Dendric words and strongly left proper morphisms

France Gheeraert

Joint work with Julien Leroy

May 30, 2022

We are using

• finite alphabets: \mathcal{A} , \mathcal{B}

We are using

- finite alphabets: \mathcal{A} , \mathcal{B}
- (unidimensional) finite words: *u*, *v*, *w*, ...
 - $\bullet\,$ the set of words over ${\cal A}$ is denoted ${\cal A}^*$

We are using

- finite alphabets: $\mathcal{A}, \ \mathcal{B}$
- (unidimensional) finite words: *u*, *v*, *w*, ...
 - $\bullet\,$ the set of words over ${\cal A}$ is denoted ${\cal A}^*$
 - *u* is a factor of *v* if there exist *w*, *w'* such that v = wuw'

We are using

- finite alphabets: \mathcal{A} , \mathcal{B}
- (unidimensional) finite words: *u*, *v*, *w*, ...
 - $\bullet\,$ the set of words over ${\cal A}$ is denoted ${\cal A}^*$
 - *u* is a factor of *v* if there exist *w*, *w'* such that v = wuw'
- recurrent factorial languages: \mathcal{L}
 - recurrent: if u and v are in $\mathcal L,$ there exists w such that uwv is in $\mathcal L$
 - factorial: if u is in \mathcal{L} , so are its factors

• alphabet: $\{0,1\}$

- alphabet: $\{0,1\}$
- words: *ε*, 10, 010, 01001

- alphabet: $\{0,1\}$
- words: ε , 10, 010, 01001
- ε , 10 and 010 are factors of 01001 ε and 010 are also prefixes of 01001 and ε is a suffix

- alphabet: $\{0,1\}$
- words: ε , 10, 010, 01001
- ε , 10 and 010 are factors of 01001 ε and 010 are also prefixes of 01001 and ε is a suffix
- language: $\{0,1\}^*\setminus\{0,1\}^*11\{0,1\}^*$ the set of words that do not have the factor 11

Morphisms

Definition

A morphism $\sigma:\mathcal{A}^*\to\mathcal{B}^*$ is a monoid morphism, i.e.

$$\sigma(w) = \sigma(w_1) \dots \sigma(w_n).$$

$$\sigma: \{0, 1, 2\}^* \to \{0, 1\}^*, \quad \begin{cases} 0 \mapsto 001 \\ 1 \mapsto 10 \\ 2 \mapsto 0 \end{cases}$$

Morphisms

Definition

A morphism $\sigma:\mathcal{A}^*\to\mathcal{B}^*$ is a monoid morphism, i.e.

$$\sigma(w) = \sigma(w_1) \dots \sigma(w_n).$$

$$\sigma: \{0, 1, 2\}^* \to \{0, 1\}^*, \quad \begin{cases} 0 \mapsto 001 \\ 1 \mapsto 10 \\ 2 \mapsto 0 \end{cases} \quad \sigma(021) = 001 \ 0 \ 10 \\ \sigma(\varepsilon) = \varepsilon \end{cases}$$

Morphisms

Definition

A morphism $\sigma:\mathcal{A}^*\to\mathcal{B}^*$ is a monoid morphism, i.e.

$$\sigma(w) = \sigma(w_1) \dots \sigma(w_n).$$

$$\sigma: \{0, 1, 2\}^* \to \{0, 1\}^*, \quad \begin{cases} 0 \mapsto 001 & \sigma(021) = 001 \ 0 \ 10 \ 2 \mapsto 0 & \sigma(arepsilon) = arepsilon \end{cases} \sigma(arepsilon) = arepsilon$$

Definition

Let $\mathcal{L} \subseteq \mathcal{A}^*$ be a language and $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ be a morphism. The image of \mathcal{L} under σ is

$$\sigma \cdot \mathcal{L} = \bigcup_{u \in \mathcal{L}} \mathsf{Fac}(\sigma(u)).$$

Definitions

$E_{\mathcal{L}}^{-}(w) = \{ a \in \mathcal{A} \mid aw \in \mathcal{L} \}, \quad E_{\mathcal{L}}^{+}(w) = \{ b \in \mathcal{A} \mid wb \in \mathcal{L} \}$

$$E_{\mathcal{L}}^{-}(w) = \{ a \in \mathcal{A} \mid aw \in \mathcal{L} \}, \quad E_{\mathcal{L}}^{+}(w) = \{ b \in \mathcal{A} \mid wb \in \mathcal{L} \}$$

$$E_{\mathcal{L}}(w) = \{(a, b) \in E_{\mathcal{L}}^{-}(w) \times E_{\mathcal{L}}^{+}(w) \mid awb \in \mathcal{L}\}$$

$$E_{\mathcal{L}}^{-}(w) = \{ a \in \mathcal{A} \mid aw \in \mathcal{L} \}, \quad E_{\mathcal{L}}^{+}(w) = \{ b \in \mathcal{A} \mid wb \in \mathcal{L} \}$$

$${\it E_{\mathcal L}}(w)=\{({\it a},{\it b})\in {\it E_{\mathcal L}^-}(w) imes {\it E_{\mathcal L}^+}(w)\mid {\it awb}\in {\mathcal L}\}$$

Definition

The extension graph of $w \in \mathcal{L}$ is the bipartite graph $\mathcal{E}_{\mathcal{L}}(w)$ with vertices $E_{\mathcal{L}}^-(w) \sqcup E_{\mathcal{L}}^+(w)$ and such that, for all $a \in E_{\mathcal{L}}^-(w)$, $b \in E_{\mathcal{L}}^+(w)$, it contains the edge (a, b) iff $(a, b) \in E_{\mathcal{L}}(w)$.

If
$$\mathcal{L}=\{0,1\}^*\setminus\{0,1\}^*11\{0,1\}^*,$$
 then $E_{\mathcal{L}}^-(arepsilon)=$

If
$$\mathcal{L}=\{0,1\}^*\setminus\{0,1\}^*11\{0,1\}^*,$$
 then $E_{\mathcal{L}}^-(arepsilon)=\{0,1\}$

If
$$\mathcal{L}=\{0,1\}^*\setminus\{0,1\}^*11\{0,1\}^*,$$
 then $E_{\mathcal{L}}^-(arepsilon)=\{0,1\}$

If
$$\mathcal{L} = \{0,1\}^* \setminus \{0,1\}^* 11\{0,1\}^*$$
, then
 $E_{\mathcal{L}}^-(\varepsilon) = \{0,1\}$ $E_{\mathcal{L}}^+(1) = \{0\}$

1

 $\mathcal{E}_{\mathcal{L}}(1)$

A word $w \in \mathcal{L}$ is *dendric* if its extension graph in \mathcal{L} is a tree.

A language \mathcal{L} is *dendric* if the words $w \in \mathcal{L}$ are.

Hierarchy

Definition

A morphism $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ is strongly left proper (slp) if there exists a letter $\ell \in \mathcal{B}$ such that

 $\sigma(a) \in \ell(\mathcal{B} \setminus \{\ell\})^*, \quad \forall a \in \mathcal{A}.$

$$\sigma: egin{cases} 0 &\mapsto 0 \ 1 &\mapsto 01 \ 2 &\mapsto 021 \end{cases}$$

Definition

A morphism $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ is strongly left proper (slp) if there exists a letter $\ell \in \mathcal{B}$ such that

 $\sigma(a) \in \ell(\mathcal{B} \setminus \{\ell\})^*, \quad \forall a \in \mathcal{A}.$

$$\sigma: \begin{cases} \mathbf{0} \mapsto \mathbf{0} \\ \mathbf{1} \mapsto \mathbf{0} \mathbf{1} \\ \mathbf{2} \mapsto \mathbf{0} \mathbf{2} \mathbf{1} \end{cases}$$

Every (recurrent) dendric language can be seen as the image of a language under an slp morphism.

Every (recurrent) dendric language can be seen as the image of a language under an slp morphism.

021001 10001

Every (recurrent) dendric language can be seen as the image of a language under an slp morphism.

$$\begin{array}{rrrr} 021001 & \xleftarrow{fac.} & 0210010 \\ 10001 & \xleftarrow{fac.} & 02100010 \end{array}$$

Every (recurrent) dendric language can be seen as the image of a language under an slp morphism.

$$\begin{array}{rrrr} 021001 & \xleftarrow{fac.} & 0210010 \\ 10001 & \xleftarrow{fac.} & 02100010 \end{array}$$

Every (recurrent) dendric language can be seen as the image of a language under an slp morphism.

1

Every (recurrent) dendric language can be seen as the image of a language under an slp morphism.

Theorem (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone)

Let $\mathcal{L} \subseteq \mathcal{A}^*$ be a language and $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ be an slp morphism. If $\sigma \cdot \mathcal{L}$ is recurrent dendric, then \mathcal{L} is recurrent dendric. Moreover, $Card(\mathcal{A}) = Card(\mathcal{B})$.

1

S-adic representations

Definition

A primitive S-adic representation of a language \mathcal{L} is a primitive sequence of morphisms $\boldsymbol{\sigma} = (\sigma_n : \mathcal{A}_{n+1} \to \mathcal{A}_n)_n$ such that

$$\mathcal{L} = \lim_{n} \left(\sigma_0 \circ \cdots \circ \sigma_n \right) \cdot \mathcal{A}_{n+1}.$$

S-adic representations

Definition

A primitive S-adic representation of a language \mathcal{L} is a primitive sequence of morphisms $\boldsymbol{\sigma} = (\sigma_n : \mathcal{A}_{n+1} \to \mathcal{A}_n)_n$ such that

$$\mathcal{L} = \lim_{n} \left(\sigma_0 \circ \cdots \circ \sigma_n \right) \cdot \mathcal{A}_{n+1}.$$

Corollary

Every recurrent dendric language has a primitive S-adic representation using slp morphisms.

Moreover, we can assume that all the intermediary alphabets are equal.

Dendric images under slp morphisms

Let $\mathcal{L} \subseteq \mathcal{A}^*$ be a language and $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ be an slp morphism for the letter ℓ .

 $\mathcal{L} \text{ dendric} \quad \Leftarrow \quad \sigma \cdot \mathcal{L} \text{ dendric}$

Let $\mathcal{L} \subseteq \mathcal{A}^*$ be a language and $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ be an slp morphism for the letter ℓ .

 $\mathcal{L} \text{ dendric} \quad \Leftarrow \quad \sigma \cdot \mathcal{L} \text{ dendric}$

 $\mathcal{L} \text{ dendric} \implies \sigma \cdot \mathcal{L} \text{ dendric}$

Let $\mathcal{L} \subseteq \mathcal{A}^*$ be a language and $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ be an slp morphism for the letter ℓ .

$$\mathcal L$$
 dendric $\quad \longleftarrow \quad \sigma \cdot \mathcal L$ dendric

$$\mathcal{L} \text{ dendric} \implies \sigma \cdot \mathcal{L} \text{ dendric}$$

When is a word $u \in \sigma \cdot \mathcal{L}$ dendric?
$$\mathcal{E}_{\sigma \cdot \mathcal{L}}(1)$$

$$\sigma: egin{cases} 0 \mapsto 0 \ 1 \mapsto 01 \ 2 \mapsto 021 \end{cases}$$

$$\mathcal{E}_{\sigma \cdot \mathcal{L}}(1)$$

$$\sigma: \begin{cases} \mathbf{0} \mapsto \mathbf{0} \\ \mathbf{1} \mapsto \mathbf{01} \\ \mathbf{2} \mapsto \mathbf{021} \end{cases}$$

France Gheeraert

Séminaire du GT CI 15 / 1

$$\mathcal{E}_{\sigma \cdot \mathcal{L}}(1)$$

$$\sigma: \begin{cases} \mathbf{0} \mapsto \mathbf{0}\mathbf{0} \\ \mathbf{1} \mapsto \mathbf{0}\mathbf{1}\mathbf{0} \\ \mathbf{2} \mapsto \mathbf{0}\mathbf{2}\mathbf{1}\mathbf{0} \end{cases}$$

Initial factors

If $|u|_{\ell} = 0$, then

$$aub \in \sigma \cdot \mathcal{L} \implies \exists \alpha \in \mathcal{A} \text{ st. } aub \in \mathsf{Fac}(\sigma(\alpha)\ell).$$

Initial factors

If $|u|_{\ell} = 0$, then $aub \in \sigma \cdot \mathcal{L} \implies \exists \alpha \in \mathcal{A} \text{ st. } aub \in \mathsf{Fac}(\sigma(\alpha)\ell).$ Let $\mathcal{L}_{\sigma} = \bigcup_{\alpha \in \mathcal{A}} \mathsf{Fac}(\sigma(\alpha)\ell).$

We have

$$\mathcal{E}_{\sigma\cdot\mathcal{L}}(u)=\mathcal{E}_{\mathcal{L}_{\sigma}}(u).$$

Initial factors

If $|u|_{\ell} = 0$, then $aub \in \sigma \cdot \mathcal{L} \implies \exists \alpha \in \mathcal{A} \text{ st. } aub \in \mathsf{Fac}(\sigma(\alpha)\ell).$ Let $\mathcal{L}_{\sigma} = \bigcup_{\alpha \in \mathcal{A}} \mathsf{Fac}(\sigma(\alpha)\ell).$

$$\mathcal{E}_{\sigma\cdot\mathcal{L}}(u) = \mathcal{E}_{\mathcal{L}_{\sigma}}(u).$$

Definition

An slp morphism σ for ℓ is *dendric* if the words $u \in \mathcal{L}_{\sigma}$ such that $|u|_{\ell} = 0$ are dendric.

$$\sigma: egin{cases} 0\mapsto 0\ 1\mapsto 01\ 2\mapsto 021 \end{cases}$$

$$\sigma: egin{cases} 0 \mapsto 0 \ 1 \mapsto 01 \ 2 \mapsto 021 \end{cases} \ 1 \mid 021 \mid 0 \mid 01 \mid 0$$

$$\sigma: egin{cases} 0 \mapsto 0 \ 1 \mapsto 01 \ 2 \mapsto 021 \end{cases} \ 1 \mid 021 \mid 0 \mid 01 \mid 0 = 1 \sigma(201) 0$$

$$\sigma: egin{cases} 0 \mapsto 0 \ 1 \mapsto 01 \ 2 \mapsto 021 \end{cases} \ 1 \mid 021 \mid 0 \mid 01 \mid 0 = 1 \sigma(201) 0$$

 $\mathcal{E}_{\mathcal{L}}(201)$

$$\sigma : \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 01 \\ 2 \mapsto 021 \end{cases} \qquad 1 \mid 021 \mid 0 \mid 01 \mid 0 = 1\sigma(201)0 \\ \mathcal{E}_{\sigma \cdot \mathcal{L}}(1021010) \qquad \mathcal{E}_{\mathcal{L}}(201) \\ 0 \qquad 0 \\ 1 \qquad 1 \\ 2 \end{cases}$$

$$\sigma: \begin{cases} 0 \mapsto 00 \\ 1 \mapsto 010 \\ 2 \mapsto 0210 \end{cases} \quad 1 \mid 021 \mid 0 \mid 01 \mid 0 = 1\sigma(201)0$$

.

$$\sigma: \begin{cases} 0 \mapsto 00 \\ 1 \mapsto 010 \\ 2 \mapsto 0210 \end{cases} \qquad 1 \mid 021 \mid 0 \mid 01 \mid 0 = 1\sigma(201)0$$

Extended images

Proposition (G., Lejeune, Leroy)

If $u \in \sigma \cdot \mathcal{L}$ is such that $|u|_{\ell} \geq 1$, it has a unique decomposition $(s, v, p) \in \mathcal{B}^* \times \mathcal{L} \times \ell \mathcal{B}^*$ such that

- $u = s\sigma(v)p$,
- s is a proper suffix of a word of $\sigma(\mathcal{A})$,
- p is a proper prefix of a word of $\sigma(\mathcal{A})\ell$.

We then have

$$E_{\sigma \cdot \mathcal{L}}(u) = (\varphi_{s}^{-} \times \varphi_{p}^{+}) E_{\mathcal{L}}(v)$$

where

$$\varphi_{s}^{-}: \mathsf{a} \mapsto \mathsf{b} \; \mathsf{st.} \; \sigma(\mathsf{a}) \in \mathcal{B}^{*}\mathsf{bs} \qquad \varphi_{p}^{+}: \mathsf{a} \mapsto \mathsf{b} \; \mathsf{st.} \; \sigma(\mathsf{a})\ell \in \mathsf{pb}\mathcal{B}^{*}.$$

Dendric images

The graph $\mathcal{E}_{\mathcal{L},s,p}(v)$ is the subgraph of $\mathcal{E}_{\mathcal{L}}(v)$ where we have removed the vertices (and their edges) that are 'useless' to obtain $\mathcal{E}_{\sigma \cdot \mathcal{L}}(s\sigma(v)p)$.

Dendric images

The graph $\mathcal{E}_{\mathcal{L},s,p}(v)$ is the subgraph of $\mathcal{E}_{\mathcal{L}}(v)$ where we have removed the vertices (and their edges) that are 'useless' to obtain $\mathcal{E}_{\sigma \cdot \mathcal{L}}(s\sigma(v)p)$.

Theorem (G., Lejeune, Leroy)

Let \mathcal{L} be a dendric language and σ an slp morphism. The image $\sigma \cdot \mathcal{L}$ is dendric if and only if σ is dendric and the following conditions are satisfied:

- '-' for all $s \in \mathcal{B}^*$ and for all $v \in \mathcal{L}$, the graph $\mathcal{E}_{\mathcal{L},s,\varepsilon}(v)$ is connected,
- '+' for all $p \in \mathcal{B}^*$ and for all $v \in \mathcal{L}$, the graph $\mathcal{E}_{\mathcal{L},\varepsilon,p}(v)$ is connected.

Understanding the condition

'-' for all $s \in \mathcal{B}^*$ and for all $v \in \mathcal{L}$, the graph $\mathcal{E}_{\mathcal{L},s,\varepsilon}(v)$ is connected

Understanding the condition

'−' for all $s \in \mathcal{B}^*$ and for all $v \in \mathcal{L}$, the graph $\mathcal{E}_{\mathcal{L},s,\varepsilon}(v)$ is connected

• when removing the left vertices of $\mathcal{E}_{\mathcal{L}}(v)$ in

$$\mathcal{A}_{s}^{-} = \{ a \in \mathcal{A} \mid \sigma(a)
ot\in \mathcal{B}^{*}s \}$$

the other left vertices remain connected,

'-' for all $s \in \mathcal{B}^*$ and for all $v \in \mathcal{L}$, the graph $\mathcal{E}_{\mathcal{L},s,\varepsilon}(v)$ is connected

• when removing the left vertices of $\mathcal{E}_{\mathcal{L}}(v)$ in

$$\mathcal{A}_{s}^{-} = \{ a \in \mathcal{A} \mid \sigma(a) \notin \mathcal{B}^{*}s \}$$

the other left vertices remain connected,

• only a finite number of 'interesting' values of s,

Understanding the condition

'-' for all $s \in \mathcal{B}^*$ and for all $v \in \mathcal{L}$, the graph $\mathcal{E}_{\mathcal{L},s,\varepsilon}(v)$ is connected

• when removing the left vertices of $\mathcal{E}_{\mathcal{L}}(v)$ in

$$\mathcal{A}_{s}^{-} = \{ a \in \mathcal{A} \mid \sigma(a) \notin \mathcal{B}^{*}s \}$$

the other left vertices remain connected,

- only a finite number of 'interesting' values of s,
- difficult to check

Graphs $G^-(\mathcal{L})$ et $G^+(\mathcal{L})$

4

5

5

3

Graph $G^-(\mathcal{L})$

Definition

If \mathcal{L} is dendric, $G_n^-(\mathcal{L})$ is the union of the cliques given by the sets of vertices $E_{\mathcal{L}}^-(v)$ for all $v \in \mathcal{L} \cap \mathcal{A}^n$.

Graph $G^-(\mathcal{L})$

Definition

If \mathcal{L} is dendric, $G_n^-(\mathcal{L})$ is the union of the cliques given by the sets of vertices $E_{\mathcal{L}}^-(v)$ for all $v \in \mathcal{L} \cap \mathcal{A}^n$. We define

$$G^{-}(\mathcal{L}) = \lim_{n} G_{n}^{-}(\mathcal{L}).$$

Graph $G^-(\mathcal{L})$

Definition

If \mathcal{L} is dendric, $G_n^-(\mathcal{L})$ is the union of the cliques given by the sets of vertices $E_{\mathcal{L}}^-(v)$ for all $v \in \mathcal{L} \cap \mathcal{A}^n$. We define

$$G^{-}(\mathcal{L}) = \lim_{n} G_{n}^{-}(\mathcal{L}).$$

Proposition

Let $\mathcal{B} \subseteq \mathcal{A}$. The following are equivalent.

- For all $v \in \mathcal{L}$, the subgraph of $\mathcal{E}_{\mathcal{L}}(v)$ where we removed, on the left, the vertices in \mathcal{B} (and the isolated vertices) is connected.
- **2** The graph $G^{-}(\mathcal{L}) \setminus \mathcal{B}$ is connected.

Graph $G^+(\mathcal{L})$

Definition

If \mathcal{L} is dendric, $G_n^+(\mathcal{L})$ is the union of the cliques given by the sets of vertices $E_{\mathcal{L}}^+(v)$ for all $v \in \mathcal{L} \cap \mathcal{A}^n$. We define

$$G^+(\mathcal{L}) = \lim_n G^+_n(\mathcal{L}).$$

Proposition

Let $\mathcal{B} \subseteq \mathcal{A}$. The following are equivalent.

- For all $v \in \mathcal{L}$, the subgraph of $\mathcal{E}_{\mathcal{L}}(v)$ where we removed, on the right, the vertices in \mathcal{B} (and the isolated vertices) is connected.
- **2** The graph $G^+(\mathcal{L}) \setminus \mathcal{B}$ is connected.

Dendric images (II)

$$\mathcal{A}_{s}^{-} = \{ a \in \mathcal{A} \mid \sigma(a) \notin \mathcal{B}^{*}s \}$$
$$\mathcal{A}_{p}^{+} = \{ a \in \mathcal{A} \mid \sigma(a)\ell \notin p\mathcal{B}^{*} \}$$

Theorem

Let \mathcal{L} be a dendric language and σ an slp morphism. The image $\sigma \cdot \mathcal{L}$ is dendric if and only if σ is dendric and the following conditions are satisfied:

- '-' for all $s \in \mathcal{B}^*$, the graph $G^-(\mathcal{L}) \setminus \mathcal{A}_s^-$ is connected,
- '+' for all $p \in \mathcal{B}^*$, the graph $G^+(\mathcal{L}) \setminus \mathcal{A}_p^+$ is connected.
Recall that

$$E_{\sigma \cdot \mathcal{L}}(s\sigma(v)p) = (\varphi_s^- \times \varphi_p^+)E_{\mathcal{L}}(v)$$

Recall that

$$E_{\sigma \cdot \mathcal{L}}(s\sigma(v)p) = (\varphi_s^- \times \varphi_p^+)E_{\mathcal{L}}(v)$$

thus

$$E^{-}_{\sigma \cdot \mathcal{L}}(s\sigma(v)\ell) = \varphi^{-}_{s}(E^{-}_{\mathcal{L}}(v)).$$

Recall that

$$\mathsf{E}_{\sigma \cdot \mathcal{L}}(s\sigma(v)p) = (\varphi_s^- \times \varphi_p^+) \mathsf{E}_{\mathcal{L}}(v)$$

thus

$$E^{-}_{\sigma \cdot \mathcal{L}}(s\sigma(v)\ell) = \varphi^{-}_{s}(E^{-}_{\mathcal{L}}(v)).$$

Proposition

If \mathcal{L} and $\sigma \cdot \mathcal{L}$ are dendric and if $G^{-}(\mathcal{L})$ is built with the cliques C_1, \ldots, C_k , then $G^{-}(\sigma \cdot \mathcal{L})$ is built with the cliques

$$\varphi_s^-(C_i) \qquad s \in \mathcal{B}^*, i \leq k.$$

Recall that

$$\mathsf{E}_{\sigma \cdot \mathcal{L}}(s\sigma(v)p) = (\varphi_s^- \times \varphi_p^+) \mathsf{E}_{\mathcal{L}}(v)$$

thus

$$E^{-}_{\sigma \cdot \mathcal{L}}(s\sigma(v)\ell) = \varphi^{-}_{s}(E^{-}_{\mathcal{L}}(v)).$$

Proposition

If \mathcal{L} and $\sigma \cdot \mathcal{L}$ are dendric and if $G^+(\mathcal{L})$ is built with the cliques C_1, \ldots, C_k , then $G^+(\sigma \cdot \mathcal{L})$ is built with the cliques

$$\varphi_s^+(C_i) \qquad s \in \mathcal{B}^*, i \leq k.$$

$$\sigma: egin{cases} 0 \mapsto 0 \ 1 \mapsto 01 \ 2 \mapsto 021 \end{cases}$$

$$\sigma: \begin{cases} 0 \mapsto 0 & \mathcal{A}_{\varepsilon}^{-} = \emptyset & \mathcal{A}_{1}^{-} = \{0\} \\ 1 \mapsto 01 & \\ 2 \mapsto 021 & \end{cases}$$

$$\sigma: \begin{cases} 0 \mapsto 0 & \mathcal{A}_{\varepsilon}^{-} = \emptyset & \mathcal{A}_{1}^{-} = \{0\} \\ 1 \mapsto 01 & & \\ 2 \mapsto 021 & \varphi_{\varepsilon}^{-} : \begin{cases} 0 \mapsto 0 & & \\ 1, 2 \mapsto 1 & \varphi_{1}^{-} : \begin{cases} 1 \mapsto 0 \\ 2 \mapsto 2 \end{cases} \end{cases}$$

$$\sigma: \begin{cases} 0 \mapsto 0 & \mathcal{A}_{\varepsilon}^{-} = \emptyset & \mathcal{A}_{1}^{-} = \{0\} \\ 1 \mapsto 01 & & \\ 2 \mapsto 021 & \varphi_{\varepsilon}^{-} : \begin{cases} 0 \mapsto 0 & & \\ 1, 2 \mapsto 1 & \varphi_{1}^{-} : \begin{cases} 1 \mapsto 0 \\ 2 \mapsto 2 \end{cases} \end{cases}$$

Séminaire du GT CI 27 / 1

$$\sigma: \begin{cases} 0 \mapsto 0 & \mathcal{A}_{\varepsilon}^{-} = \emptyset & \mathcal{A}_{1}^{-} = \{0\} \\ 1 \mapsto 01 & & \\ 2 \mapsto 021 & \varphi_{\varepsilon}^{-} : \begin{cases} 0 \mapsto 0 & & \\ 1, 2 \mapsto 1 & \varphi_{1}^{-} : \begin{cases} 1 \mapsto 0 \\ 2 \mapsto 2 \end{cases} \end{cases}$$

Séminaire du GT CI 27 / 1

$$\sigma: \begin{cases} 0 \mapsto 0 & \mathcal{A}_{\varepsilon}^{-} = \emptyset & \mathcal{A}_{1}^{-} = \{0\} \\ 1 \mapsto 01 & & \\ 2 \mapsto 021 & \varphi_{\varepsilon}^{-} : \begin{cases} 0 \mapsto 0 & & \\ 1, 2 \mapsto 1 & \varphi_{1}^{-} : \begin{cases} 1 \mapsto 0 \\ 2 \mapsto 2 \end{cases} \end{cases}$$

Séminaire du GT CI 27 / 1

Back to S-adic representations

If $\mathcal{L}^{(i)} = (\sigma_i \circ \cdots \circ \sigma_n) \cdot \mathcal{L}$, $G^-(\mathcal{L})$ $G^+(\mathcal{L})$

If
$$\mathcal{L}^{(i)} = (\sigma_i \circ \cdots \circ \sigma_n) \cdot \mathcal{L},$$

 $G^-(\mathcal{L}) \xrightarrow{\sigma_n} G^-(\mathcal{L}^{(n)})$
 $G^+(\mathcal{L}) \xrightarrow{\sigma_n} G^+(\mathcal{L}^{(n)})$

If
$$\mathcal{L}^{(i)} = (\sigma_i \circ \cdots \circ \sigma_n) \cdot \mathcal{L},$$

 $G^-(\mathcal{L}) \xrightarrow{\sigma_n} G^-(\mathcal{L}^{(n)}) \xrightarrow{\sigma_{n-1}} \dots$
 $G^+(\mathcal{L}) \xrightarrow{\sigma_n} G^+(\mathcal{L}^{(n)}) \xrightarrow{\sigma_{n-1}} \dots$

$$f \mathcal{L}^{(i)} = (\sigma_i \circ \cdots \circ \sigma_n) \cdot \mathcal{L},$$

$$G^-(\mathcal{L}) \xrightarrow{\sigma_n} G^-(\mathcal{L}^{(n)}) \xrightarrow{\sigma_{n-1}} \cdots \xrightarrow{\sigma_0} G^-(\mathcal{L}^{(0)})$$

$$G^+(\mathcal{L}) \xrightarrow{\sigma_n} G^+(\mathcal{L}^{(n)}) \xrightarrow{\sigma_{n-1}} \cdots \xrightarrow{\sigma_0} G^+(\mathcal{L}^{(0)})$$

$$f \mathcal{L}^{(i)} = (\sigma_i \circ \cdots \circ \sigma_n) \cdot \mathcal{L},$$

$$G^-(\mathcal{L}) \xleftarrow{\sigma_n} G^-(\mathcal{L}^{(n)}) \xleftarrow{\sigma_{n-1}} \dots \xleftarrow{\sigma_0} G^-(\mathcal{L}^{(0)})$$

$$G^+(\mathcal{L}) \xleftarrow{\sigma_n} G^+(\mathcal{L}^{(n)}) \xleftarrow{\sigma_{n-1}} \dots \xleftarrow{\sigma_0} G^+(\mathcal{L}^{(0)})$$

Let S be a set of dendric slp morphisms over A. The graph $\mathcal{G}^{-}(S)$ is defined as follows:

Let S be a set of dendric slp morphisms over A. The graph $\mathcal{G}^{-}(S)$ is defined as follows:

 its vertices are the graphs G for which there exists a dendric language L such that G = G⁻(L),

Let S be a set of dendric slp morphisms over A. The graph $\mathcal{G}^{-}(S)$ is defined as follows:

- its vertices are the graphs G for which there exists a dendric language L such that G = G⁻(L),
- there is an edge labeled by $\sigma \in S$ from G to G' if the condition '-' is satisfied for G' and σ and if $G = \sigma^{-}(G')$.

Let S be a set of dendric slp morphisms over A. The graph $\mathcal{G}^+(S)$ is defined as follows:

- its vertices are the graphs G for which there exists a dendric language L such that G = G⁺(L),
- there is an edge labeled by $\sigma \in S$ from G to G' if the condition '+' is satisfied for G' and σ and if $G = \sigma^+(G')$.

Let S be a set of dendric slp morphisms over A. The graph $\mathcal{G}^+(S)$ is defined as follows:

- its vertices are the graphs G for which there exists a dendric language L such that G = G⁺(L),
- there is an edge labeled by $\sigma \in S$ from G to G' if the condition '+' is satisfied for G' and σ and if $G = \sigma^+(G')$.

Theorem

Let \mathcal{L} be a language having a primitive S-adic representation σ . The language \mathcal{L} is dendric if and only if σ labels infinite paths in both $\mathcal{G}^{-}(S)$ and $\mathcal{G}^{+}(S)$. Let S be a set of dendric slp morphisms over A. The graph $\mathcal{G}_t^-(S)$ is defined as follows:

- its vertices are the trees over \mathcal{A} ,
- there is an edge labeled by $\sigma \in S$ from G to G' if the condition '-' is satisfied for G' and σ and if $G = \sigma^{-}(G')$.

Let S be a set of dendric slp morphisms over A. The graph $\mathcal{G}_t^+(S)$ is defined as follows:

- its vertices are the trees over \mathcal{A} ,
- there is an edge labeled by $\sigma \in S$ from G to G' if the condition '+' is satisfied for G' and σ and if $G = \sigma^+(G')$.

Let S be a set of dendric slp morphisms over A. The graph $\mathcal{G}_t^+(S)$ is defined as follows:

- its vertices are the trees over \mathcal{A} ,
- there is an edge labeled by $\sigma \in S$ from G to G' if the condition '+' is satisfied for G' and σ and if $G = \sigma^+(G')$.

Theorem

Let \mathcal{L} be a language having a primitive S-adic representation σ . The language \mathcal{L} is dendric if and only if σ labels infinite paths in both $\mathcal{G}_t^-(S)$ and $\mathcal{G}_t^+(S)$. Let S be a set of dendric slp morphisms over A. The graph $\mathcal{G}_t^+(S)$ is defined as follows:

- its vertices are the trees over \mathcal{A} ,
- there is an edge labeled by $\sigma \in S$ from G to G' if the condition '+' is satisfied for G' and σ and if $G = \sigma^+(G')$.

Theorem

Let \mathcal{L} be a language having a primitive S-adic representation σ . The language \mathcal{L} is dendric if and only if σ labels infinite paths in both $\mathcal{G}_t^-(S)$ and $\mathcal{G}_t^+(S)$.

Even more simplifications with the symmetries/permutations.

graph	$\# \mathcal{A} = 3$	$\#\mathcal{A}=4$	$\# \mathcal{A} = n$
cond. $(-)$ and $(+)$	≥ 3 3	?	?
$\mathcal{G}^-(\mathcal{S}) imes \mathcal{G}^+(\mathcal{S})$	$4 \times 4 = 16$	$29 \times 29 = 841$	\leq A001187 ²

graph	$\# \mathcal{A} = 3$	$\#\mathcal{A}=4$	$\# \mathcal{A} = n$
cond. '-' and '+'	≥ 3 3	?	?
$\mathcal{G}^-(\mathcal{S}) imes \mathcal{G}^+(\mathcal{S})$	$4 \times 4 = 16$	$29 \times 29 = 841$	\leq A001187 ²
$\overline{\mathcal{G}_t^-(\mathcal{S}) imes \mathcal{G}_t^+(\mathcal{S})}$	3 × 3 = 9	$16 \times 16 = 256$	$n^{n-2} \times n^{n-2}$

graph	$\# \mathcal{A} = 3$	$\#\mathcal{A}=4$	$\# \mathcal{A} = n$
cond. '-' and '+'	≥ 3 3	?	?
$\mathcal{G}^-(\mathcal{S}) imes \mathcal{G}^+(\mathcal{S})$	$4 \times 4 = 16$	$29 \times 29 = 841$	\leq A001187 ²
$\mathcal{G}^t(\mathcal{S}) imes \mathcal{G}^+_t(\mathcal{S})$	$3 \times 3 = 9$	16 imes 16 = 256	$n^{n-2} \times n^{n-2}$
with symmetries	2	14	?

Thank you for your attention!