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Abstract. Retailers which deliver products directly to their customer locations often rely on Logistics

Service Intermediaries (LSI) for order management, warehousing, transportation and distribution

services. Usually, the LSI acts as a shipper and subcontracts the transportation to carriers for long-

haul and last-mile delivery services. All agents interact and are connected through cross-docking

facilities. As the demand from customers may vary significantly over time, the shipper’s requirements

for transportation evolve accordingly at the tactical level. This creates opportunities for the shipper

to take advantage of medium-term contracts with the carriers at prices lower than those offered by

the spot market. The study focuses on the tactical design, through dynamic contracts, of a suitable

network of cross-docking facilities and related transportation capacities (belonging to different carriers)

to reduce the shipper’s operational costs. In this article, we propose an MILP formulation for the

multi-period planning problem with minimum purchase commitment contracts faced by the shipper.

We propose exact and heuristic decomposition methods for the the model, respectively, based on

combinatorial Benders cuts and on relax-and-repair approaches. The performance of these algorithms

is experimentally compared to that of commercial solvers (branch-and-cut and classical Benders).

The numerical results show that our methods perform comparatively well for the solution of large size

instances and brings economic benefits to the shipper.

Keywords: transportation; supply chain management; contracts; network design; matheuristics.
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1 Introduction

Logistic firms differ according to the service capabilities and core competences that they deploy in

their business networks (Lai, 2004). While some invest in a large number of physical assets, others

may restrict their activities and partially outsource their operations. As observed for example by Cui

and Hertz (2011), the terminology to designate these different actors is not completely standardized.

We rely here on the framework adopted by Stefansson and Russell (2008), Cui and Hertz (2011), who

distinguish three main groups of actors, namely, logistics service providers, logistics service intermedi-

aries (LSIs), and sub-contract carriers. LSIs may carry out most administrative activities on behalf of

their clients, but leave the physical activities to contracted third parties (Stefansson & Russell, 2008).

So, LSIs are often non-asset-based service providers: their business is to coordinate and connect dif-

ferent actors and activities (Cui & Hertz, 2011). In contrast, asset-based companies may offer various

services relying on their own physical resources and capabilities, like warehousing, transportation, or

freight consolidation, and may provide value-added services supported by IT technologies.

This study takes the perspective of an LSI, the so-called shipper, who is responsible for delivering

to end-customers the products they purchased, for example, on e-commerce websites. The shipper

subcontracts some operations to carriers who own and operate physical assets. Two main decisions

must be taken by the shipper, one of a purely logistical nature and one of a contractual nature.

The logistical decision mostly bears on the carriers’ resources which should be activated at every

period to serve the customers at minimum cost: type and number of facilities (hubs, warehouses,

cross-docking facilities, delivery points), connecting lanes (number, capacity), and customer service

(single or multiple sourcing). It is essentially a classical distribution network design problem.

The contractual decision relates to the preselection of carriers to be included in the distribution

network of the shipper ahead of time to secure access to resources at an attractive price when needed.

This component of the decision problem is at the core of our work. Generally speaking, the shipper

might choose short-term, mid-term, or long-term contractual agreements with some carriers. In the

first, short-term case, the costs of contracted services vary along with market prices. This occurs when

the shipper sources transportation capacities from the spot market. This policy handles shipments

on a one-time, load-by-load basis, and it allows the transportation capacity to be flexibly adjusted to

real demand requirements at each current period. As mentioned in Lindsey and Mahmassani (2017),

however, “the spot market itself can be highly dynamic, and subject to considerable uncertainty in

availability and/or pricing, making it difficult for shippers to utilize”.

At the other end of the spectrum, long-term contractual agreements guarantee more stable prices for

the shipper. Thus, the shipper is interested in signing such contracts that could reduce its outbound

logistics costs in the long run while ensuring the availability of transportation capacity, at the risk

of buying over-capacity in a fixed network. In return, the carriers expect some level of regularity

in demand for their services in order to make the contracts profitable: they agree to conclude dis-

counted contracts when the shipper offers sufficient business volume, sufficient regularity, and service

compatibility (see Kuyzu, Akyol, Ergun, and Savelsbergh (2015)).

In markets subject to seasonal variations and to significant uncertainty, both policies mentioned above
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may prove costly. Indeed, the short-term policy tends to incur high spot prices when the demand is

large, and the long-term policy suffers from the reservation of excess capacity when the demand is

low. Such situations are typically encountered in e-commerce, but also in classical supply chains (see

Section 2). With this in mind, this article focuses on mid-term contracts whereby the shipper tactically

manages a portfolio of carrier contracts that are dynamically revised to balance the reserved capacity

over a mid-term horizon. The setting is inspired by real-world situations encountered in a collaboration

with fast-delivery companies, as described in Gendron and Semet (2009). In this study, the shipper

operates a two-echelon distribution system where the intermediate facilities are owned and operated

by carriers which engage in mid-term contracts with the shipper. The system is highly adaptive, in the

sense that the facilities can be used or not, depending on fluctuations of the demand. While Gendron

and Semet (2009) focus on the mathematical properties of the single-period optimization model, our

main interest here is in integrating the contractual options in a multi-period framework.

A main objective of this paper is therefore to propose a mathematical optimization approach of the

planning problem faced by the shipper in this context, namely, the tactical design, through dynamic

mid-term contracts, of a suitable network of cross-docking facilities and related transportation capac-

ities belonging to different carriers. The optimization approach aims at the reduction of operational

costs, assuming that the parameters of the contracts (price, duration) are known. When used in a

simulation framework, it also allows for a comparison of the impact of different contractual conditions

(e.g., contracts with different durations).

Accordingly, as a first contribution, the paper introduces an optimization model integrating multi-

period purchase commitment contracts within the distribution network design. To the best of our

knowledge, this problem has not been previously studied, and even less modeled or solved, in the

literature. The optimization problem is proved to be NP-hard, and as expected, solving large-size

instances is time-consuming. As a second contribution, the structure of the problem is used to de-

compose it into a collection of single-period network design problems. This algorithmic contribution

is implemented in two ways: we propose, first, an exact method based on Benders’ canonical cut

decomposition and second, an ad-hoc relax-and-repair heuristic. Finally, computational experiments

are carried out to assess the efficiency of the algorithms, the applicability of the problem formulations,

and the economic benefits derived from the flexibility of the contracts.

The article is organized as follows. Section 2 reviews the literature on multi-period network design and

capacity reservation contracts as applied in operations management. Section 3 specifies the decision

problem, which is then formulated in Section 4 as a mixed-integer linear program. Section 5 estab-

lishes the complexity of the problem. Section 6 presents an exact optimization procedure based on

combinatorial Benders decomposition, and Section 7 proposes a relax-and-repair heuristic. Section 8

describes the data sets used in the computational tests. The results of the tests are discussed in algo-

rithmic terms in Section 9 and in economic terms in Section 10. Finally, Section 11 draws conclusions

and proposes future research paths.
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2 Literature review

The literature review consists of two parts. The first one deals with the multi-period design of

distribution networks. The second part covers contracts in supply chain management.

Network design is a broad research area. As mentioned in (Klose & Drexl, 2005), this class of problems

features a least 9 core dimensions: topography, objective function, capacity and demand satisfaction

constraints (single or multiple sourcing), number of stages or echelons, single or multiple products,the

elasticity of demand with respect to location, static or dynamic design over a planning horizon, deter-

ministic or uncertain data, inclusion or exclusion of routing decisions. Additional features could also

be mentioned. This leads to a vast literature related to network design. Therefore, we aim to position

our problem statement in this stream briefly.

The “multi-period” nature of our problem refers to a sequence of decisions made over a planning

horizon discretized into a finite number of periods. In contrast with this assumption, many network

design models aim at making a “static” strategic decision entailing large investments and engaging

the firm for a long period of time. However, even when discussing one of the most basic network

design models, namely, the facility location problem, the issue arises of dealing with time-dependent

demand (see Drezner (1995) and Owen and Daskin (1998)). This leads to tactical problem statements,

expressing that the firm wants to determine a “dynamic” sequence of distribution networks in which

facilities can be opened or closed over time, at a cost, or with a limited number of changes from one

period to the next, or should retain their status for a fixed, minimum number of periods; see, e.g.,

Wesolowsky and Truscott (1976), Van Roy and Erlenkotter (1982), Drezner and Wesolowsky (1991),

Klose and Drexl (2005), Melo et al. (2005), Dias et al. (2008), Jena et al. (2015). As mentioned in Klose

and Drexl (2005), this second, tactical approach leads to an increase in data requirements compared

to an aggregated model, so the ability to solve the models reduces accordingly. Also, a main added

difficulty with multi-period problems arises from the connections between periods. It is well-known

in production planning that inventories or setup costs link successive periods with each other. In the

case of multi-period network design problems, the status of the facilities (open, operating or closed)

similarly creates connections between periods.

In single-echelon networks, it is usually assumed that the facilities are owned by the decision maker,

who is therefore entitled to define the opening/closing conditions and related costs. When dealing with

multi-echelon networks, it may be the case that the intermediate levels are owned by subcontractors

who can be activated over time. This leads to the consideration of temporary contracts to use these

facilities. A detailed introduction to such two-echelon network design problems can be found in Ben

Mohamed, Klibi, and Vanderbeck (2020). These authors propose a classification based on the following

notations for the multi-period setting:

- 1 vs. T for a mono-period or multi-period problem,

- O if opening new locations is allowed,

- C if closing previously opened locations is allowed (C implies O),

- Re if reopening closed locations is allowed (Re implies O and C).

Our problem falls in the class T/O/C/Re, like Pimentel, Mateus, and Almeida (2013) (one-echelon),

Cortinhal, Lopes, and Melo (2015), or Ben Mohamed et al. (2020). Yet, in these papers, the contracts
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with the suppliers involve opening and operating costs for the facilities, but no minimal or maximal

duration extending over several periods, nor any purchase commitment.

The latter comment leads to the second part of our literature review, which deals with contracts used

in supply chain management. Two distinct perspectives can be found in the discussion of supply chain

contracts (see Lariviere (1999) for a global overview).

A first, large stream of literature focuses on the design of contracts aiming at the coordination of

firms in a decentralized supply chain. Setting up contract parameters appropriately can provide a

sufficient mechanism to achieve optimal global profitability and overcome inefficiency factors such as

information asymmetry, risk aversion, or power imbalance between players that motivate actions in

their individual interest. In this setting, contract parameters are usually considered as endogenous in

the problem formulation. Illustrations can be found in Tsay and Lovejoy (1999); Cachon and Lariviere

(2001); Corbett, Zhou, and Tang (2004).

The second stream of research focuses on determining optimal procurement plans for a single firm with

one or multiple suppliers, assuming that the general terms and conditions of risk-sharing contracts

are exogenously fixed. Examples are found in de Albéniz and Simchi-Levi (2005); Lian and Desh-

mukh (2009); Akbalik et al. (2017). The present work falls in this second category: it investigates

procurement planning of transportation services (from a single firm perspective) under given contract

parameters, namely, fixed duration and minimum business volume commitment.

The supply chain literature describes different variants of such contractual mechanisms and related

parameters, e.g., capacity reservation contracts (Jin & Wu, 2007; Akbalik et al., 2017; Li, Luo, Wang,

& Zhou, 2020), total minimum order quantity (Bassok & Anupindi, 1997; Chen & Krass, 2001),

quantity flexibility contracts (Tsay & Lovejoy, 1999; Chen, Hum, & Sun, 2001; Lian & Deshmukh,

2009; Heydari, Govindan, Ebrahimi, & Taleizadeh, 2020; Li et al., 2020), option contracts (de Albéniz

& Simchi-Levi, 2005; Spinler & Huchzermeier, 2006; Nosoohi & Nookabadi, 2016).

In particular, the subject of contractual carrier selection has been investigated in several forms, from

simple to more advanced ones. For instance, the basic Carrier Selection Problem (CSP) was addressed

by several authors in the context of combinatorial auctions, usually viewed from the strategic per-

spective of yearly contracts. Caplice and Sheffi (2003) develop optimization models to determine how

shippers should procure transportation services after receiving bids from carriers. Song and Regan

(2005) describe a unit auction where shippers predefine sets of routes for bidding purposes. In mar-

itime transportation, Lim, Wang, and Xu (2006) further incorporate a minimum quantity commitment

requirement in the classical transportation model. In their model, the freight owner decides how to

allocate shipments among multiple carriers while respecting the constraint that each selected carrier

must handle a minimum volume of cargo. In Brusset (2009, 2010), several types of multi-period con-

tracts are compared to formalize long-term relationships between one carrier and one supplier. In

addition to the simple price-only contract without commitments, contracts with minimum purchase

commitments (per period or over several periods) can be selected based on the economic return for

both actors. Patel and Swartz (2019) consider a supply chain design problem motivated by appli-

cations in the chemical industry, in which the transportation links are subject to contracts with a

fixed duration. This model shares some similarities with ours, with the significant difference that the
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contracts do not entail any minimum purchase commitment.

Only a few publications deal with risk-sharing contracts for logistic services other than transportation.

For example, in Chen et al. (2001), the authors consider flexible commitment contracts proposed by a

company which subcontracts warehousing space to third-party service providers. Each client specifies

a base (reservation) commitment for storage space at the warehouse based on its expected demand.

Any space used above the commitment level is charged at a premium price during the planning period.

The base capacity commitment can be adjusted according to periodic demand requirements along the

multi-period horizon.

In this paper, we consider a multi-period network design problem where multiple carriers operate their

own subnetworks of facilities as well as their transportation resources. We focus on contracts with

minimum purchase commitments, a type of risk-sharing contract which is appropriate in the context

of multi-product procurement planning. In this model, the shipper commits to pay a deductible fee

in order to benefit from discounted prices for a “reserved” business volume. An advantage of such

contracts is that they express the commitment in homogeneous monetary units, and hence, they can

be applied to the purchase of multiple product types. For instance, they are common in the electronics

industry, see, e.g., Bassok and Anupindi (1997). In transportation, carriers offering loads on different

corridors can be considered as selling different products with distinct prices. On the other hand, the

reservation of transportation (truckloads) or service (handling) capacity is not explicitly modeled in

the contract. Alternative models taking capacity commitments into account are discussed in Clavijo

López (2021).

3 Description of the problem

A logistics service intermediary known as the shipper acts on behalf of online sellers for the distribution

of products in many customer areas. The shipper manages the inventory in warehouses which are

replenished by the sellers on a continuous basis. Moreover, the shipper is in charge of delivering

parcels along time according to customer orders. To do so, it relies on specialized carriers for long-

haul transportation from the warehouses to intermediate facilities and for cross-docking operations at

the facilities, and it relies on parcel delivery services for last-mile transportation to customers areas.

An example of such a distribution network is shown in Figure 1.

Our work focuses on optimizing the shipper’s decisions regarding its multi-period contractual relations

with the carriers (contract portfolio). The shipper’s planning process encompasses the selection of a

sequence of contracts with the carriers, together with the associated transportation plans, over multiple

sub-periods of a discrete time horizon. A contract with a particular carrier allows the shipper to move

its parcels to the cross-docking facilities operated by the carrier. We assume that the range of services

offered by the carriers is limited to long-haul road transportation from the warehouses to their facilities

and to cross-docking operations (freight consolidation, vehicle loading, and unloading). Parcel delivery

services provide last-mile distribution of parcels from cross-docking facilities to customer areas.

The two-echelon network displayed in Figure 1 is similar to those discussed in papers which focus on

the role of intermediate facilities for freight-consolidation and delivery to the final customers, e.g., Lin
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Figure 1: Two-echelon distribution network layout

and Wu (2001), Gendron and Semet (2009), Guastaroba, Speranza, and Vigo (2016), Hanbazazah,

Abril, Shaikh, and Erkoc (2018), Hanbazazah, Abril, Erkoc, and Shaikh (2019), Gu et al. (2022).

Similarly to these authors, we assume that demand is known with full certainty, as is the case over

relatively short planning horizons when delivery due dates must be strictly respected (“time-definite

requirements”). The case of stochastic demand is handled in Clavijo López (2021), but is not further

discussed here.

The total cost incurred by the shipper can be decomposed as follows. First, each contract with

a given carrier, say carrier e, extends over a predefined duration, say He periods (weeks, months),

and stipulates a minimum purchase commitment M t
e, that is a minimum due fee for each period t

covered by the contract, independently of the utilization of services. If the services requested at

period t amount to a higher monetary value than M t
e, then the carrier charges the actual total cost

to the shipper. The minimum purchase commitment may vary in each period based on the expected

demand. When a contract with carrier e expires (after He periods), it can be immediately renewed

(i.e., access to facilities can be reopened, complying with a T/O/C/Re model, see Section 2); but it

cannot be cancelled nor extended before its expiration date.

The amount charged by each carrier for transportation on a specific lane, from a warehouse to one of

its cross-docking facilities, is a function of the total volume of freight. More precisely, we model it as

a function of the required capacity level, that is, of the required number of full truckload shipments.

In our computational experiments, we use a staircase function in order to translate a decreasing

marginal price for each additional truck. We also assume that the number of shipments to a facility

determines the operational costs incurred for handling and cross-docking activities at this facility. A

last-mile delivery company performs the transportation of parcels from each cross-docking facility to

each related customer area, and charges a fixed unit rate (per distance and weight) for this service.

In order to minimize its total distribution costs, the shipper tends to favor shipping lanes (from

warehouses to intermediate facilities) which optimize transportation and handling costs. However,

variable demand and seasonality effects induce fluctuations of transportation needs which, from a

short-term perspective, affect the optimal selection of carriers and cross-docking points in each period.
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On the other hand, each contract binds the shipper to a carrier for successive periods, which means

that the portfolio of contracts must be optimized from a mid-term perspective. These interactions

between the tactical and operational decision levels significantly increase the difficulty of solving the

resulting multi-period distribution network problem with purchase commitment contracts (MDPC).

4 Mathematical formulation

In this section, we propose a mixed-integer linear programming (MILP) formulation of the MDPC

problem. We start with definitions and notations (see also Table 1).

4.1 Definitions and notations

Datasets and indices

Set Description Index
T Planning horizon t, n
E Candidate carriers e
I Cross-docking facilities i
K Customer areas k
Ie Network of cross-docking facilities operated by carrier e i
Ik Network of cross-docking facilities that can serve customer area k i
Ki Customer areas that can be served from cross-docking facility i k
Ek Carriers that can serve customer area k e
L Capacity levels of cross-docking facilities l

Input parameters

Symbol Description
N Number of periods in the planning horizon (N = |T |)
He Duration of contracts with carrier e (number of periods)
Mt

e Minimum Purchase Commitment with carrier e at period t (e)
Ql Available capacity at level l (weight units)
Fi,l Cost for operating facility i at capacity level l (e)
Dt

k Demand of customer area k in period t (weight units)
Ui,k Unit transportation costs for delivery from facility i to area k (e per unit)

Decision variables

Symbol Description
αt
e 1 if a contract with carrier e takes effect at period t, 0 otherwise

vti,l 1 if cross-docking facility i is used at capacity level l in period t, 0 otherwise

qti,k Demand from customer area k allocated to facility i in period t (weight units)

cte Total fee due to carrier e in period t (e)

Table 1: Mathematical notations for the MDPC model

The shipper’s decision problem involves selecting carriers, from a set E of candidates, over a multi-

period planning horizon T = {1, 2, ..., N}. Every carrier e ∈ E operates its own set of geographically

dispersed facilities, Ie, each of which is equipped for cross-docking operations. From the point of view

of the shipper, the collection I = ∪e∈EIe forms the complete set of available cross-docking facilities.

To use the facilities in Ie, the shipper must have previously signed a contract with carrier e. The

conditions applying to a contract with e include its duration (He periods) and the minimum payment

commitment (M t
e) for every period t ∈ T . If a contract with a carrier e is in effect during period t,

then the total payment due to e for period t, denoted cte, is at least equal to M t
e or if it exceeds M t

e,

the costs (handling and transportation) incurred during this period t.
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For the long-haul part of the distribution network, the transportation and cross-docking capacity which

can be requested by the shipper at any carrier’ facility is discretized at increasing levels Q1, Q2, . . . , QL.

The capacity Ql at level l may be typically equal to the total load capacity of l vehicles expressed in

weight unit. Transportation and cross-docking services are then charged depending on the capacity

level requested at a given facility: the long-haul cost charged to the shipper is Fi,l when facility i is

used at level l.

For the parcel delivery part of the distribution network, we assume that the customers are located

in a set K of distinct areas, where each area is small enough to be identified as a single point. The

aggregated deterministic demand for parcels is Dt
k (weight units) for period t in area k. Each customer

area k ∈ K must be served on time from a subset of facilities, say Ik ⊆ I, considered close enough

to receive an offer from a last-mile delivery operator. Conversely, vehicles departing from any facility

i ∈ I can only deliver parcels to a subset of customer areas, say, Ki ⊆ K. The unit cost of parcel

delivery depends on the distance travelled: Ui,k denotes the cost of transporting one weight unit from

facility i ∈ I to customer area k ∈ Ki.

Note that split deliveries from several facilities in Ik to a same area k are allowed. On the other

hand, we assume that there is enough transportation capacity in the system to satisfy demand in

each period. This can be ensured, for example, by including a special carrier m representing the spot

market, with enough capacity and no contractual requirement: say, Hm = 1, M t
m = 0 for all t, large

enough capacity and operating costs.

The MILP model involves four families of decision variables for every period t ∈ T in the planning

horizon. First, αt
e is a 0-1 variable which takes value 1 if a contract with carrier e ∈ E goes into effect

in period t (and remains valid throughout periods t, t+ 1,..., t+He − 1). Next, vti,l is a 0-1 variable

which takes value 1 if facility i ∈ I is operated at level l ∈ L in period t. The continuous variable qti,k
represents the quantity of parcels (number of weight units) shipped from facility i ∈ I to customer

area k ∈ Ki in period t. Finally, as already introduced above, an auxiliary variable cte stands for the

total cost charged to the shipper by carrier e in period t.

4.2 Mixed-integer programming formulation

The multi-period distribution network design problem with purchase-commitment contracts (MDPC)

can now be formulated as follows.

The objective function (1) has two components. The first one computes the fees due to all carriers

over the planning horizon. The second one accounts for the parcel delivery costs. Constraints (2)

enforce demand satisfaction for all customer areas in each period. Constraints (3) ensure that the

total demand allocated to a facility for the last-mile delivery does not exceed its selected long-haul

capacity level. Constraints (4) establish that a customer area k can only be served from facilities

belonging to carriers with ongoing contracts. These constraints are actually redundant with (2)-(3),

but they strengthen the linear relaxation of the formulation. Constraints (5) and (6) determine the

payment due to carrier e in period t, taking into account the effective costs of services provided and the

minimum purchase commitments pre-agreed by ongoing contracts, i.e., any contract signed in one of

the periods from t−He+1 to t. Constraints (7) express that a facility can be used only if there is a valid
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contract with its owner. Constraints (8) specify that two contracts cannot be in effect simultaneously

with the same carrier. Note that in view of constraints (7) and (8), at most one capacity level can

be selected for each facility. The formulation is strengthened by the covering constraints (9) which

guarantee that each customer area is served by at least one carrier. Finally, constraints (10)-(12)

specify the range of the variables. We denote by Zopt the optimal value of MDPC.

Objective function

min Z =
∑
t∈T

[∑
e∈E

cte +
∑
k∈K

∑
i∈Ik

Ui,k qti,k

]
(1)

Constraints∑
i∈Ik

qti,k = Dt
k ∀ k ∈ K, t ∈ T (2)

∑
k∈Ki

qti,k ≤
∑
l∈L

Ql v
t
i,l ∀ i ∈ I, t ∈ T (3)

qti,k ≤ Dt
k

∑
l∈L

vti,l ∀ i ∈ Ik, k ∈ K, t ∈ T (4)

cte ≥
∑
l∈L

∑
i∈Ie

Fi,l v
t
i,l ∀ e ∈ E, t ∈ T (5)

cte ≥M t
e

He−1∑
n=0

αt−n
e ∀ e ∈ E, t ∈ T (6)

∑
l∈L

vti,l ≤
He−1∑
n=0

αt−n
e ∀ i ∈ Ie, e ∈ E, t ∈ T (7)

He−1∑
n=0

αt−n
e ≤ 1 ∀ e ∈ E, t ∈ T (8)

∑
e∈Ek

He−1∑
n=0

αt−n
e ≥ 1 ∀ k ∈ K, t ∈ T (9)

αt
e ∈ {0, 1} ∀ e ∈ E, t ∈ T (10)

vti,l ∈ {0, 1} ∀ i ∈ I, l ∈ L, t ∈ T (11)

qti,k ≥ 0 ∀ k ∈ K, i ∈ I, t ∈ T (12)

5 Complexity

5.1 NP-hardness

For specific values of the parameters, the MDPC model reduces to the well-known simple facility

location problem (SFL), see, e.g., Ghiani, Laporte, and Musmanno (2004)). Specifically, consider the

special case of MDPC where

(a) there is a single period: N = 1;

(b) the contract duration is equal to one period: He = 1;

(c) there is only one operating level (L = {1}) and Q1 is large enough to satisfy the total demand.

(d) a single carrier can reach all the customer areas from all its facilities: E = {e}, I = Ie, and
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Ki = K for all i ∈ I;

(e) there is no purchase commitment: M1
e = 0;

Under these conditions, the shipper has no choice but to contract with the unique carrier (i.e., to set

α1
e = 1), and MDPC reduces to the problem of selecting the facilities i ∈ I (i.e., the values of the

variables v1i,1) and the delivery quantities qi,k to minimize the total cost of operating the facilities and

of transporting the parcels: which is precisely the SFL problem. Since SFL is NP-hard, so is MDPC.

The previous argument does not tell us anything about the difficulty of handling the contracts, since

under its assumptions, the unique variable α1
e is trivially set to 1 in all feasible solutions of model

(1)-(12). An alternative argument, therefore, might consider instead the special case of MDPC where

assumptions (a)-(c) above are satisfied, and

(f) each carrier e ∈ E owns a single facility, and each facility can reach all the customer areas:

E = I, Ie = {e}, and Ki = K for all i ∈ I;

(g) there is no service cost for any of the facilities: Fi,1 = 0 for all i ∈ I.

In this case, again, MDPC reduces to SFL, with the variables α1
e, e ∈ E, indicating the contracts to

be signed in order to use the associated facilities.

5.2 Decomposability

From a practical point of view, the difficulty of MDPC mainly stems from the interrelationship among

various subsets of decision variables. Indeed, the selection of carrier contracts in each period t ∈ T

(expressed by the values of the variables αt
e) restricts the candidate facilities that can be used in

period t (variables vti,l) and hence, the quantities that can be shipped in the same period (variables

qti,k). Moreover, the contracts signed with carriers usually extend over several periods which creates a

linkage between the decisions made in successive periods.

These observations suggest that appropriate solution methodologies may be developed by relaxing

some of the interrelationships mentioned above in various ways. In particular, when feasible values

are set for the decision variables αt
e, finding the optimal values of (vti,l, q

t
i,k) becomes a time-separable

sub-problem which is easier to handle, even though it remains theoretically hard. This suggests that

Benders decomposition can be useful for tackling the complex structure of the problem. An exact

method based on this idea is presented in Section 6.

Similarly, when we relax the constraints (6)-(9), which bind consecutive periods for each contract, the

distribution sub-problem can be independently tackled for each period. Section 7 describes a heuristic

algorithm based on this idea.

6 Combinatorial Benders Algorithm - (CBA)

We start this section with a brief review of combinatorial Benders approaches.
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6.1 Benders with integer sub-problems

The classical Benders procedure for mixed-integer linear programming requires fixing (iteratively)

the value of all integer variables and solving the remaining sub-problem, which is by construction a

linear programming problem with continuous variables. Then, duality theory allows the derivation of

valid (feasibility or optimality) inequalities from the optimal solution of the sub-problem, and these

inequalities can be added as cuts to the formulation of the original master problem (see Benders, 1962;

Rahmaniani, Crainic, Gendreau, & Rei, 2017).

In contrast, in some recent extensions of the classical approach, only a subset of the integer variables

are fixed (in our case, the αt
e variables), and the resulting sub-problem is still an MILP problem.

When this is the case, classical Benders cuts cannot be used, due to the failure of duality relations,

and different approaches need to be applied.

Hooker and Ottosson (2003) coined the term combinatorial cuts and applied Benders-type decompo-

sition methods for sub-problems in binary variables by developing an abstract theory of “inference

dual”. Similarly in Codato and Fischetti (2006), combinatorial cuts were implemented to model and

solve MIP problems involving logical implications. The cuts are so-called canonical cuts (see Balas &

Jeroslow, 1972) of the general form: ∑
j∈C

yj +
∑
j∈D

(1− yj) ≥ 1 (13)

for appropriate binary variables yj and subsets of indices C,D.

Similar types of cuts appear as part of ”nogood” learning techniques used in constraint programming

together with mixed-integer programming. The main idea is to find combinations of variable assign-

ments that cannot be part of an optimal solution, or no good combinations (see Sandholm & Shields,

2006). Such techniques can be embedded in a branch-and-cut framework in order to reduce the size

of the search tree. Examples of such approaches with integer sub-problems can be found in Botton,

Fortz, Gouveia, and Poss (2013), Gendron, Scutellà, Garroppo, Nencioni, and Tavanti (2016), Fakhri,

Ghatee, Fragkogios, and Saharidis (2017).

For our MDPC model, we develop a decomposition strategy using combinatorial cuts that we add

to the master problem in the branch-and-cut process (similar to Gendron et al., 2016). The master

problem is solved only once. The branch-and-cut process stops at some nodes for evaluating integer

solutions in the sub-problem. This approach, which differs from the iterative classical procedure, is

known as a single-tree Benders procedure (Rahmaniani et al., 2017).

6.2 Decomposition

The mathematical formulation (1)-(12) of MDPC contains three main sets of variables, respectively

associated with the selection of contracts (binary variables αt
e), the selection of facilities (binary

variables vti,l), and the allocation of demand to these facilities (continuous variables qti,k). The optimal

value of the cost variables cte is easily deduced from the values of the other variables. We decompose

this formulation into a master problem (MP), obtained by relaxing the integrality requirements on
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the binary variables vti,l, and into a sub-problem (SP), obtained by fixing the binary variables αt
e to

valid values α̂t
e derived from the optimal solution of the MP.

Whenever the MP generates new values for α̂t
e (that is, a new tentative contract plan), an additional

combinatorial cut is introduced into the MP formulation. The procedure stops when no new values for

α̂t
e are eligible to be optimal. Let us now describe this procedure in more detail. In the next sections,

we denote by Zinc the incumbent, or best-known value of a solution of MDPC at any time during the

procedure.

6.2.1 Master problem (MP)

The initial MP formulation is identical to the formulation (1)-(12), except that the integrality con-

straints (11) are relaxed and replaced by: vti,l ∈ [0, 1] for all i ∈ I, l ∈L, t ∈ T.

The relaxed variables vti,l are included in the MP in order to guide the search for good values of the

contract variables αt
e. The MP is solved by a standard branch-and-cut (B&C) procedure, and its

formulation is additionally enriched by combinatorial cuts as explained later on.

In the course of solving the MP by branch-and-cut, (possibly many) feasible assignments of binary

values α̂ = (α̂t
e : e ∈ E, t ∈ T ) are identified for the contract variables in intermediate nodes of the

enumeration tree. We denote by ZR(α̂) the optimal value of the master problem when α is fixed at α̂

(the subscript R reminds us that the vti,l variables are relaxed). If Zinc ≤ ZR(α̂), then α̂ is dominated

by the incumbent assignment for the contract variables, and hence α̂ can be further discarded from

the search process, either by pruning or adding a combinatorial cut. Otherwise, a sub-problem SP(α̂)

must be solved to evaluate the quality of the contract plan associated with α̂, as explained next.

6.2.2 Sub-problem (SP)

For each feasible assignment α̂, the associated sub-problem SP(α̂) is generated by setting αt
e to the

value α̂t
e in the formulation of MDPC, for all e ∈ E, t ∈ T . Thus, SP(α̂) is an MILP model with

objective function (1), with binary variables vti,l and with continuous variables qti,k, cte. It includes

constraints (2)-(5) and (11)-(12), as well as constraints (6) and (7) which can respectively be rewritten

as :

cte ≥

M t
e if

∑He−1
n=0 α̂t−n

e = 1

0 otherwise
∀ e ∈ E, t ∈ T, (14)

∑
l∈L

vti,l ≤

1 if
∑He−1

n=0 α̂t−n
e = 1

0 otherwise
∀ i ∈ Ie, e ∈ E, t ∈ T. (15)

Constraints (14) and (15) respectively guarantee the minimum payment due to carriers and the avail-

ability of facilities if and only if a contract is in effect at period t.

Constraints (8)-(10) do not appear in the sub-problem formulation. Note, however, that the presence

of the covering constraints (9) in the master problem ensures that all customers can be served from the

facility network available under the contract plan represented by α̂. In other words, the sub-problem

SP(α̂) is always feasible.
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As mentioned in Section 5.2, a key feature of the sub-problem SP(α̂) is that it is separable per period:

indeed, for each t ∈ T , the optimal values of (vt, qt, ct) only depend on the contracts (α̂t) that are

active in period t. Thus, if we denote by ZSP (α̂) the optimal value of SP(α̂), and by ZSP (α̂
t) the

optimal value of the sub-problem SP(α̂t) arising in period t, then

ZSP (α̂) =
∑
t∈T

ZSP (α̂
t).

This property facilitates the resolution of SP(α̂), and motivates the entire decomposition scheme.

6.2.3 Combinatorial cuts

The optimal solution of SP(α̂) provides the best assignment (v∗, q∗, c∗) associated with the contracts

defined by α̂. In particular, it defines a feasible solution of MDPC, and its value ZSP (α̂) is an upper

bound on the optimal value of MDPC. The incumbent or best-known value, i.e., Zinc, is compared

with ZSP (α̂) and is updated if needed, that is, if ZSP (α̂) < Zinc. Moreover, a combinatorial cut of

the following type can be added to the MP formulation:

∑
t∈T

 ∑
e∈E:α̂t

e=0

αt
e +

∑
e∈E:α̂t

e=1

(1− αt
e)

 ≥ 1. (16)

This combinatorial cut removes the solution α̂ from the feasible space of MP. In other words, the cut

expresses that the contract plan α̂ has already been handled, and therefore α̂ can be ruled out from

the subsequent search process.

The combinatorial cut (16) can be further strengthened by restricting the first double sum to those

pairs (t, e) such that
∑He−1

n=0 α̂t−n
e = 0. Indeed, suppose that a new contract plan is to be considered

by switching some value α̂t
e from 0 to 1 (i.e., by activating a new contract at time t) so as to satisfy

(16), and suppose that t is the first time period for which such a switch takes place. Then, it must

be the case that α̂t−n
e = 0 for all n = 0, . . . ,He − 1: otherwise, it would not be feasible to start a new

contract at time t (see constraints (8)).

Thus, the strengthened cut (17) can be included in the formulation instead of (16):

∑
t∈T

 ∑
e∈E:

∑He−1
n=0 α̂t−n

e =0

αt
e +

∑
e∈E:α̂t

e=1

(1− αt
e)

 ≥ 1. (17)

Note that the cut (17) is not separable per period.

6.3 Algorithmic procedure

The cut insertion procedure of the Combinatorial Benders Algorithm (CBA) is sketched in Figure 2.

As mentioned above, the tree is generated when solving the master problem by branch-and-cut. Com-

mercial solvers enable the user to interrupt the MP branch-and-cut process at various nodes to launch
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predefined routines. In our algorithm, this practical tool is used to solve the SP(α̂) model whenever the

value ZR(α̂) of a new feasible integer solution α̂ is lower than the incumbent value Zinc, as described

by Algorithm 1. The solution method for the SP is summarized below by Algorithm 2.

Figure 2: Single-tree Combinatorial Benders Algorithm (cut-insertion process)

The addition of the combinatorial cut (17) to the MP formulation excludes candidate α̂ from the

feasible space, whether it is optimal for MDPC or not. The branch-and-cut procedure continues

searching for better feasible solutions, and it may either generate new values for α̂, or eventually

conclude that there is none left. When the solver stops, the optimality criterion is satisfied: the relaxed

value ZR(α̂) of any solution α̂ is above the incumbent value, which is therefore optimal (Zinc = Zopt).

The lower bound obtained along the process is associated with the MP formulation. Therefore, it is

never larger than the optimal value of the MP, which is itself a lower bound for the MDPC model.

Algorithm 1: Single-tree Benders Subroutine (Feasible α̂ )

Input: α̂: Contract plan,
ZR(α̂): Optimal value of MP when α = α̂,
Zinc: Incumbent value of MDPC.

1 if ZR(α̂) < Zinc then
2 solve sub-problem SP(α̂) {see Algorithm 2}
3 retrieve value ZSP (α̂)
4 if ZSP (α̂) < Zinc then
5 Zinc ← ZSP (α̂)

6 add combinatorial cut (17) to MP

The sub-problem SP to be solved by Algorithm 1 is a MILP that must be solved repeatedly and

may take a considerable amount of time to solve. In order to facilitate its solution, as suggested in

Section 6.2.2, we decompose it per period, and we solve each sub-problem SP(α̂t), for t ∈ T . This

process can be further accelerated as follows. For the contract plan α̂ and a period t, consider the

assignment α̂t, that is, the restriction of α̂ to period t. It may very well happen (and in fact, it

frequently happens in practice) that α̂t = αt for another contract plan α which was considered in

a previous call to Algorithm 1: indeed, two contract plans α̂ and α can involve the same carriers

in period t, even if they differ in other periods. In such a case, obviously, ZSP (α̂
t) = ZSP (α

t). In

15



view of this observation, when solving SP(α̂), we find it advantageous to record each assignment α̂t

together with the optimal value ZSP (α̂
t) in a set Ωt, for each period t. When the same assignment

α̂t is encountered again in subsequent iterations, its value is simply retrieved from Ωt, and there is no

need to solve the sub-problem again for that particular period t.

The resulting sub-problem procedure is described by the following pseudocode.

Algorithm 2: Sub-problem Procedure

Input: α̂: Contract plan. α̂t: Restriction of the contract plan to period t.
Ωt, t ∈ T : storage sets of previously encountered contract plans and their optimal values.

Output: ZSP (α̂): Optimal value of the sub-problem SP(α̂).
1 ZSP (α̂)← 0
2 for each t ∈ T do
3 if α̂t ∈ Ωt then
4 retrieve the optimal value ZSP (α̂

t)

5 else
6 solve SP(α̂t)
7 add α̂t and ZSP (α̂

t) to Ωt

8 ZSP (α̂)← ZSP (α̂) + ZSP (α̂
t)

9 return ZSP (α̂)

7 Relax-and-repair heuristic

In this section, we present a heuristic optimization algorithm based on a decomposition of MDPC per

period. The heuristic proceeds in two phases, which respectively consist in solving a ”relaxation” of

the problem for each period, then in ”repairing” the obtained solutions α̂t to merge them over the

horizon into a feasible solution α̂.

7.1 Phase 1 - Relaxation - (RL)

The idea of the first phase consists in relaxing the duration of the contracts to a single period, that

is, in assuming that He = 1 for all e ∈ E. Another way of looking at this relaxation is as follows.

Replace each occurrence of the expression
∑He−1

n=0 αt−n
e in the formulation (1)-(12) by a single binary

variable βt
e, and add the constraints

He−1∑
n=0

αt−n
e = βt

e ∀ e ∈ E, t ∈ T. (18)

This obviously yields an equivalent formulation of MDPC, with the interpretation that βt
e = 1 if

and only if a contract with carrier e is in effect in period t. Now, remove all constraints (18). In

this way, we obtain a relaxation of MDPC where the variables βt
e are not necessarily associated with

contracts of duration He, but can be viewed as describing contracts of duration 1. Let us denote this

relaxed problem as RL, and its optimal value as ZRL. Clearly, ZRL is a valid lower bound for MDPC:

ZRL ≤ Zopt.

The formulation RL can be decomposed and solved independently for each period t ∈ T . Let RL(t)
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define the single-period problem at period t and let ZRL(t) be its optimal value. Then, ZRL =∑
t∈T ZRL(t).

In order to avoid confusion, we stress that each sub-problem RL(t) involves the binary decision vari-

ables βt
e in its formulation. Thus, it differs from the single-period sub-problem SP (α̂t

e) introduced

in Section 6.2.2, which is associated with fixed values of the variables αt
e. On the other hand, if β̂t

denotes the optimal value of βt in the solution of RL(t), then, by definition, ZSP (β̂
t) = ZRL(t).

Algorithm 3: Relax-and-repair Heuristic: Phase 1

Input: An instance of MDPC.
Output: ZRL: Lower bound on the optimal value of MDPC.

β̂: A feasible contract plan for the relaxation of MDPC - (RL).
1 ZRL ← 0
2 for each t ∈ T do

3 solve RL(t), obtain {β̂t, ZRL(t)}
4 ZRL ← ZRL + ZRL(t)

5 return ZRL, β̂ = (β̂t : t ∈ T )

7.2 Phase 2 - Repairing - (RP)

Consider now an optimal solution ŝ = (β̂, v̂, q̂, ĉ) of problem RL. With a slight abuse of terminology,

we say that this solution is feasible for MDPC if the succession of single-period contracts (β̂t
e, t ∈ T )

describes a collection of contracts with duration He for each e ∈ E (meaning that there exists an

assignment of values α̂ for the α-variables such that (α̂, β̂) satisfies constraints (18)). Note that this is

easy to check. When this is the case, then the solution ŝ (or more rigorously, (α̂, v̂, q̂, ĉ)) is necessarily

optimal for the original MDPC model as it satisfies constraints (8), i.e., ZRL = Zopt, and the second

phase of the heuristic simply returns this solution.

On the other hand, if the conditions on the contract durations He are not respected, then the solution

ŝ is infeasible for MDPC and ZRL only provides a lower bound for Zopt. The second phase then

consists in “repairing” the infeasible solution to transform it into a feasible one. The repair heuristic

RP iterates forward over periods t ∈ T . For each carrier e such that β̂t
e = 0, it examines whether the

single-period contracts (β̂t−1
e , β̂t−2

e , . . .) opened in previous periods define a contract of duration He

(or a sequence of contracts of duration He). When this is not the case, the unfinished contract can be

either Completed up to He periods, or Removed.

We next give a more formal description in Algorithm 4 of the phase 2 procedure (RP) with descriptive

comments in brackets.

The Completion option considers the number of periods needed for the unfinished contract to get com-

pleted (namely,He−r periods), starting from time t. The local variable CurrentCostC sums up the op-

timal cost values ZSP (β̂
t), ..., ZSP (β̂

t+He−r−1) of the respective sub-problems SP (β̂t), ..., SP (β̂t+He−r−1).

Next, the algorithm temporarily sets the variables β̂t,...,β̂t+He−r−1 to one and recomputes the costs

ZSP (β̂
t), ..., ZSP (β̂

t+He−r−1) by solving the sub-problems with these modified values. The difference

is saved in parameter ∆CostC and the values of β̂t,...,β̂t+He−r−1 are set back to zero.
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Algorithm 4: Relax-and-repair Heuristic: Phase 2

Input: β̂: A feasible contract plan for the relaxation of MDPC (RL)
Output: α̂RP : A feasible contract plan.

ZRP : Value of the heuristic solution.
1 ZRP ← ZRL

2 for each t ∈ T , t ̸= 1 do
3 for each e ∈ E do

4 if β̂t
e = 0 and β̂t−1

e = 1 then

/* {potentially incomplete contract} */

/* {determine s, the first period such that β̂s
e = ... = β̂t−1

e = 1} */

5 s← t− 1

6 while s > 1 and β̂s−1
e = 1 do

7 s← s− 1

8 r ← (t− s) mod He

/* {r: elapsed duration (mod He) of the contract running at period t− 1} */

9 if r ̸= 0 then

/* {the sequence β̂s
e , . . . , β̂

t
e is not feasible} */

/* {estimate the extra cost of completing the contract} */

10 CurrentCostC ←
∑He−r−1

k=0 ZSP (β̂t+k)

11 temporarily set β̂t
e, . . . , β̂

t+He−r−1
e ← 1 /* temporarily complete the contract */

12

13 NewCostC ←
∑He−r−1

k=0 ZSP (β̂t+k)

14 ∆CostC ← NewCostC − CurrentCostC

15 reset the previous values of β̂t
e, . . . , β̂

t+He−r−1
e ← 0

/* {estimate the extra cost of removing the contract} */

16 CurrentCostR←
∑r

k=1 ZSP (β̂t−k)

17 temporarily set β̂t−r
e , . . . , β̂t−1

e ← 0 /* temporarily remove the contract */

18

19 if SP(β̂t−k) is feasible for k = 1 to r then

20 NewCostR←
∑r

k=1 ZSP (β̂t−k)

21 else
22 NewCostR←∞

23 ∆CostR← NewCostR− CurrentCostR

24 reset the previous values of β̂t−r
e , . . . , β̂t−1

e ← 1

25 if ∆CostC ≤ ∆CostR then

/* { the completion option is preferred} */

26 β̂t
e, . . . , β̂

t+He−r−1
e ← 1

27 ZRP ← ZRP +∆CostC

28 else

/* {the removal option is preferred} */

29 β̂t−r
e , . . . , β̂t−1

e ← 0
30 ZRP ← ZRP +∆CostR

31 return ZRP , α̂RP

The Removal option considers the elapsed duration of the unfinished contract running at period

time t − 1 (namely, r) in order to discard it. The local variable CurrentCostR sums up the op-

timal cost values ZSP (β̂
t−r), ..., ZSP (β̂

t−1) of the respective sub-problems SP (β̂t−r), ..., SP (β̂t−1).

Next, the algorithm temporarily sets the variables β̂t−r,...,β̂t−1 to zero and recomputes the costs

ZSP (β̂
t−r), ..., ZSP (β̂

t−1) by solving the sub-problem with the modified values. The difference is saved

in parameter ∆CostR, which is set to a large value in case of infeasibility induced by at least one

uncovered customer area. The incremental cost of each option (∆CostC, ∆CostR) is estimated, and

the least expensive one is implemented.

It may be interesting to note that in a “real-world” setting, the heuristic could be implemented in
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a rolling-horizon fashion. More precisely, when using the relax-and-repair heuristic, we do not really

need to solve the problem over the complete horizon of N periods in order to make decisions in any

given period: indeed, the decisions in period t only depend on the contracts signed in the previous

periods and on the demand for periods t, t+1, . . . , t+max{He : e ∈ E}− 1. Thus, the heuristic can

be implemented with a forecast horizon of max{He : e ∈ E} periods.

8 Experimental design and performance measures

We have conducted a series of experiments comparing the proposed algorithms with a commercial

solver on multiple sets of instances. This section first describes the set of instances that we generated,

then the solution approaches considered, and finally the performance measures.

8.1 Instances

Data about the location of facilities and of customers, costs, demand and contract terms were randomly

generated based on the following assumptions and parameter values.

Location and scope of sites

� The shipper operates two warehouses.

� The warehouses and customer areas are randomly uniformly located in a 2-dimensional (1000×1000)
grid.

� The carriers’ facilities are randomly located in a (700× 700) centered area of the grid.

� For each carrier e, the size of Ie is randomly chosen from the uniform discrete distribution on an

interval [i−, i+]: U [i−, i+] (see Table 2).

� Customers can only be served from carriers’ facilities that are within an Euclidean distance of 500

units. No carrier can supply all customers.

Service costs

� The long-haul cost and cross-docking services Fi,l for operating facility i at capacity level l is of

the form Fi,l = Ci + Ti,l, where Ci is the fixed operational cost of facility i, and Ti,l is the cost

charged by the carrier for (full truckload) shipment requiring l trucks from the shipper’s warehouses

to facility i and for operating it at level l.

� The fixed operational cost Ci is set randomly from a discrete uniform distribution U [500, 1000].

� For a given operating level l, the variable cost Ti,l for long-haul transportation is proportional to

the Euclidean distance from facility i to the closest warehouse. As a function of the level l, it is

modelled by a staircase function with decreasing marginal costs.

� The cost charged by the parcel delivery company for transporting one unit of good from facility i

to customer area k, that is, Ui,k, is taken equal to the Euclidean distance from i to k.

Customers demand

� The planning horizon is subdivided into three demand seasons, starting with low, then high, and

finally mid season. For each customer region k ∈ K and each period t ∈ T , the demand quantity

Dt
k (in weight units) is issued from a uniform distribution which depends on the season: U [0.1, 0.4]
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in low season, U [0.35, 0.65] in mid season, and U [0.6, 0.9] in high season.

Contract terms and conditions

� In a given instance, all contracts have the same fixed duration He ∈ {2, 3, 4}, for all e ∈ E.

� Each carrier has enough available capacity to meet the demand of all customer areas that can be

served from its facilities.

� The MPC M t
e is equal to 10% of the total capacity reservation fee, that is, the minimum fee that

would be charged by carrier e at period t if it were assigned all the demand (
∑

k:e∈Ek
Dt

k) that it

can possibly handle through its network of facilities

The main parameters that determine the size of the instances are the number of carriers |E|, the
number of periods N = |T |, the number of customer areas |K|, and the range [i−, i+] of the number

of facilities per carrier. The instances are partitioned into three classes according to the value of these

parameters, namely small, medium and large instances. In each class, 6 combinations of parameter

values are considered as displayed in Table 2. Moreover, we are also interested in analyzing the

effect of the contract duration on the difficulty to solve the MDPC model. Hence, three different

values of He, namely, He = 2, 3, 4, are considered for each instance class. For each combination of

parameters (|E|, |T |, |K|, [i−, i+], He), a set of five instances was randomly generated, for a grand total

of 3× 6× 3× 5 = 270 instances.

Instances Small Medium Large
Carriers |E| 4 4 6 6 8 8 8 8 10 10 12 12 8 8 10 10 12 12
Periods |T | 4 6 6 8 8 10 8 10 10 12 12 14 8 10 10 12 12 14
Customers |K| 100 200 300
Facilities per carrier [i−, i+] [2, 4] [3, 5] [4, 6]
Contract duration He 2, 3, 4 2, 3, 4 2, 3, 4

Table 2: Description of instance classes

8.2 Algorithms

The computational study aims to evaluate the performance of different algorithms for solving the

MDPC model. We compare the algorithms described in Sections 6 and 7 with two state-of-the-

art generic algorithms, namely: CPLEX default implementations of branch-and-cut and of Benders

decomposition. In contrast with our combinatorial Benders decomposition approach, CPLEX Benders

decomposition classically separates the integer variables (αt
e, v

t
i,l), which are included in the master

problem, from the continuous variables (qti,k), which are handled in the LP sub-problem.

Thus, we consider four methods, respectively labeled as:

� (CP-B&C) - CPLEX Branch-and-Cut;

� (CP-Bend) - CPLEX Benders;

� (CBA) - Combinatorial Benders Decomposition Algorithm (Section 6);

� (RL-RP) - Relax-and-repair heuristic (Section 7).

The algorithms were coded in Java using CPLEX 12.8 Concert Technology. All tests were performed

using four core processors Intel E5-2650 with 2.0 GHz and 16 GB of RAM (4GB/Core).
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8.3 Performance measures

Each algorithm is run for a maximum of 3600 seconds on each of the 270 instances. The algorithms

are compared based on two performance measures:

- The efficiency of algorithm A is assessed by its total running time, and by its running time until it

obtains its best overall solution (within the time limit):

1. FA: Running time of A until termination.

2. BA: Running time of A until it obtains its best solution.

- The effectiveness of algorithm A is assessed by two distinct metrics, namely: the gap with respect to

the best lower bound provided by the algorithm itself, and the gap with respect to the best solution

found by any algorithm. Let QA be the best value obtained by algorithm A, LA be the best lower

bound obtained by A, and Qbest be the best solution value obtained by one of the algorithms. Then:

1. GA = QA−LA

QA (×100%)→ Relative optimality gap reported by A.

2. ∆QA = QA−Qbest

QA (×100%)→ Relative gap of A with respect to the best known value.

There always holds 0 ≤ GA ≤ 1 and 0 ≤ ∆QA ≤ 1. If an exact algorithm A (CP-B&C, CP-Bend,

CBA) terminates before the time limit, then the best found solution is optimal and GA = ∆QA = 0.

The same holds for RL-RP when it finds a feasible solution in Phase 1.

9 Computational performance

We report in this section on the computational results obtained for instances of different sizes and

with different contract durations.

9.1 Small size instances

A first overview of the results for the set of 90 small instances is displayed in Figure 3. On the left side,

the bar chart (a) presents results with respect to the efficiency criteria. For each algorithm, it shows

the percentage of instances for which the algorithm terminates within the time limit (3600 seconds).

The average running time (in seconds) for these instances is shown in parentheses. On the right side,

the bar chart (b) summarizes results in terms of the effectiveness criteria. It shows the percentage of

instances for which each algorithm A obtains the best overall solution (∆QA = 0). The first bar in

Figure 3(b), marked “RL”, shows the percentage of instances for which the contract-duration relaxed

model yields a feasible (and hence, optimal) solution in the first phase of the relax-and-repair heuristic

(see Section 7). For each algorithm A, the average gap GA over the set of instances for which A finds

the best solution is shown in parentheses. On the other hand, when A does not find the best solution,

the average relative difference ∆QA to the best-known value is displayed in parentheses.

Another overview of the results is provided in Figure 4 and Figure 5, which display the performance

profile of each algorithm for the criteria FA, BA, GA, and ∆QA. The performance profile can be

viewed as the empirical distribution function of the performance criterion of interest (Dolan & Moré,

2002). More precisely, for an algorithm A, a criterion CA, and a value x on the horizontal axis, the

performance profile indicates the percentage of instances for which CA ≤ x. The profiles allow for
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Figure 3: Performance of algorithms on small instances

easy visualization and comparison of the performance of different algorithms over a range of instances

(in the present case, the collection of 90 small instances).

Figure 4: Efficiency: performance profile of total running time FA and of running time until best
found solution BA - small instances

The relax-and-repair heuristic generates the optimal solution for approximately 53% of the instances

in its Phase 1 - RL, by relaxing the contract-duration constraints. Moreover, this percentage reaches

73% after repairing infeasibilities in Phase 2 - RP (Figure 3(b) and Figure 5(b)). For the remaining

instances, the heuristic provides suboptimal solutions with a relative gap (GRL−RP or ∆QRL−RP)

smaller than 1% for most of the small instances (Figure 5).

CPLEX is able to solve almost all small instances (97% for B&C, 93% for CP-Bend) to optimality

in less than one hour. In both cases, CPLEX is faster than the heuristic RL-RP for 80-85% of the

instances (Figure 4(a)).

Finally, the combinatorial Benders algorithm (CBA) terminates in 61% of the cases only (Figure 3(a)

and Figure 4(a)), although it generally finds the optimal value within the time limit (for 86% of the

instances, see Figure 3(b) and Figure 5(b)), in about the same time as CPLEX (Figure 5(b)). Its

main weakness lies in slightly weaker lower bounds which do not completely close the optimality gap,

as shown by the value of the optimality gap: GCBA = 0.44% on average when CBA finds the optimal
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Figure 5: Effectiveness: performance profile of optimality gap GA and of gap to best known value
∆QA - small instances

solution (see also Figure 5(a)). It is interesting to observe, however, that the performance profile of

∆QA lies lower for the heuristic RL-RP than for CBA, which means that CBA is generally able to

find better feasible solutions.

9.2 Medium size instances

Figures 6, 7 and 8 present the aggregated results for the set of medium size instances, using the same

conventions as in the previous Section 9.1.

Figure 6: Performance of algorithms on medium instances

For most instances, none of the exact methods terminate within one hour, proving optimality. The

heuristic RL-RP always stops before the time limit (in less than 1900 seconds - Figures 6(a), 7(a)). It

obtains an exact solution for 8% of the instances (Figures 6(b), 8(a)). RL-RP provides solutions that

are at least as good as the exact methods for 55.2% of the instances and mostly outperforms CPLEX

methods (CP-B&C, CP-Bend) (see Figure 8(b)). We observe that the heuristic method has a small

integrality gap, below 1% (Figure 8(a)). This means that the lower bound computed in the first phase

is tight.

Among exact methods, the combinatorial algorithm CBA provides the best feasible solution faster
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than the two CPLEX methods (see performance profile BCBA in Figure 7(b)). CPLEX methods

tend to continuously improve their incumbent solution, slowly closing the gap to their respective

LBs. However, the lower bound computed by the CBA method alone remains relatively weak, which

translates into values of GCBA between 1.9% and 3.5% (see performance profile GCBA in Figure 8(a)).

Figure 7: Efficiency: performance profile of total running time FA and of running time until best

found solution BA - medium instances

Figure 8: Effectiveness: performance profile of optimality gap GA and of gap to best known value

∆QA - medium instances

9.3 Large size instances

The results of our tests on large instances are shown in Figures 9, 10 and 11. The trends observed

for medium size instances are again present and accentuated here. Even though its completion time

is steadily increasing, the heuristic RL-RP is the only one that terminates (for 93% of the instances)

within one hour of running time (Figure 9(a)). The remaining 7% take on average 16.7% more than

1 hour, and the last instance takes up to 29% above the time limit. Yet, RL-RP provides the best

solution for more than 90% of the instances (Figure 9(b)). The first phase RL provides an exact

solution for 4.4% of the large instances. However, the optimality gap GRL−RP is smaller than for any

other method and in fact always smaller than 0.5% (Figure 11(a)).
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Figure 9: Performance of algorithms on large instances

Only our Combinatorial Benders Algorithm can sometimes match or improve the solution found by

RL-RP (for about 16% of the large instances). For the remaining instances, the relative gap ∆QCBA

to the heuristic value is 0.18% on average. Furthermore, it is interesting to note that CBA generally

finds its best solution faster than any other method, including the heuristic (Figure 10(b)).

On large size instances, CP-B&C frequently (41%) fails to detect a single feasible solution (upper

bound). As a consequence, ∆QCP−B&C and GCP−B&C are very large for these instances (Figure 11).

Conversely, CP-Bend (classical) decomposition is still able to find one. However, the lower bound

provided by CP-B&C is systematically tighter than that of CP-Bend. On average, LCP−B&C is 1.26%

and 2.48% closer to the optimal value than LCP−Bend and LCBA respectively, while it is looser than

LRL−RP in 0.61%.

Figure 10: Efficiency: performance profile of total running time FA and of running time until best

found solution BA - large instances
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Figure 11: Effectiveness: performance profile of optimality gap GA and of gap to best known value

∆QA - large instances

9.4 Variations of contract duration

Finally, we examine the behavior of the computational time of all algorithms with respect to variations

in the contract duration (He = 2, 3, 4). The contracts establish the only link between the different

periods (via constraints (7)-(9) of the MILP formulation) and thus, at first sight, they represent the

main complexifying component of the MDPC model. On the other hand, some of the methods are

based on a decomposition of the problem per time period, and it is not clear whether the efficiency of

these algorithms is significantly affected by the value of He.

The heuristic RL-RP, in particular, is based in its first phase on the relaxation of the contract duration,

and hence this phase is insensitive to the value of He. One could argue that as He becomes larger, the

first phase of RL is more likely to result in an infeasible contract plan, so the RP repair mechanism

should be called more frequently in the second phase. But conversely, when a contract with carrier

e is signed at period t (αt
e = 1), its consequences extend over more periods, and hence the decision

space is reduced when He increases. The overall outcome of these effects is hard to predict a priori.

Experimentally, the multi-chart displayed in Figure 12 shows that the running time of RL-RP tends

to increase with the value of He, for all instance sizes. The variation is noticeable when He increases

from 2 to 3 periods and from 3 to 4 periods (with a few exceptions). This behavior is particularly

significant for large instances.

Figure 12: Variation of the computing time of RL-RP with respect to He and (|E|, |T |)
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For the exact algorithms, most medium and large size instances cannot be solved within the allocated

time limit, and are therefore not considered in this analysis. Figure 13 displays the behavior of these

algorithms for the set of small instances only. The trend here is not clear. For the considered instance,

there is little change in the computational time when He increases. This may simply be a sign that

the instances are too easy to draw meaningful conclusions.

Figure 13: Variation of the computing time of exact methods with respect to He and (|E|, |T |)

10 Managerial insights

In this section, we discuss some economic features of the best solutions obtained in our experiments.

As follows from the previous section, these solutions are close to optimal ones.

10.1 Impact of contract duration

Table 3 shows the variation of the total cost and of the cost of carriers when the contract duration

He increases from 1 to 2, or 2 to 3, or 3 to 4, or 4 to LT. Here, LT refers to the situation where the

shipper engages into “long term” agreements with the carriers. More precisely, this case is modelled by

substituting the expression
∑He−1

n=0 αt−n
e by αe in constraints (6)-(9) of the MIP model (i.e., removing

the time-dimension from contract decision variables: when αe = 1, a contract is in effect with carrier

e over the complete horizon). The table also displays the minimum and maximum variation of the

total cost over all 30 instances of a given size. Finally, the table shows the (average) variation of the

cost of carriers for long-haul transportation and cross-docking services, i.e., of the sum
∑

t∈T
∑

e∈E cte

that appears in the objective function (1).

Note that extending the contract length intuitively entails less flexibility to modify the set of active

carriers, and may therefore lead to more costly solutions. However, this is not necessarily the case

since dynamic variations of demand and of other parameters may occasionally cause a succession or

non-renewal of longer contracts to be more advantageous than a sequence of shorter ones. Generally

speaking, in our experiments, variations of He lead to small differences in total cost (less than 1%

on average, less than 4.2% in the worst case). These small differences are observed for all types of

instances. The cost of carriers may show larger fluctuations (up to 14% increases for some instances

– not shown in the table), but these variations are amortized in the total cost.
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He : 1 → 2 He : 2 → 3
Cost total: total: carriers: total: total: carriers:
increase average (min,max) average average (min,max) average
Small 0.02 % (0.00, 0.18)% 0.01% 0.04 % (-0.11, 0.50)% -0.15 %
Medium 0.08 % (0.00, 0.38)% 0.59% 0.04 % (-0.07, 0.22)% -0.25%
Large 0.11 % (0.00, 0.39)% 0.31% 0.03 % (-0.15, 0.18)% -0.11%

He : 3 → 4 He : 4 → LT
Cost total: total: carriers: total: total: carriers:
increase average (min,max) average average (min,max) average
Small 0.05 % (-0.17, 0.46)% -0.41 % 0.57 % (0.00, 1.92)% 1.16%
Medium -0.01 % (-0.17, 0.13)% 0.12% 0.21 % (-0.01, 1.71)% -0.13%
Large 0.00 % (-0.20, 0.21)% 0.03% 0.94 % (0.00, 4.19)% 2.98%

Table 3: Variation of total cost and carriers’ cost as a function of contract duration

10.2 Impact of purchase commitment

We next assess the impact of minimum purchase commitments on the total cost. For this purpose,

we compute the difference between the total cost of solutions with or without purchase commitment

quantities. The second case is obtained by setting M t
e = 0 for all e ∈ E and t ∈ T , meaning that the

shipper only pays for the resources that it actually uses. Table 4 displays the average cost differences

computed over instances of a same class (small, medium, or large) for different values of He. (Columns

associated with He = 2, 3, 4 can be directly deduced from column He = 1 and from Table 3, but we

display them here for convenience.)

He = 1 He = 2 He = 3 He = 4
Small 0.01% 0.03% 0.07% 0.12%
Medium 0.13% 0.21% 0.24% 0.24%
Large 0.37% 0.48% 0.51% 0.51%

Table 4: Increase of total cost with respect to the case without purchase commitments

The table shows that the existence of minimum purchase commitments results, on average, in a very

small increase of the total cost. This suggests that in the solutions selected by the optimization

process, the shipper manages to take full advantage of the capacity that it reserves with each carrier

through the MPC contracts, so that the payments M t
e are not “wasted”. This is confirmed by the

results displayed in Table 5. The figures in this table are obtained as follows. For the solution of an

arbitrary instance, we let C be the collection of pairs (e, t) such that a contract with carrier e is in

effect in period t. We record the proportion of pairs (e, t) in C such that the cost cte paid to the carrier

e is equal to
∑

l∈L
∑

i∈Ie Fi,l v
t
i,l (meaning that the MPC is fully utilized by the shipper; see constraints

(5)-(6) in the MIP model). Table 5 first displays this proportion, averaged over all instances of the

same class. Next to this value, between parentheses, we also indicate the share of the carriers costs

due to the minimum purchase commitment, that is, the quantity 100
∑

(e,t)∈C
Mt

e
cte

(averaged over 30

instances). We only display here the values obtained when He = 2 since the other cases are very

similar in view of Table 3.

We see that when a contract is in effect, the purchase commitment is exceeded in more that 95% of

the cases. Accordingly, the MPC only represents 33% to 53% of the carriers’ cost. Even though this
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share is significant and tends to increase with the instance size, it remains much smaller than 100%.

He = 2
Small 99.87% (33.82%)
Medium 97.10% (48.63%)
Large 95.62% (53.32%)

Table 5: MPC utilization rate (and share of MPC in the carriers cost)

Of course, these observations are very specific to the numerical instances that we have generated.

Taken together, however, the results in this section indicate that the existence of mid-term contracts

involving minimum purchase commitments does not heavily penalize the shipper. By carefully selecting

its partners, the shipper can avoid major cost impacts in the long term, whereas the carriers benefit

from the organizational advantages of the contracts (reduced uncertainty, improved communication

and trust, etc.; see Brusset (2009, 2010)).

10.3 Selection of suppliers

The existence and the duration of contracts are likely to affect the number of carriers selected over

the planning horizon. Table 6 displays the average percentage of carriers activated by the shipper in

the optimal (or best found) plans. It also gives the percentage of permanent carriers (i.e., those who

remain active in all periods of the horizon) and the percentage of carriers selected in low (respectively,

high) season.

He = 1 He = 2
Season Season

% Carriers Full horizon Low High Full horizon Low High
Small 80.30% (50.6%) 52.3% 65.0% 78.61% (51.6%) 52.6% 64.8%
Medium 81.36% (32.2%) 43.8% 57.1% 77.97% (37.3%) 43.8% 58.5%
Large 85.46% (32.1%) 49.1% 57.9% 80.63% (39.0%) 48.8% 59.6%

He = 3 He = 4
Season Season

% Carriers Full horizon Low High Full horizon Low High
Small 77.36% (54.6%) 51.3% 65.3% 74.17% (60.2%) 52.0% 66.0%
Medium 73.69% (41.0%) 43.6% 57.9% 72.89% (44.8%) 43.6% 58.5%
Large 78.85% (37.8%) 48.1% 60.4% 77.18% (44.3%) 47.9% 60.0%

Table 6: % of carriers selected (% permanent) – % selected in low and high season

We see that the selected carriers represent on average between 72% and 86% of the number of available

candidates. As one might expect, this proportion tends to decrease with the duration of the contracts,

and to increase slightly with the instance size. More interesting is the relatively large gap between,

on the one hand, the percentage of carriers whose services are utilized at least once, and on the

other hand, the percentage of permanent carriers. For medium or large instances, in particular, the

proportion of permanent carriers is only between 30% and 45%. Moreover, the carriers used in low

season are not necessarily the same as in high season: indeed, on average, 43% to 53% of the carriers

are used in low season, whereas this number ranges from 57% to 65% in high season, still significantly
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less than the total number of carriers selected overall. All these observations point again to the fact

that flexibility in the choice of carriers is effectively exploited in the optimization process.

11 Conclusions

In this article, we have proposed a mathematical formulation of a multi-period distribution network

design problem with minimum-purchase commitment contracts. The formulation is challenging for

state-of-the-art algorithms when the size of instances increases, mainly when a long horizon is con-

sidered and when the shipper considers many carriers. To produce satisfactory solutions for large

instances, we developed two algorithms, namely, CBA and RL-RP, which decompose the mathemati-

cal model to alleviate the difficulty created by the existence of contracts. These algorithms were tested

on classes of instances of various sizes and compared against CPLEX branch-and-cut and Benders al-

gorithms on two main performance criteria.

The CBA algorithm adds combinatorial cuts while solving a relaxed version of the model by branch-

and-cut. Compared with CPLEX methods, this exact algorithm underperforms in terms of resolution

time for small instances. However, for larger instances, CBA produces more satisfactory results overall,

as it finds better solutions than both CPLEX procedures in less computational time. This confirms the

usefulness of the CBA algorithmic approach, which could possibly be further enhanced with additional

strategies to improve its weak lower bounds. It also underlines the difficulties faced by CPLEXmethods

to fully exploit the decomposable structure of the multi-period problem. This suggests that variants

of our combinatorial Benders approach might tackle problems with similar structures more effectively

than the classical methods implemented in CPLEX.

On the other hand, for medium to large-size instances, the ad-hoc heuristic RL-RP can produce better

solutions than exact methods (usually, within 1% of optimality), in less time. This demonstrates the

relevance of the decomposition, which produces tight lower bounds on the optimal value, and the

effectiveness of the simple repairing mechanism for solutions that violate contract-term constraints.

Even better solutions might be obtained by including local search in the repair phase.

From a managerial point of view, our study shows that despite its conceptual and computational

complexity, the tactical MDPC problem can be efficiently solved to produce near-optimal contract

portfolios and distribution plans. This provides managers with the opportunity to move away from

the alternative of only relying on the spot market or on long-term binding contracts. The numerical

results suggest that as long as the contracts are optimally selected, the existence of minimum purchase

requirements does not necessarily increase the total cost in a significant way.

As mentioned in Section 2, the paper does not cover the design of contracts, in the sense that the

parameters of the contracts (duration, minimum purchase commitment) are assumed to be fixed ex

ante. However, our models and algorithms could be used to simulate the implications of different con-

tract specifications, e.g., in the context of negotiations with the carriers. They can also be extended to

examine different types of contracts with risk-sharing mechanisms beyond the purchase commitment

expressed in monetary terms that we have introduced in this paper. For example, quantity flexi-

bility contracts can be used to reserve some resource capacity (e.g., a number of truckloads), while
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allowing additional capacity to be charged at a higher cost. Such flexible options become particularly

meaningful when the environment presents significant uncertainty with regard to demand or cost pa-

rameters. Stochastic models arising in this context are investigated in Clavijo López (2021). Finally,

it may be interesting to investigate the existence and the effect of short-term contracts in different

settings, e.g., for the procurement of warehousing capacity. The decomposition approach used in the

relax-and-repair heuristic would be a natural candidate for the solution of the associated planning

problems.
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