARK 15. If S satisfies the condition a) (resp. b); c); d))
then proposition 7 (resp. 7; 7; 9) shows that & is S-paracompacti-

fying and the preceding result shows that S is o¢-taut.///

I would like to thank Professor J. SCHMETS for his valuable

advice.
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