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CALCULATION PARAMETERS

In order to determine the ground state properties of the negatively charged boron vacancy

in 2D hBN we perform DFT calculations using the PBE exchange-correlation functional on

a 8x8 supercell with the open-source Quantum ESPRESSO distribution [1]. The planewave

cutoff used is 80 Ry and the Brillouin zone is sampled with a 2x2x1 unshifted grid. The norm-

conserving pseudopotential adopted for boron and nitrogen are taken from the PseudoDojo

library [2].

We correct the Kohn-Sham eigenvalues with a G0W0 calculation under the plasmon pole

approximation, using the Yambo code [3, 4]. We use 5 Ry and 19 Ry cutoff respectively

for the response function and the exchange self energy, and sum 2000 bands both for the

response function and the correlation self-energy. We sample the Brillouin zone with a

2x2x1 unshifted grid. We checked the results by performing the same calculations on a

10x10 supercell, sampling the Brillouin zone with a gamma-only grid, summing 3000 bands

both for the response functions and the correlation self-energy and using 4 Ry and 15 Ry

cutoff respectively for the response function and the exchange self energy.

The absorption spectrum is determined by solving the equilibrium Bethe-Saltpeter equation

(BSE), using 2 Ry cutoff for the electron-hole attraction part of the kernel, 9 Ry cutoff

for the exchange part of the kernel and bands from 190 to 320 (whose energy is corrected

using the G0W0 approximation). The FFT grid is reduced to 21 Ry. Results were The

phonon-assisted luminescence calculations converge when considering bands from 251-256,

thanks to the effect of the nonequilibrium occupations.

The phonons are calculated in Γ with the finite-difference approach, using the code Phonopy

[5].
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FIG. 1: Absorption spectrum for V−B center in 2D hBN (purple line) and for the pristine

2D hBN (light blue line). The blue circles represent the strength of the excitons of the

defected system as a function of their energy.

The absorption spectrum is shown in Fig. 1. Here we perform an analyisis similar to that

done in Ref. [6] for the absorption spectrum of the neutral defects in 2D hBN. The strong

peak at 5.3 eV which dominates the pristine spectrum, is splitted into two subpeaks at 5.15

eV and 5.40 eV by the resonant coupling of transitions between the extended conduction

and valence states with the defect states close to the band edges.

The transition between the spin down level a′1 and the spin down level e′ (see Fig. 4a of the

main text), which is associated to a non vanishing in-plane dipole, leads to a bright peak at

3.5 eV. The shoulder at 4.85 eV arises due to the mixing of the transitions from the defect

levels to the conduction band and the bulk excitations.

The excitons at 0.94 eV and 1.77 eV do not contribute appreciably to the absorption spec-

trum because are localised on the transitions e′′ → e′, which has a non-vanishing out-of-plane

dipole and therefore is very weak in an atomically thin material, and a′′2 → e′, which is pro-

hibited by symmetry.
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EFFECT OF NONEQUILIBRIUM OCCUPATION
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FIG. 2: Nonequilibrium energy levels

FIG. 3: Defect energy levels renormalized by the nonequilibrium occupations of Fig. 4a of

the main text.

As stated in the main text, if the excited state dynamics continues for long enough, it is

reasonable to assume that both electron and holes thermalise. In the current work, we set the

chemical potential for the electrons in such a way that a whole electron is promoted to the

excited state manifold, consistently with what is done in works based on quantum chemistry

techniques or cDFT [7]. This corresponds to an excited carrier density of 2.5× 1013 electrons

per cm2. The temperature of electrons and holes is assumed to be equal to that of the phonon

bath with which they interact. The chemical potential of the holes is tuned in such a way

that the number of holes coincides with that of the electrons excited in the conduction band.

This assumes the excitations in photoluminescence experiments are neutral.

The nonequilibrium occupations induce a renormalization of the quasiparticle energy levels.

The renormalized energies are calculated in Yambo as:

εNEQ = εG0W0
EQ + (εCOHSEXNEQ − εCOHSEXEQ ) ; (1)

The first therm in the r.h.s. is the quasiparticle energy determined at the G0W0 level of

theory using the equilibrium occupations (Fig. 4a of the main paper), while the second and
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the third term represent the quasiparticle energy at the COHSEX level of theory calculated

using the nonequilibrium and equilibrium occupations respectively. As it can be observed

when comparing Fig. 2 with Fig. 4a of the main paper, the nonequilibrium occupations

lead to a downshift of the spin down level e′ which is occupied by excited electrons, and a

upshift of the spin levels e′′ and a′′2 which are occupied by holes.

As discussed in the main work, the only transition where both levels have non-negligible

population in term of electrons and holes is the (spin down) e′ → a′′. Therefore it is

interesting to see how this transition is distributed among the excitons, both at equilibrium

and at nonequilibrium, by plotting

TK(ω) =
∑
λ

|AλK |2δ(ω − Eλ) (2)

for K ≡ e′ → a′′2. As it is possible to observe in Fig. 4, at equilibrium this transition

is mainly localised in exciton of energy 0.94 eV and 1.77 eV. When an integer amount of

charge is excited, so that the nonequilibrium occupations differ from the equilibrium ones,

the transition e′ → a′′2 localises on two excitons of energy 1.4 eV and 1.5 eV. It is instructive,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

T e
′

a′
′ 2(

)

Equilibrium occupations Nonequilibrium occupations

FIG. 4: Distribution of the transition e′ → a′′2 among the excitons, both at equilibrium and

out of equilibrium.

finally, to plot the phonon-assisted photoluminescence and the exciton-phonon coupling in

the equilibrium occupations case for the exciton at 1.77 eV (see Fig. 5). Interestingly,

the modes which couple the most strongly with excitons are the same, leading to a similar

luminescence spectrum. The exciton-phonon coupling is now symmetric, due to the absence

of a excitonic shoulder at lower energy.
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(a) Exciton-phonon coupling
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FIG. 5: Panel (a) shows the exciton-phonon coupling function in the case of equilibrium

occupations (very low excited charge) for the exciton at 1.77 eV, while panel (b) shows the

luminescence spectrum.
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PHONON CALCULATIONS

As anticipated in the first section, phonons are calculated at the Γ point only using a

finite-difference approach. The other points of the Brillouin zone are not considered in the

exciton-phonon coupling calculations, as they are characterized by a periodicity which is

unphysical for a defect center. The 8x8 supercell contains 127 atoms, leading to 381 phonon

modes, whose frequencies range from 0 to around 1500 cm−1. Due to numerical noise in the

calculations, 7 membrane modes have slightly negative frequencies, and are not included in

the exciton-phonon coupling calculations.

It is interesting to analyze the localization of the phonon modes around the defect centers.

With this purpose, we calculate a localization factor defined as the sum of the squared
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FIG. 6: The upper panel shows the radial density of displacement dν(r) as defined in Eq. 4

for the phonons with the highest localisation factor f ν . The black dashed line indicates the

radial number density. The lower panel represents the average displacement as defined in

eq. 6.

modulus of the phonon eigenvector ξν for the atoms up to the second nearest neighbors

around the vacancy:

f ν =
∑

i<=2ndnn

|ξiν |2 . (3)

The phonons modes with a localization factor higher than 50% are (in decreasing order of

f ν) ν=116, 262, 348, 380, 381. Their radial density of displacement

dν(r) =
∑
i

|ξiν |2δ(|ri − rvac|) , (4)
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the radial number density

n(r) =
∑
i

δ(|ri − rvac|) , (5)

and the average density of displacement

davν (r) =
dν(r)

n(r)
(6)

are represented in Fig. 6 (Here the index i refers to the atomic sites and rvac is the vacancy

position). It is easy to see that these very local phonon modes do not coincide with those

dominating the exciton-phonon coupling spectrum of Fig. 2b of the main text, although the

phonon mode ν = 120 as a localization factor of 40.1%. Therefore we conclude that there is

not a trivial relation between exciton-phonon coupling and the localization of the phonons

around the vacancy. The phonon mode dominating the exciton-phonon coupling spectrum

is ν = 120. As shown in Fig. 7, it is charachterized by a out-of-plane displacement of the

atoms around the vacancy, and is peaked in correspondence of the second nearest-neighbours

boron atoms.

FIG. 7: Representation of the eigenvector of the phonon mode ν = 120.
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DIPOLE SELECTION RULES FOR D3h AND C2v GROUPS

The dipole matrix element between two states |ψi〉 and |ψj〉 is defined as:

dij = 〈ψi|r̂|ψj〉 (7)

According to the selection rules from group theory [8], the dipole vanishes if the product of

the irreducible representations of the wavefunctions |ψi/j〉 and the position operator r̂ does

not contain the fully symmetric irreducible representation, which is labelled A′1 for the D3h

and A1 for the C2v one. The product tables for the D3h and C2v are reported in Tab. I and

II respectively.

For the D3h group, the in plane components (x,y) of r̂ transform as the irreducible rep-

resentation E ′, while the out of plane component z as A′′2. Tab. III shows which dipoles

matrix elements vanish for symmetry in the symmetric systems. For the C2v group, the in

plane components (x,y) of r̂ transform as the irreducible represenations (A1, B1), while the

out of plane component z as B2. Tab. IV shows which dipoles matrix elements vanish for

symmetry in the Jahn-Teller distorted systems.

A′1 A′2 E′ A′′1 A′′2 E′′

A′1 A′1 A′2 E′ A′′1 A′′2 E′′

A′2 A′2 A′1 E′ A′′2 A′′1 E′′

E′ E′ E′ A′1 +A′2 + E′ E′′ E′′ A′′1 +A′′2 + E′′

A′′1 A′′1 A′′2 E′′ A′1 A′2 E′

A′′2 A′′2 A′′1 E′′ A′2 A′1 E′

E′′ E′′ E′′ A′′1 +A′′2 + E′′ E′ E′ A′1 +A′2 + E′

Table I: Product table for the D3h group.
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A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A2 A1 B2 B1

B1 B1 B2 A1 A2

B2 B2 B1 A2 A1

Table II: Product table for the C2v group.

|ψi〉 |ψj〉 dxy dz

A′′2 E′ 0 0

E′′ E′ 0 6= 0

E′′ E′ 0 6= 0

A′1 E′ 6= 0 0

A′′2 E′′ 6= 0 0

Table III: Value of the dipole matrix elements for some transitions of interest in the

symmetric system (D3h group).

|ψi〉 |ψj〉 dxy dz

B2 B1 0 0

B2 A1 0 6= 0

Table IV: Value of the dipole matrix elements for some transitions of interest in the

Jahn-Teller distorted system (C2v group).
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STATIC JAHN-TELLER DISTORTION

The doubly degenerate spin down excited state e′ can undergo Jahn-Teller distortion,

which reduces the symmetry group of the system from D3h to C2v. As a conquence of it, the

doubly degenerate spin down acceptor e′ splits into the levels a1 and b1, while the a′′2 level is

turned into b2 (as shown in Fig. 8). In order to study the Jahn-Teller distorted system, we

perform DFT calculations where we relax the system while constraining the occupation of

one of the e′ orbitals to 1.0 and that of the orbital a′′2 to 0. As expected, we find two local

minima, corresponding to the two possible configurations in which the doubly degenerate

excited state is distorted. One of them has the level a1 lying below the level b1, while in the

other this order is switched. In our occupation model, only the lowest lying empty level has

a non negligible nonequilibrium population. Therefore, we consider the atomic configuration

in which the a1 level is the lowest (Fig. 8b), as the transition a1 → b2 is allowed by symmetry

while the transition b1 → b2 is forbidden (see Tab. IV).

Since the Jahn-Teller distortion is small, we assume in a first approximation that the exciton

energies and wavefunctions remain equal to those of the original symmetric system. The

significative difference between the distorted and the symmetric systems is that now the

transition a1 → b2 (e′ → a′′2) is symmetry-allowed, and this affects the contribution of each

exciton to the photoluminescence spectrum. Therefore, in order to check whether the Jahn-

Teller effect could be the responsible of the activation of the peak at 1.5 eV, we compute the

dipole matrix elements corresponding to the transitions a1 → b2 and b1 → b2 for the distorted

system, and use these to recalculate the exciton contributions to photoluminescence.

As commented in the main text, the enhancement of the peak at 1.5 eV due to the static

Jahn-Teller effect is very small. It is not difficult to understand the reason: the transition

a1 → b2 has a non-vanishing out-of-plane dipole that is very small due to the atomically

thin material. In addition to this, the Jahn-Teller effect distorts only slightly the geometry,

leading to an even weaker dipole moment for the transition.
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FIG. 8: In panel (a) we replicate Fig. 5.a of the main text, showing the defect levels of the

symmetric system calculated at G0W0 level of theory. This figure is proposed again here in

order to allow a better comparison with the defect levels of the Jahn-Teller distorted

system represented in panel (b).
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TEMPERATURE DEPENDENCE OF THE PHONON CONTRIBUTION TO PL
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FIG. 9: Contribution of each phonon to the luminescent emission at T=0K (panel a) and

T=300K (panel b). The phonon modes which couple most strongly with excitons are

enlightened with coloured lines while the other phonon modes are represented with grey

lines.

If we plot the full contribution of each phonon to the luminescence (as defined in Eq.

2 of the main text), we can see that the factors nB(ων ,T )
2ων

and nB(ων ,T )+1
2ων

, which multiply

the phonon annihilation and the phonon creation peaks respectively, have two main effects.

First of all, at low temperatures, the weight corresponding to the phonon creation tends

to zero; therefore, only emission at energies lower than Eλ is expected: Fig. 9a shows a

vanishing contribution to the emission for energies higher than 1.5 eV at T=0K, while it

increases remarkably at T=300K. This growth in importance of the phonon creation term

with the temperature leads to a broadening of the PL spectrum, as shown in Fig. 3 of

the main paper. Furthermore, as the temperature increases, the low-energy phonons tend

to contribute more than the high-energy ones. This can be observed by considering the

increase in importance of mode ν = 24 of frequency 178 cm−1 (green line), with respect to

mode ν = 120 of frequency 570 cm−1 (blue line), leading to the shift towards higher energies

of the maximum of the photoluminescence spectrum, as seen in Fig. 3 of the main text.
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COMPARISON WITH OTHER EXPERIMENTAL SPECTRA

The theoretical photoluminescence spectrum in Fig. 1 of the main paper has been com-

pared with the experimental curve from Ref. [7], which, according to the authors, correspond

to isolate emitters. The experimental spectrum of Ref. [9], instead, corresponds to an en-

semble of spins, and is broader [7]. It is interesting to compare the theoretical results also

with the spectrum of a non-identified defect in 3D hBN reported in Fig. 3b of Ref. [10],

which is characterized by emission at ∼1.6 eV. Fig. 10 reports both this experimental spec-
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FIG. 10: Theoretically predicted photoluminescence spectrum for negatively charged boron

vacancy in 2D hBN is compared with the experimental spectrum [10] of a non-identified

defect in 3D hBN. The experimental spectrum is aligned with the theoretical one, in such

a way that the second peak from the right coincide. The theoretical curve represents the

very same spectrum as in Fig. 1 of the main paper, with the only difference that the

artificial broadening adopted is very small in this case (0.005 eV, against the 0.04 eV of

the figure in the main text) to enlighten the peaks corresponding to the most important

phonons. The vertical red line (ii)’ corresponds to the energy of the peak (ii) before the

shift, and witness a very good agreement also in the absolute position of the theoretical

and experimental spectra.

trum and the theoretical spectrum for V −B in 2D hBN. According to the authors of Ref. [10],

the peak (i) of this experimental curve is probably due to the background, therefore the

highest energy peak corresponding to the defect is the second (ii). The theoretical peak at

1.51 eV corresponds to the annihilation of low frequency phonons, and is weaker than that
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at 1.49 eV, corresponding to the their creation. If we shift the experimental curve in such a

way that the most intense peaks coincide (peak (ii) for the experiments and that at 1.49 eV

for the theory), we observe a remarkable agreement in the position of the remaining peaks,

i.e. (iii), (iv) and (v). In order to realize such alignment, it is necessary to redshift the

experimental spectrum of 0.14 eV, witnessing a very good agreement also in the absolute

position of the spectra. Basing on this agreement, we may conclude that:

1. the spectrum in Fig. 3b of Ref. [10] is the negatively charged boron vacancy in 3D

hBN;

2. the peak (ii), which was tentatively associated to the ZPL by the authors, correspond

instead to the first replica of a phonon of low frequency.

It must be stressed that an agreement between the spectra corresponding to the same defect

in 3D and 2D hBN can be due to the following factors. First of all, the phonons for the

2D hBN look globally similar to those for the 3D hBN, with more marked differences for

the LO modes in the long-wavelength limit [11]. However, as it can be seen in Fig. 9, the

contribution of the high frequency phonons to photoluminescence is small. Furthermore the

in-plane dipoles, which are those affecting the most the spectrum, are not likely to change

significantly when passing from the 2D to the 3D structure.
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COMPARISON WITH THE HUANG-RHYS METHOD

As anticipated in the main text, the most used technique for the calculation of the PL

lineshape of defect centers in semiconductors is based on a generalization of the Huang-Rhys

(HR) model [12]. This work assumes that the energy difference between ground and excited

state depends on a fictitious coordinate ξ which is linear function of the ground state normal

modes. The difference between the relaxed position of the atoms in the excited and in the

ground state is thus expanded in term of normal modes to determine the modal coordinates

[13]

qk =
∑
α,i

m1/2
α (Re

αi −R
g
αi)e

k
αi , (8)

which are later used to calculate the partial Huang-Rhys factor Sk measuring the coupling

of the phonon k with the electrons:

Sk =
ωkq

2
k

2~
. (9)

Here α labels the atoms, i refers to the cartesian component, R
e/g
αi are the equilibrium

positions of the atoms in the excited/ground state and ekαi is a normalized vector that

describes the displacement of the atom α along the direction i in the phonon mode k, and

ωk is the phonon frequency. The function

S(t) =

∫ ∞
0

∑
k

Skδ(~ω − ~ωk)e−iωtd(~ω) (10)

is used to calculate the generating function

G(t) = eS(t)−S(0) (11)

(see Ref. [14] for a finite temperature treatment) whose Fourier transform is proportional

to the PL lineshape:

L(EZPL − ~ω) = ω3

∫ ∞
−∞

1

2π
G(t)eiωt−γ|t|dt . (12)

Here γ is the broadening of the phonon peaks and EZPL is the zero-phonon line, which is de-

termined through constrained DFT or quantum chemistry calculations. We now review the

main limitations of this method and see how the many-body perturbation theory (MBPT)

treatment of the PL presented in the main text manages to overcome them. First of all, the
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starting point of the theory summarized above is the following expression for the absolute

intensity of the emission [12, 13]:

I(~ω) =
nDω

3

3ε0πc3~
|µeg|2

∑
m

| 〈χgm|χe0〉 |2 δ(EZPL − Egm − ω~) , (13)

where nD is the refractive index, and |µeg| is the optical dipole moment between ground

and excited states. This formula is valid for molecules (in which case nD = 1) or for solids

with homogeneous and isotropic screening, but not for 2d materials, where the screening

environment is more complex. In the theory presented in the main text, instead, the whole

screening function is calculated through state-of-the-art MBPT calculations [3].

The main assumption behind the Huang-Rhys theory is that the optical dipole moment

between ground and excited state |µeg| is not affected by phonons (Frank-Condon approxi-

mation). This allows to take |µeg| out of the summation in Eq. 13. As we will show later this

assumption limits strongly the predictivity of the theory. In the many-body perturbation

theory, instead phonon dependence of the optical dipole moments is correctly taken into

account, as witnessed by the terms ∂2|Πλ|2
∂x2ν

in Eq. 2 of the main text.

As shown by Eq. 9, only the phonon modes with non-vanishing modal coordinate qk con-

tributes to the PL lineshape of the Huang-Rhys method. Now, both Refs. [7, 15] agree that

the observed luminescence is associated to the transition between the many-body states

(1)3E ′′ → (1)3A′2, which corresponds to the transition between the single particle states

e′ → a′′2 of the main text. However, the relaxed geometry of the state (1)3E ′′ remains

flat even when considering the Jahn-Teller distortion (i.e. all the atoms have 0 displace-

ment in the out-of-plane direction). This has the fundamental consequence that qk = 0

for all the out-of-plane phonon modes: therefore, these modes do not contribute to the HR

luminescence. The formalism presented in the main text is beyond the Franck-Condon ap-

proximation, and instead predicts that the out-of-plane phonon modes are those affecting

most the photoluminescence. It is instructive to calculate the PL with the MBPT approach

presented in the main text and excluding the contribution of the phonons of symmetry

A′′1, A′′2 and E ′′ (i.e. those phonons which do not contribute to the PL in the Huang-Rhys

method). The result is shown in violet dashed line in Fig. 11, and compared with the cal-

culations of the PL through the HR method from Ref. [15] (represented in green solid line).

In order to facilitate the comparison, the main peak of the two spectra has been aligned.

The two spectra are perfectly superimposed in the interval of frequencies ranging from 1.6
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FIG. 11: The violet dashed line is obtained from the MBPT approach of the main text

when excluding the contribution of the phonon modes of symmetry A′′1, A′′2 and E ′′. This

curve is compared to the result from the HR method of Ref. [15], represented in green

solid line. The former curve is shifted in such a way that the main peak coincide with that

of the green curve. The solid violet line represents the PL calculated through the MBPT

approach when including the contribution of all the phonons, while the solid blue curve

represents the experimental PL from Ref. [7].

eV (where the ZPL of the HR calculation lies, as reported in [15]) to 1.4 eV (position of

the main peak). The MBPT spectrum decays faster than the HR one for small frequencies,

as it does not take into account the harmonic replica. In both cases, the spectrum is much

broader than the experimental one [7], represented in solid blue line. The result is improved

dramatically when the contribution of phonons of all the symmetries is considered when cal-

culating the PL with the MBPT approach, leading to the curve represented in solid violet

line (and reported in Fig. 1 of the main text). We thus conclude that the PL is dominated

by the phonon modes which are odd with respect to the mirroring with the plane of the 2D

material. This explains the failure of the HR method in reproducing the PL lineshape of

the charged B vacancy.

Regarding the limitation of our method, it does not take into account the polaron shift

and the presence of multi-phonon replica. The former can be calculated including also the

electron-phonon diagrams in the perturbative series for the one particle and two particles

18



Green’s function, while the latter can be determined through by expanding the theory pre-

sented in Ref. [16] to higher orders.
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[3] A. Marini, C. Hogan, M. Grüning, and D. Varsano, Computer Physics Communications 180,

1392 (2009).

[4] D. Sangalli, A. Ferretti, H. Miranda, C. Attaccalite, I. Marri, E. Cannuccia, P. Melo, M. Mar-

sili, F. Paleari, A. Marrazzo, G. Prandini, P. Bonfà, M. O. Atambo, F. Affinito, M. Palummo,
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Computational Materials 6, 41 (2020).

[16] E. Cannuccia, B. Monserrat, and C. Attaccalite, Phys. Rev. B 99, 081109 (2019).

21

http://dx.doi.org/ 10.1103/physrevmaterials.5.084603
http://dx.doi.org/10.1038/s41524-020-0305-x
http://dx.doi.org/10.1038/s41524-020-0305-x
http://dx.doi.org/10.1103/PhysRevB.99.081109

	Supplementary information
	Calculation parameters
	Absorption
	Effect of nonequilibrium occupation
	Phonon calculations
	Dipole selection rules for D3h and C2v groups
	Static Jahn-Teller distortion
	Temperature dependence of the phonon contribution to PL
	Comparison with other experimental spectra
	Comparison with the Huang-Rhys method
	References


