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8.1 Introduction

Wide-ranging electri!cation and the large-scale deployment of technologies harnessing
renewable resources for electricity production have long been viewed as a means of
achieving deep decarbonization targets. However, widely-available renewable resources
such as solar irradiance and wind are inherently variable on time scales ranging from
minutes to years (Engeland et al., 2017), which complicates power system planning and
operation procedures, especially in systems with in#exible electricity loads.

Since the distribution of variable renewable energy resources is heterogeneous in
space and time, several authors suggested that carefully selecting renewable power
generation sites to take advantage of this diversity could at least partly alleviate variability
issues and reduce the residual load (Giebel, 2000; Milligan and Artig, 1999). The
concept of complementarity of (and between) renewable resources, which captures
this intuition, has received much attention of late and a number of metrics have
been proposed to measure it (Jurasz et al., 2020). Moreover, recent improvements in
meteorological modeling and observation instruments have unlocked vast amounts of
high-resolution climatological data that can be readily leveraged in the context of asset
siting analyses (e.g., reanalysis datasets providing hourly-sampled solar irradiance and
wind speed data for thousands of candidate sites over several decades), as mathematical
programming techniques are particularly well-suited for exploiting such data and system-
atically identifying sets of locations whose renewable resources exhibit some degree of
complementarity.

Nevertheless, to the authors’ best knowledge, only a handful of papers have sought
to take advantage of such datasets and methods in order to carry out large-scale, highly-
granular asset siting analyses (i.e., comprising more than a few dozen candidate sites).

Complementarity of Variable Renewable Energy Sources. Copyright c© 2022 Elsevier Inc.
DOI: https://doi.org/10.1016/B978-0-323-85527-3.00021-2 All rights reserved. 171



172 Complementarity of variable renewable energy sources

In particular, Musselman et al. (2018) proposed two mixed-integer linear programming
models that seek to site wind power plants so as to balance two competing objectives,
namely simultaneously minimizing the average residual demand and either the average
step-wise power output variability or the maximum increase in residual demand over
time intervals of prespeci!ed length. Similarly, Wu et al. (2017) appear to use a linear
programming model1 that sites and sizes wind power plants so as to minimize the maxi-
mum residual demand. Finally, Berger et al. (2021) proposed combinatorial optimization
models that site renewable power plants so as to minimize the empirical probability that
most sites simultaneously experience low electricity production levels relative to a pre-
speci!ed fraction of the electricity demand.

Furthermore, the bene!ts of renewable resource complementarity are often evaluated
for small sets of power plants or at system-level using non-monetary metrics such as the
residual electricity demand (Musselman et al., 2018; Wu et al., 2017) and models of the
underlying power system are rarely considered. Hence, these approaches typically fail to
properly assess the implications that complementarity may have for power system design
and economics, which necessitates the use of detailed integrated capacity expansion
planning (CEP) models. Indeed, such models represent the planning and operation of
power systems in a temporally and spatially-resolved fashion, which makes it possible
to properly account for the interaction between di$erent technologies (e.g., generation,
transmission, and storage) as well as system-level e$ects such as network congestion.

This chapter analyses the role that complementarity may play in renewable power
generation asset siting decisions and its impact on power system design and economics.
To this end, a two-stage approach is employed (Radu et al., 2022). In the !rst stage, a
siting method is used to select a prespeci!ed number of sites optimizing a prede!ned
siting criterion. In the second stage, the set of sites identi!ed in the !rst stage is passed to
a joint generation-transmission-storage CEP model, which then identi!es the optimal
power system con!guration. Seven di$erent siting schemes adapted from the literature
are analyzed in a case study focusing on the deployment of onshore wind power plants
in the European power system. In the interest of transparency and in order to spur the
adoption of such work#ows by other researchers, the models, computer code, and data
used in this chapter are all made available to the community (Dubois et al., 2021; Radu
et al., 2021).

8.2 Methodology

This section describes the two-stage approach used to assess the impact of resource
complementarity on renewable power plant siting decisions and its implications for power

1 The exact nature of the model used is unclear. The authors mention a “linear optimization model” in
the main document (where no formulation is provided) and an “integer optimization model” in the
supplementary material (where the formulation is shown but few explanations are o$ered).
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system design and economics.Some notation is !rst introduced.Then,the siting and CEP
frameworks are discussed.

8.2.1 Preliminaries
Space and time: A !nite time horizon T ∈ N and associated set of time periods T =
{1, . . . , T } are considered.A geographical region is represented by a !nite set of locations
L, |L| = L, where renewable power generation assets may be deployed.

Renewable sites: Each location l ∈ L is assumed to have a !xed technical potential κ̄l ∈
R+,which represents the power generation capacity that may be deployed at this location.
In addition, a time series sl = (sl1, . . . , slT )# ∈ RT

+ of renewable resource data (e.g.,wind
speed, solar irradiation) is assumed to be available at each site l ∈ L. The normalized
instantaneous power output of location l ∈ L is estimated via a suitable transfer function
hl providing per-unit capacity factor values πlt = hl (slt ), ∀t ∈ T , which are gathered
in a time series πl = (πl1, . . . , πlT )# ∈ [0, 1]T . The instantaneous power output of
each location l ∈ L is then computed by multiplying each entry in the normalized
power output time series πl by the technical potential κ̄l and stored in a time series
pl = (pl1, . . . , plT )# ∈ RT

+ .
Regions and buses: Furthermore, the set of locations L is partitioned into a collection

of disjoint regions Ln ⊆ L, ∀n ∈ NB, where NB, |NB| = B, denotes the set of B
electrical buses in the power system and Ln represents a set of candidate RES sites that
may be connected to bus n ∈ NB. Furthermore, for any given set of locations L ⊆ L, let
Ln = L ∩ Ln denote the (possibly empty) subset of locations that would be connected
to bus n ∈ NB. An electricity demand time series λn = (λn1, . . . , λnT )# ∈ RT

+ is also
associated with each bus n ∈ NB and the total electricity demand time series λ =
(λ1, . . . , λT )# ∈ RT

+ is obtained by summing the time series of all buses.

8.2.2 Siting framework
8.2.2.1 Combinatorial optimization model
The renewable power generation asset siting problem is formulated as a combinatorial
optimization problem that selects a pre-speci!ed number of sites so as to optimize a given
siting criterion. More formally, let k ∈ N be the number of sites to be selected and let
fC : P (L) → R be a function evaluating the score of any subset of locations L ⊆ L
based on a given siting criterion C (where P (L) denotes the set of all subsets of L).Then,
the asset siting problem consists in selecting a subset of locations L$ such that

L$ ∈ argmin{ fC (L)|L ⊆ L, |L| = k} (8.1)
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8.2.2.2 Siting criteria
Since no universally-accepted de!nition of complementarity exists, no single siting
criterion can be devised in order to identify sets of complementary locations. Hence,
in this chapter, seven di$erent siting criteria adapted from the literature are considered.
The !rst criterion measures the combined electricity output of a set of sites (PROD),
which should be maximized.Although this criterion does not measure complementarity
between locations per se, it can serve as a useful benchmark. Then, the second criterion
relies on the correlation between pairs of sites (CORR). The !rst and second criteria,
therefore, neglect the electricity load. By contrast, the next !ve criteria explicitly
take the electricity load into account. More precisely, several criteria make use of the
residual demand, which quanti!es the mismatch between electricity consumption and
production at any point in time. Thus, the third and fourth criteria focus on the average
(ARD) and the maximum residual demand (MRD), respectively, while the !fth and
sixth criteria assess the average (AV) and the maximum residual demand variability
(MV), respectively. Finally, the seventh criterion estimates the fraction of time periods
during which most sites fail to supply a pre-speci!ed share of the electricity demand
(CRIT).

Electricity output: The combined electricity output of a set of sites L ⊆ L can be
simply obtained by summing the electricity produced by all locations l ∈ L over all time
periods t ∈ T .Unlike other objectives described in this section, the combined electricity
output should be maximized. Hence, in order to !t into the present siting framework,
a slightly di$erent objective must be used. More precisely, since maximizing a given
objective function fC is equivalent to minimizing − fC, the score associated with this
siting criterion is computed as follows:

fPROD(L) = −
∑

t∈T

∑

l∈L

plt (8.2)

Correlation: Since correlation coe%cients can only be computed for pairs of sites (e.g.,
the correlation between two random variables representing wind speeds or power outputs
is straightforward to compute), the correlation score of a set of sites L ⊆ L is obtained
by taking the sum of correlation coe%cients Rij ∈ [ − 1, 1] associated with every pair of
sites (i, j) ∈ L × L, i *= j,

fCORR(L) = 1
2

∑

i∈L

∑

j∈L, j *=i

Ri j (8.3)

Average residual demand: The residual demand is positive if there is a shortage of
electricity in the system, while it is equal to zero if there is a production surplus. Thus,
given a set of locations L ⊆ L and time period t ∈ T , the residual demand can simply
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be expressed as:

rt (L) = max

{

0, λt −
∑

l∈L

plt

}

(8.4)

The average residual demand score (Musselman et al., 2018) can therefore be
computed as follows:

fARD(L) = 1
T

∑

t∈T

rt (L) (8.5)

Maximum residual demand: Alternatively, a maximum residual demand score may be
computed for any set of locations L ⊆ L (Wu et al., 2017),

fMRD(L) = max{rt (L)|t ∈ T } (8.6)

Average variability:The variability that a set of sites L ⊆ L exhibits can be measured by
the absolute change in residual demand between consecutive time periods (Musselman
et al., 2018). The resulting average variability score can be computed as follows:

fAV (L) = 1
T − 1

∑

t∈T ,t *=1

|rt (L) − rt−1(L)| (8.7)

Maximum variability:A di$erent variability metric that better captures abrupt increases
in residual demand may also be considered (Musselman et al., 2018). More speci!cally,
this metric quanti!es the maximum increase in residual demand between consecutive
time periods:

fMV (L) = max{rt (L) − rt−1(L)|t ∈ T , t > 1} (8.8)

Criticality: The spatiotemporal complementarity that subsets of sites display may also
be measured by the empirical probability that they experience so-called critical events
(Berger et al., 2020). Such events typically correspond to situations where most sites
simultaneously experience low electricity production levels relative to a pre-speci!ed
fraction of the electricity demand. More formally, for any time period t ∈ T and set of
locations L ⊆ L, the number of locations l ∈ L that produce more than a fraction ς l ∈
[0, 1] of the demand can be calculated as follows:

N (L, t ) =
∑

l∈L

max
{
0, I

(
plt ≥ ςlλt

)}
(8.9)

where I(plt ≥ ς l λt) is equal to 1 if plt ≥ ς l λt and 0 otherwise. If the number of sites
producing enough electricity at each time period should be at least equal to c ∈ N for
the time period to be non-critical, the fraction of time periods for which this condition
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is not satis!ed can be computed as follows:

fCRIT (L) = 1 − 1
T

∑

t∈T

max{0, (N (L, t ) ≥ c)} (8.10)

Note that minimizing this objective function is equivalent to maximizing the fraction
of time periods during which at least c locations produce enough electricity. In addition,
this criterion can be loosely interpreted as a discrete version of the average residual
demand criterion, with the additional requirement that electricity production must be
distributed across a number of sites.

8.2.2.3 Solution methods
Combinatorial optimization problems that are closely related to the one discussed above
are known to be both NP-hard and hard to approximate even if the objective function
has special properties such as monotonicity and submodularity (Nemhauser et al., 1978;
Svitkina and Fleischer, 2011).Hence, although a detailed analysis of the properties of each
objective function described above is beyond the scope of this chapter, it seems unlikely
that polynomial-time algorithms systematically returning optimal solutions exist for each
objective (except for the PROD criterion, whose associated optimization problem is
straightforward to decompose and solve). In addition, although exact methods such
as branch-and-bound algorithms may still yield optimal solutions for certain problem
instances, they often become ine$ective as the size of the problem grows (Berger et al.,
2021; Musselman et al., 2018). Thus, one usually has to settle for approximate solution
methods that produce good (suboptimal) solutions in a reasonable amount of time.

In this chapter, greedy algorithms are used to solve variants of the siting problem.
These algorithms are conceptually simple,have low computational complexity,and some-
times o$er worst-case performance guarantees (e.g., for coverage problems, Hochbaum
and Pathria, 1998). In this context, greedy algorithms proceed as follows. Starting from
an empty set, a location l ∈ L \L is added to the incumbent solution L in each iteration.
In order to identify this location, all unselected locations are enumerated and a score is
computed for each one of them.This score typically re#ects the value of adding a location
to the incumbent solution,which can be computed using a pre-speci!ed function f̂C (that
may be the natural objective function of the problem at hand or an auxiliary objective
function designed to improve the performance of the algorithm (Berger et al., 2021)).
The location with the best score is then added to the incumbent solution. If there is no
single best location, ties are broken at random (i.e., one of the best locations is selected
at random and added to the incumbent solution). This procedure is repeated until k
locations have been added. The pseudocode in Fig. 8.1 summarizes these ideas. The
details of this algorithm can be found in (Berger et al., 2021).
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Figure 8.1 Pseudocode describing the workings of greedy algorithms used to solve variants of the
siting problem.

8.2.3 Capacity expansion planning framework
Once a set of RES sites L ∈ L has been selected using the siting framework of
the previous section, their corresponding resource time series {πl}l ∈ L and technical
potentials {κ̄l}l∈L are provided as input data to the CEP framework that evaluates the
impact of the underlying siting strategy on the capacities and costs of technologies
deployed in the power system.The formulation of the CEP problem used for this purpose
is presented next. Table 8.1 summarizes the notation used throughout this section.

First, a set of working assumptions are introduced in order to derive the CEP
framework:! Investment decisions in generation, transmission and storage assets are made by a

central planner who also operates the system, has perfect foresight and knowledge
(i.e., knows all exogenous techno-economic parameters and future events impacting
the system with certainty), and whose goal is to minimize total system cost over a
!nite time horizon.! A static investment model is considered,wherein investment decisions are made at the
beginning of the time horizon. New capacity deployments are immediately available
and remain constant throughout the entire time horizon. Operational decisions, on
the other hand, are made at regular intervals (e.g., on an hourly basis) throughout
the time horizon considered. The investment and operational problems are solved
concurrently.! Investments in generation, transmission and storage capacity are continuous (as
opposed to discrete investments).! The capacity of each RES plant selected in the siting stage is assumed to be constant
throughout the optimization horizon and equal to the technical potential of the
associated site.! The network is represented by a set of existing nodes,which represent an aggregation
of real electrical buses, and a set of existing transmission corridors,which connect the
aforementioned nodes and to which transmission capacity expansion is limited (i.e.,
no new transmission corridors can be constructed).! Network #ows are represented via a lossless transportation model.
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Table 8.1 Capacity expansion planning framework nomenclature.

Notation Description
Indices & sets
c, C Line, set of transmission corridors, C ⊂ NB × NB
C+

n , C−
n Set of inbound links into node n ∈ NB, with

C+
n = {c ∈ C|c = (u, n), u ∈ N +

n }, where N +
n = {u ∈ NB|(u, n) ∈ C}

and set of outbound links from node n, with
C−

n = {c ∈ C|c = (n, v), v ∈ N −
n }, where N −

n = {v ∈ NB|(n, v) ∈ C}
g,G Conventional generation technology index and associated set
l, Ln Site and set of sites associated with bus n
n,NB Bus and set of buses
r,R Renewable technology index and set of RES technologies
s,S Storage technology index and set of storage technologies
t, T Time index, set of time steps
Parameters
σ ns, σ̄ns Initial and maximum installable capacity of storage technology s at

node n [GWh]
µs Minimum storage level of technology s (fraction of installed capacity)

[-]
ηSD

s , ηD
s , ηC

s Self-discharge, discharge and charge e%ciency of storage technology s
[-]

ϕs Fixed energy-to-power ratio of storage technology s [-]
κ c, κ̄c Initial and maximum installable (power) capacity of transmission line c,

respectively [GW]
κ̄l Technical potential of site l [GW]
κnm, κ̄nm Initial and maximum installable (power) capacity of technology m ∈

{g, r, s} at node n [GW]
λnt Electricity demand at node n and time t [GW]
π lt Availability of RES technology at site l and time t [p.u.]
π nmt Availability of generation technology m at node n and time t [p.u.]
θ ens Economic penalty for demand curtailment [MEUR/GWh]
θx

f , θ
x
v Fixed (FOM, expressed in MEUR/GW∗year) and variable (VOM,

expressed in MEUR/GWh) operation and maintenance cost of
technology m ∈ {g, l, s, c}

ωt Weight of each operating condition t in the objective function and
CO2 emissions

ωs Weight of each operating condition t in the operation of storage units
ζm Annualized investment cost of technology m ∈ {g, l, s, c} [MEUR/GW]
,CO2 Yearly CO2 budget [Mt]
νCO2

g Speci!c CO2 emissions of generation technology g [MtCO2/GWh]
ηg Thermal e%ciency of generation technology g [-]
Variables
enst State of charge (energy) of storage s at node n and time t [GWh]
Kc Installed capacity of transmission line c [GW]

(continued on next page)
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Table 8.1 Capacity expansion planning framework nomenclature—cont’d

Notation Description
Knm Installed capacity (power) of technology m ∈ {g, s, r} at bus n [GW]
pnmt Feed-in at node n from technology m ∈ {g, r} at time t [GW]
pC

nst, pD
nst Charge and discharge #ow of storage technology s at bus n and time t

[GW]
pct Power #ow over transmission line c at time t [GW]
plt Feed-in of site l at time t [GW]
pens

nt Unserved demand at bus n and time t [GW]
qCO2

ngt CO2 emissions associated with generation technology g, at node n and
time t [Mt]

Sns Rated energy storage capacity for technology s at node n [GWh]

! No unit commitment constraints are considered (e.g., start-up, shut-down, minimum
up/down-times for conventional generation units). Furthermore, the full operating
range of these plants (from zero to maximum capacity) is assumed stable, and their
ramping rates are unbounded (i.e., units can ramp from minimum (resp. maximum)
capacity to maximum (resp. minimum) capacity from one time period to the next).! Neither outages nor failures of power plants and network components are considered.! Capacity factors of renewable power plants, the (inelastic) electricity demand, invest-
ment, and operating costs of all technologies as well as their technical parameters are
all exogenous.
Putting these assumptions to use, the CEP model then reads:

min
K,(pt )t∈T





∑

n ∈ NB

j ∈ G ∪ R ∪ S

(
ζ j + θ

j
f

)
Kn j +

∑

n ∈ NB

s ∈ S

ζ sSns +
∑

c∈C

(
ζ c + θ c

f

)
Kc





+
∑

t∈T





∑

n ∈ NB

l ∈ Ln

θ l
v plt +

∑

n ∈ NB

m ∈ G ∪ R

θ g
v pnmt +

∑

n ∈ NB

s ∈ S

θ s
v

(
pC

nst + pD
nst

)
+

∑

c∈C

θ c
v

∣∣pct

∣∣ +
∑

n ∈ NB

θ ens pens
nt





.

(8.11)
∑

l∈Ln

plt+
∑

g∈G∪R

pngt +
∑

s∈S

pD
nst +

∑

c∈C+
n

pct + pens
nt = λnt +

∑

s∈S

pC
nst +

∑

c∈C−
n

pct , ∀n ∈ NB , ∀t ∈ T (8.12)

plt ≤ πlt κ̄l , ∀n ∈ NB , ∀l ∈ Ln , ∀t ∈ T (8.13)

pnmt ≤ πnmt
(

κnm + Knm
)
, ∀n ∈ NB , ∀m ∈ G ∪ R, ∀t ∈ T (8.14)
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κnm + Knm ≤ κ̄nm, ∀n ∈ NB, ∀m ∈ G ∪ R (8.15)

qCO2
ngt = νCO2

g pngt/ηg, ∀ n ∈ NB, ∀ g ∈ G, ∀ t ∈ T (8.16)

Kns = φ−1
s Sns, ∀ n ∈ NB, ∀ s ∈ S (8.17)

pC/D
nst ≤ κns + Kns, ∀ n ∈ NB, ∀ s ∈ S, ∀ t ∈ T (8.18)

µs
(
σ ns + Sns

)
≤ enst ≤ σ ns + Sns, ∀ n ∈ NB, ∀ s ∈ S, ∀ t ∈ T (8.19)

enst = ηSD
s enst−1 + ηC

s pC
nst − pD

nst/η
D
s , ∀n ∈ NB , ∀s ∈ S, ∀t ∈ T (8.20)

σ ns + Sns ≤ σ̄ns, ∀ n ∈ NB, ∀ s ∈ S (8.21)

∣∣pct
∣∣ ≤ κ c + Kc, ∀ c ∈ C, ∀ t ∈ T (8.22)

∑

n ∈ NB

g ∈ G
t ∈ T

qCO2
ngt ≤ ,CO2 (8.23)

The CEP problem described in Eqs. (8.11)–(8.23) is cast as a linear program whose
objective function, shown in Eq. (8.11), includes the capacity-dependent upfront costs
of additional generation, storage, and transmission assets required to supply pre-de!ned
levels of electricity demand at each bus, as well as the !xed and variable operation and
maintenance (O&M) costs associated with both existing and additional capacities for the
three classes of assets mentioned previously. The loss of load is also penalized through
a slack variable (featured in the energy balance constraint in Eq. (8.12)) that maintains
problem feasibility when the supply from generation and storage assets or #ows from
transmission links is not su%cient to cover the electricity demand in full.

The operation of RES sites identi!ed by the siting framework is constrained by
Eq. (8.13). In this chapter, it is assumed that the sites identi!ed via the siting framework
are exploited at their full technical potential, thus no sizing variable is used to model
these units. The next three equations model the operation and sizing of the remaining
generation units, including RES technologies that are not sited. First, electricity gen-
eration from such units is constrained by their installed capacity via Eq. (8.14). Then,
their installed capacity is bounded from above, as can be seen in Eq. (8.15). Finally,
Eq. (8.16) expresses the volume of CO2 emitted by dispatchable units running on fossil
fuels in terms of their power output, thermal e%ciency, and the speci!c emission levels
of the underlying fuel. It is worth mentioning the two most common situations in which
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Eqs. (8.14)–(8.16) are enforced. On the one hand, if dispatchable units are modeled (e.g.,
gas-!red power plants), the time-dependent availability π nt in Eq. (8.14) is set to one
across the entire optimization horizon. On the other hand, for RES technologies that
are not sited via the siting framework (i.e., the ones included in R), the aforementioned
parameter is instantiated with a per-unit capacity factor time series that is aggregated at
the spatial resolution represented by bus n ∈ NB.

Then, the sizing and operation of storage units is modeled via Eqs. (8.17)–(8.21). The
energy-to-power ratio of new installations is enforced via an exogeneous parameter in
Eq.(8.17).Constraint Eq.(8.18) bounds the charge and discharge rates of such installations
(which are assumed symmetric) by their power rating. Furthermore, the state of charge
of storage assets is, at each node and time step, bounded by minimum and maximum
storage levels Eq. (8.19), while its dynamics are de!ned via Eq. (8.20). Finally, as for
generation technologies, the installed capacity of storage assets can be bounded at each
node by a maximum installable capacity, as seen in Eq. (8.21). The physics of power
#ows are represented by a simpli!ed lossless transportation model expressed in Eq. (8.21),
which limits the active power #ows in transmission links to the corresponding transport
capacities. Finally, constraint Eq. (8.22) enforces that system-wide CO2 emissions remain
below a pre-speci!ed budget.

8.2.4 Implementation
The two-stage approach was implemented in Python 3.7 and Julia 1.4 (Bezanson et al.,
2017). More precisely, the siting heuristics were implemented in the Julia programming
language, while the data pre- and post-processing as well as the entire CEP routine,
which relies on PyPSA 0.17 (Brown et al., 2018), was implemented in Python. The CEP
model was solved with Gurobi 9.1.Simulations were performed on a workstation running
under CentOS, with an 18-core Intel Xeon Gold 6140 CPU clocking at 2.3 GHz and
256 GB RAM. The code used in this chapter is available at (Radu et al., 2021) (siting
framework) and (Dubois et al., 2021) (CEP framework), along with all relevant input
data (e.g., resource and demand time series as well as all techno-economic assumptions)
(Radu et al., 2021).

8.3 Case study

In this section, the case study used to investigate the impact of di$erent onshore wind sit-
ing schemes on the design of the European power system is described.First, the data used
to construct instances of the onshore wind siting problem are discussed. Then, the data
used to instantiate the CEP framework introduced in the previous section are described.

First, three years (2017–2019) of hourly-sampled resource data (wind speed) with a
spatial resolution of 0.25° in both coordinate directions were retrieved from the ERA5
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Figure 8.2 Candidate sites for onshore wind deployment across Europe (i.e., dark grey markers).

reanalysis database (European Centre for Medium-Range Weather Forecasts - ECMWF,
2020). Then, the mapping of resource data to capacity factor time series was done via
transfer functions representing wind turbine models currently in production, namely
two Vestas (the V164 and V90) and two Enercon (the E103 and E126) models. These
models are suitable for di$erent wind regimes and the speci!c transfer function used
for each individual site was selected based on its underlying wind resource quality
and its associated IEC wind class (International Electrotechnical Commission, 2019).
In addition, a preprocessing step !ltering reanalysis data grid points located within
European geographical boundaries was performed in order to discard candidate sites
where the installation of wind turbines would be impractical. First, all sites with a
5-year average wind speed below 4 m/s were discarded. Then, candidate sites where the
population density is above 200 inhabitants per square kilometer were removed. Next,
sites with an average terrain slope above 3% or with a forestry cover above 80% were also
discarded. Finally, candidate locations found at latitudes greater than the 65th parallel
were also discarded. Applying these !lters leads to a total of 3609 candidate sites within
European borders, which can be visualized in Fig. 8.2.

A report published by WindEurope in 2017 (Nghiem and Pineda, 2017) was used to
build instances of the onshore wind siting problem. The central scenario of this study
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envisions the operation of 263 GW of onshore wind power plants in 28 European coun-
tries by 2030. Since the renewable power generation asset siting problem is formulated
as a combinatorial optimization problem that selects a pre-speci!ed number of sites so
as to minimize a given siting criterion, a function converting country-speci!c onshore
capacities (κ , in GW) into a number of locations (k) is needed. This mapping (i.e., Eq.
(8.24), where x denotes the ceiling function) requires two assumptions: i) the surface
area of a representative grid cell (αcell, i.e., the equidistant area surrounding a reanalysis
dataset point, expressed in km2) and ii) the power density of the underlying electricity
generation technology (ρp, expressed in MW/km2). In this chapter, a cell surface area of
521 km2 (the surface area of a 0.25° by 0.25° square at 47.5° latitude) and an onshore
wind power density of 2.4 MW/km2 were considered.Used together in Eq. (8.24), these
assumptions imply the deployment of k = 211 sites to host 263 GW of onshore wind
power plants across Europe.

k = κ/
(
ρp × αcell

)
(8.24)

The Europe-wide demand time series λ = (λ1, . . . , λT )# required in !ve of the
seven siting formulations is retrieved from the Open Power System Data (OPSD)
platform. Recall that in Eq. (8.9), a location l ∈ L is considered non-critical during time
period t ∈ T if its generation potential exceeds a pre-de!ned share ς of the system-wide
electricity demand. This share is assumed to be constant across the optimization horizon
and equal to 23%, as suggested by Nghiem and Pineda (2017). Furthermore, the value of
c in Eq. (8.10) is set such that the ratio between c and the number of deployments k is
equal to 0.25 (i.e., at least 25% of all selected locations must produce enough electricity
for a time period not to be critical).

The network topology used in the CEP framework is drawn from the 2018 version
of the European Ten-Year Network Development Plan (TYNDP) (ENTSO-E, 2018).
More speci!cally, the set NB comprises 28 buses, each representing one country in the
ENTSO-E region. It is assumed that all interconnections crossing bodies of water are
developed as DC cables2, while the remainder is AC lines. Furthermore, investments in
transmission capacity are limited to the reinforcement of corridors already existing in
the TYNDP “Reference Grid 2027” scenario, while the addition of new transmission
corridors is not taken into account. The topology considered in this study is depicted
in Fig. 8.3. Electricity demand time series {λn}n∈NB spanning the same years as the ones
used in the siting stage (i.e., 2017–2019) are used in the CEP problem.

As previously mentioned, the optimal siting of onshore wind farms only is performed
in the current exercise. In practical terms, this translates into the siting stage providing
the sizing framework k di$erent onshore wind pro!les across Europe. By contrast, the

2 These assumptions also apply for the France–Spain interconnector which, even though looking as if it cut
straight through the land border, is expected to be developed through the Biscay Bay.
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Figure 8.3 Network topology used in the proposed case study. Blue lines depict high-voltage alternat-
ing current (HVAC) cross-border interconnections, while red links represent high voltage direct current
(HVDC) cross-border interconnections, according to the 2018 version of the TYNDP.

rest of the three available RES technologies (o$shore wind, utility-scale, and distributed
PV) are modeled via country-aggregated capacity factor time series retrieved from the
renewables.ninja platform (Sta$ell and Pfenninger, 2016; Pfenninger and Sta$ell, 2016)3.
Besides the four renewable resource-based electricity generation technologies, four
others are available for electricity generation in the CEP problem,that is, combined-cycle
gas turbines (CCGT), nuclear, as well as run-of-river and reservoir-based hydropower
plants. All these technologies but onshore wind (whose site-speci!c capacity is not
optimized and is assumed to be the technical potential of the locations selected in the
siting stage),hydro and nuclear plants are sized in the CEP framework, and their technical
potential provides an upper bound on the maximum capacity that may be deployed.
In addition, all generation technologies but CCGT units are assumed to have non-
zero installed capacities at the beginning of the optimization horizon4. The technical

3 Moreover, note that solar PV generation pro!les do not depend on the underlying technology (e.g., utility-
scale or distributed PV pro!les are identical for a given bus).

4 Recall that the site-speci!c onshore wind capacities are assumed to be the technical potentials of the
locations selected in the siting stage, thus one can interpret these values as existing capacity at the beginning
of the optimization horizon. O$shore wind legacy capacity is obtained from The Wind Power database
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potential of all sized RES technologies has been retrieved from the ENSPRESO database
(Joint Research Centre, 2019), which provides technical potential estimates based on
pre-de!ned scenarios modeling techno-economic and social restrictions associated with
wind- and solar-based technologies.In the current exercise, low restriction scenarios were
assumed for o$shore wind and distributed PV installations. For the former, the resulting
potential is estimated at 2065 GW5. With respect to the latter, roughly 1200 GW are
available as technical potential across the continent6.For utility-scale solar PV,considering
a high-restriction scenario yields a EU-wide technical potential of roughly 546 GW7.
Lastly, the technical potential of the remaining generation technology to be sized in the
CEP framework (i.e., CCGT) is assumed unconstrained.

Two technologies are available for storing electricity, namely pumped-hydro (PHS)
and battery storage (Li-Ion) plants.The latter technology is modeled as a 4-hour duration
storage unit (no independent sizing of power and energy ratings) with no legacy capacities
across Europe.PHS units are not sized within the CEP framework at hand and the power
ratings of existing plants are retrieved from European Commission - Joint Research
Centre, Hydro Power Plant Database (2020), where a total of 54.5 GW/1950 GWh
are reported. Finally, an EU-wide CO2 budget is enforced and its value represents a
90% reduction in carbon dioxide emissions relative to 1990 levels (i.e., a CO2 budget of
137.4 Mt per annum is considered).

8.4 Results

Simulation results generated with the siting and CEP frameworks are discussed in this
section.

(Pierrot, 2020), which provides technical information for 99 GW of such units across European Seas and in
di$erent development stages (planned,approved,under construction,and operational).Utility-scale solar PV
capacity data are retrieved from the Wiki Solar database (Wolfe, 2020) containing projects summing to over
46 GW throughout Europe and, as for o$shore wind, in di$erent development stages (planned, approved,
under construction, and operational). Country-aggregated capacities for distributed PV are retrieved from
the SolarPowerEurope market study (Beauvais et al., 2019), which reports the existence of 77 GW of such
installations within European boundaries. Moreover, 61.5 GW of nuclear power capacity, 33.5 GW of
run-of-river hydro power capacity, and 98.1 GW of reservoir-based hydro power capacity are available
throughout the selected European countries (European Commission, 2020).

5 Considering a low-restriction scenario, in which deployments are possible in inland waters (i.e., distances
to shore between 0 and 120 nautical miles) and in depths of up to 1000 meters.

6 According to a low-restriction development scenario that assumes a power density of 170 W/m2 and a
utilization share of the associated surfaces (e.g., #at roofs, inclined roofs, facades) varying from 6% to 70%
depending on the orientation and the type of building.

7 Assuming a similar high-restriction scenario that considers a power density of 85 W/m2,5% land utilization
potential in high-irradiation areas, and no possibility of deploying utility-scale installations in areas with an
average DNI below 1800 kWh/m2 per year.
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8.4.1 Siting outcomes
The sets of locations associated with the seven siting strategies are depicted in Fig. 8.4,
where red markers indicate the geographical locations of renewable power generation
sites selected for deployment. In the !rst subplot (top left), it can be seen that most
of the 211 onshore wind sites selected by the scheme minimizing the average residual
demand (ARD) are located along the coasts of the Atlantic Ocean, the North Sea, and
the Baltic Sea. This suggests that wind power production patterns in these areas match
aggregate European electricity demand patterns fairly well. The next subplot (top right)
shows that most sites selected by the scheme minimizing the average residual demand
variability (AV) are located in the British Isles and Scandinavia, with the remainder
fairly evenly spread across Continental Europe, from the Iberian Peninsula to the Baltics.
Then, the third subplot (second row, left) indicates that the siting strategy minimizing
the correlation between sites (CORR) distributes clusters of onshore wind sites across
European regions known to have distinct wind regimes (incl. Scandinavia, the British
Isles, the Iberian Peninsula and the Eastern Mediterranean region) (Grams et al., 2017).
The fourth subplot (second row, right) shows that a high proportion of the total number
of sites selected by the siting strategy minimizing the empirical probability of observing
so-called critical events (CRIT) are located in the British Isles and South-West Europe
(i.e., France and Iberia). Many sites are also deployed in the Jutland Peninsula. These
observations are consistent with earlier !ndings suggesting that these wind production
patterns match aggregate European electricity demand patterns well. Note that more
than a dozen sites are also deployed in areas with wind regimes distinct from the ones
typically found in Northern and Western Europe (e.g., the Eastern Mediterranean or
the Baltic region). The !fth subplot (third row, left) shows that the scheme minimizing
the maximum residual demand (MRD) spreads most onshore wind sites along European
coastlines from Estonia to Denmark and Norway, in the British Isles, around the Iberian
Peninsula, in Italy,and in Greece.In addition,some inland wind regimes are also harnessed
by this scheme. More speci!cally, sites are selected in areas swept by the Mistral and
Tramontane in France (Obermann et al., 2018), as well as the Cierzo in Spain (Gonzalez
et al., 2018). In the sixth subplot (third row, right), it can be seen that the siting strategy
seeking to minimize the maximum residual demand variability (MV) results in the vast
majority of onshore sites being deployed inland, unlike previous siting criteria. Sites are
also spread relatively evenly across Europe. Finally, it can be seen in the last subplot
(bottom left) that the set of locations maximizing electricity output (PROD) happen
to exactly coincide with the set of locations minimizing the average residual demand
(ARD) over the time horizon considered.This observation suggests that at the European
level, simply deploying renewable power plants at the most productive locations may
be su%cient to achieve a degree of complementarity between them equivalent to that
obtained with a siting criterion speci!cally designed to identify locations whose regimes
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Figure 8.4 Set of locations selected using each of the seven siting strategies. In these plots, the selected
locations are shown as dark red markers.
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Figure 8.5 Average capacity factors of onshore wind sites for the ARD, AV, CORR, CRIT, MRD, and MV
schemes, respectively.

are complementary (in the sense of the average residual demand). Since the PROD
siting criterion yields the exact same locations as the ARD criterion, describing results
pertaining to the latter su%ces and the former is omitted in the following.

Fig. 8.5 gathers the average capacity factor of onshore wind installations for each
siting scheme, which was computed by averaging capacity factor time series in space and
time. The ARD criterion is the one yielding the set of locations whose average capacity
factor is the highest (around 45%), followed by the CRIT (around 41%) and MRD
(approximately 37%) criteria. Note that all of these criteria achieve average capacity
factors that are higher than 35%. By contrast, all other criteria lead to average capacity
factors that are only slightly above 25%. Hence, since all locations roughly have the
same technical potential, the theoretical power generation potential of sets of locations
identi!ed with the AV, CORR, and MV criteria is much lower. This observation can
be explained as follows. Roughly speaking, the lower the absolute residual electricity
demand over time, the better the ARD, CRIT, and MRD scores. Although sites that are
very productive may not always lead to low residual demand levels (e.g., if they all share
the same power generation pro!le that happens to be very di$erent from the electricity
demand pro!le), sites that produce little electricity will almost certainly result in high
residual demand levels. Moreover, even though the AV and MV criteria take the residual
demand into account, they only measure its variation. Hence, sites with aggregate
production pro!les that are all translated upwards or downwards would essentially
yield the same scores. Finally, since the CORR score (which is based on the Pearson
correlation coe%cient) is normalized, the absolute production level does not matter.

The statistical distribution of the Europe-wide (aggregate) residual demand associated
with each siting strategy is shown in Fig. 8.6. In order to generate this plot, the aggregate
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Figure 8.6 Box plots of Europe-wide residual demand for the siting strategies considered. Orange lines
represent median values, whereas green triangles represent mean values.

onshore wind production time series was computed by summing the production time
series of all 211 sites. Each production time series was computed by multiplying the
capacity factor time series of the corresponding location by its capacity, which was
assumed equal to its technical potential. Then, the aggregate residual demand signal was
calculated by subtracting the aggregate onshore wind time series from the Europe-wide
aggregate demand time series. In the box plots below, the orange lines and green triangles
represent the median and mean, respectively, while the box itself spans the interquartile
range (i.e., the range between the !rst and third quartiles). Several observations can be
made. First, as expected, the ARD scheme has the lowest average residual demand (i.e.,
it has the leftmost green arrow, which is around 245 GW). The CRIT scheme has the
second-lowest average residual demand (approximately 250 GW), which con!rms the
intuition that this criterion can loosely be interpreted as a discrete version of the ARD
criterion. The MRD strategy then comes third (roughly 255 GW), followed by the
CORR scheme (around 275 GW). The two schemes with the highest average residual
demand are MV (about 290 GW) and AV (approximately 295 GW). Second, the MRD
scheme has the lowest maximum residual demand (roughly 415 GW),which is consistent
with the de!nition of this criterion.The CRIT scheme comes second (around 425 GW),
followed by the ARD scheme (roughly 435 GW). The CORR criterion comes fourth
(approximately 440 GW),while the AV and MV schemes perform equally badly in terms
of maximum residual demand (about 450 GW each). Finally, minimum residual demand
levels roughly fall between 75 and 145 GW, which implies that onshore wind power
plants alone cannot generate any production surplus.
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Figure 8.7 Total annualized system cost broken down by technology for each siting criterion. Each
segment of a bar represents the sum of (1) capital expenses associated with the deployment of
additional capacity for technologies that are sized and (2) O&M costs taking into account the total
installed capacity of each considered technology. The !gures on top of each bar represent the total
system cost of the corresponding siting scheme, where all capital expenditure associated with legacy
plants was neglected.

8.4.2 Impact of siting strategies on system design and economics
Fig. 8.7 displays the breakdown of the annualized system cost by technology for each
siting strategy. The cheapest system con!guration is obtained with the ARD siting
scheme. Since the ARD and PROD schemes provide identical sets of locations (see
Fig.8.4), this also implies that selecting the most productive onshore wind locations results
in the cheapest power system design. The CRIT scheme leads to a system con!guration
that is roughly 2.5% more expensive, while using the MRD criterion results in a system
design that is about 5% more expensive. All other schemes lead to con!gurations that are
(roughly) 20% to 25% more expensive. It is worth noting that RES technologies account
for most of the annualized system cost (well over 60% in most cases), the vast majority
of which is in the form of CAPEX. Among RES technologies, wind power plants (both
onshore and o$shore) make up the largest share of costs (over 75%).The remaining share
of total system cost is fairly evenly split between gas-!red power plants, batteries, and
transmission assets (when the costs of both AC and DC lines are summed). Di$erences
in total system cost between schemes mostly stem from the amount of money spent on
o$shore wind power plants. Indeed, o$shore wind costs reported for the three cheapest
schemes (ARD, CRIT, and MRD) are much smaller than those observed for the three
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Figure 8.8 Additional capacities (i.e., legacy capacities are not accounted for) of each technology iden-
ti!ed by the CEP framework (except onshore wind power plants) for each siting strategy. Capacities of
generation, storage and transmission technologies are expressed in GW, GWh, and TWkm, respectively.
A summary of existing legacy capacities is provided in the Case Study description.

other schemes (MV, AV, and CORR). Costs stemming from gas-!red power plants are
also smaller for the MRD and CRIT schemes, although this has a limited impact on
total system cost. Finally, although the share of costs stemming from transmission assets
remains fairly constant across schemes, the breakdown by transmission technology (i.e.,
AC vs DC) tends to change.

Fig. 8.8 gathers the additional installed capacities for the eight technologies sized in
the CEP problems while Fig. 8.9 displays the average annual electricity generation (in
TWh) broken down by technology for each siting strategy. Recall that onshore wind
capacities were computed based on the technical potential of locations identi!ed in the
siting stage and were therefore not sized in the CEP model. Onshore wind capacities
vary (roughly) between 275 GW (for the MV scheme) and 320 GW (for the CORR
scheme).Since di$erent schemes have very di$erent average capacity factors (see Fig.8.5),
the amounts of electricity produced by onshore wind power plants also di$er very widely
between schemes, as shown in Fig. 8.9.This essentially drives the deployment of o$shore
wind power plants,which make up for any de!cit in onshore wind electricity production.
This intuition is con!rmed by the fact that the combined share of electricity produced by
onshore and o$shore wind power plants remains roughly constant across siting strategies,
as shown in Fig. 8.9. Since the cost of o$shore wind power plants is much higher than
that of other renewable power generation technologies, this observation largely explains
the cost di$erences observed between di$erent schemes. On the other hand, no obvious
trend in the deployment of solar PV capacity can be seen in Fig. 8.8. The deployment
of battery storage systems, however, seems to be directly correlated to the amount of
solar PV capacity in the system. It is worth noting that the MRD scheme is the one for
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Figure 8.9 Average annual power generation (in TWh) broken down by technology for each siting
strategy.
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Figure 8.10 Average annual curtailment (TWh) broken down by renewable power generation
technology.

which the capacity of gas-!red power plants is the lowest. This observation is consistent
with the fact that this scheme is also the one with the lowest maximum residual demand.
However, the amount of electricity produced by gas-!red power plants remains fairly
constant across schemes and represents a very small fraction of the total (no more than a
few percentage points).
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Finally, Fig. 8.10 shows the average annual amount of curtailment broken down by
renewable power generation technology for each siting strategy.The siting strategies with
the highest average capacity factors (namely ARD and CRIT) are also the ones for which
the amount of onshore wind electricity curtailment is the highest. On the other hand,
the MV and AV schemes are the ones for which the amount of solar PV electricity
curtailment is the highest.

8.5 Conclusion

This chapter analyses the role that complementarity may play in renewable power gener-
ation asset siting decisions and its impact on power system design and economics. To this
end, a two-stage approach is employed. In the !rst stage, a siting method is used to select a
prespeci!ed number of sites optimizing a pre-de!ned siting criterion. In the second stage,
the set of sites identi!ed in the !rst stage is passed to a joint generation-transmission-
storage CEP model, which identi!es the optimal power system con!guration. The code
implementing the method is also made available to the community.

Seven di$erent siting criteria adapted from the literature are analyzed in a case study
focusing on the deployment of onshore wind power plants in the European power system.
More precisely, roughly 200 onshore wind locations were selected (out of more than
3000) so as to optimize each siting criterion and passed to a CEP model. Interestingly, the
set of locations selected by the scheme that minimizes the average residual demand was
found to coincide with that of the scheme maximizing the electricity output, suggesting
that selecting onshore wind locations in the most productive European regions could
su%ce to obtain sets of locations that display a high degree of complementarity. In
addition, the cheapest system design was obtained with these schemes,while the schemes
minimizing the variability of the residual demand and the correlation between wind
regimes were between 20% and 25% more expensive. This outcome can be largely
attributed to the fact that the latter schemes have much higher residual demand levels,
which result in renewable electricity production de!cits that must be compensated for
by additional o$shore wind capacity deployments.

In future work, several research directions can be envisaged. In the siting stage,
extending the case study to include several types of renewable resources and technologies
(e.g., solar PV, onshore, and o$shore wind) would make it possible to gain a better
understanding of their spatiotemporal complementarity and interactions. In addition,
accounting for legacy units in the siting stage would enable a better estimation of where
new RES assets should be deployed in order to maximize resource complementarity
while accounting for generation patterns of existing renewable power plants. In the CEP
stage, several improvements could be considered. First, increasing the spatial resolution of
the network representation (i.e., from a one-node-per-country set-up to a representation
based on the European territorial NUTS divisions, for instance) would provide a
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better approximation of the need for technologies that are not included in the siting
stage. Then, the model formulation could be updated to improve the representation
of power #ows (e.g., via a linearized version of the AC power #ow equations), which
becomes particularly relevant if a higher-resolution network topology is employed, as
this would enable a more accurate estimation of power #ow patterns and their impact
on transmission sizing. Third, including unit commitment constraints and start-up costs
for dispatchable power plants as well as system adequacy requirements (e.g., reserve
requirements) in the CEP model would make it possible to better estimate system costs
stemming from RES variability. Lastly, accounting for short-term renewable resource
uncertainty would result in more realistic dispatch decisions and power system designs.
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