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a b s t r a c t 

Retailers which deliver products directly to their customer locations often rely on Logistics Service Inter- 

mediaries (LSI) for order management, warehousing, transportation and distribution services. Usually, the 

LSI acts as a shipper and subcontracts the transportation to carriers for long-haul and last-mile delivery 

services. All agents interact and are connected through cross-docking facilities. As the demand from cus- 

tomers may vary significantly over time, the shipper’s requirements for transportation evolve accordingly 

at the tactical level. This creates opportunities for the shipper to take advantage of medium-term con- 

tracts with the carriers at prices lower than those offered by the spot market. The study focuses on the 

tactical design, through dynamic contracts, of a suitable network of cross-docking facilities and related 

transportation capacities (belonging to different carriers) to reduce the shipper’s operational costs. In this 

article, we propose an MILP formulation for the multi-period planning problem with minimum purchase 

commitment contracts faced by the shipper. We propose exact and heuristic decomposition methods for 

the the model, respectively, based on combinatorial Benders cuts and on relax-and-repair approaches. 

The performance of these algorithms is experimentally compared to that of commercial solvers (branch- 

and-cut and classical Benders). The numerical results show that our methods perform comparatively well 

for the solution of large size instances and brings economic benefits to the shipper. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

Logistic firms differ according to the service capabilities and 

ore competences that they deploy in their business networks 

 Lai, 2004 ). While some invest in a large number of physical 

ssets, others may restrict their activities and partially outsource 

heir operations. As observed for example by Cui & Hertz (2011) , 

he terminology to designate these different actors is not com- 

letely standardized. We rely here on the framework adopted by 

tefansson & Russell (2008) , Cui & Hertz (2011) , who distinguish 

hree main groups of actors, namely, logistics service providers, 

ogistics service intermediaries (LSIs), and sub-contract carriers. 

SIs may carry out most administrative activities on behalf of their 

lients, but leave the physical activities to contracted third parties 

 Stefansson & Russell, 2008 ). So, LSIs are often non-asset-based 

ervice providers: their business is to coordinate and connect 

ifferent actors and activities ( Cui & Hertz, 2011 ). In contrast, 

sset-based companies may offer various services relying on their 

wn physical resources and capabilities, like warehousing, trans- 
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ortation, or freight consolidation, and may provide value-added 

ervices supported by IT technologies. 

This study takes the perspective of an LSI, the so-called shipper , 

ho is responsible for delivering to end-customers the products 

hey purchased, for example, on e-commerce websites. The ship- 

er subcontracts some operations to carriers who own and operate 

hysical assets. Two main decisions must be taken by the shipper, 

ne of a purely logistical nature and one of a contractual nature. 

The logistical decision mostly bears on the carriers’ resources 

hich should be activated at every period to serve the customers 

t minimum cost: type and number of facilities (hubs, warehouses, 

ross-docking facilities, delivery points), connecting lanes (number, 

apacity), and customer service (single or multiple sourcing). It is 

ssentially a classical distribution network design problem. 

The contractual decision relates to the preselection of carriers 

o be included in the distribution network of the shipper ahead 

f time to secure access to resources at an attractive price when 

eeded. This component of the decision problem is at the core 

f our work. Generally speaking, the shipper might choose short- 
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erm, mid-term, or long-term contractual agreements with some 

arriers. In the first, short-term case, the costs of contracted ser- 

ices vary along with market prices. This occurs when the shipper 

ources transportation capacities from the spot market. This policy 

andles shipments on a one-time, load-by-load basis, and it allows 

he transportation capacity to be flexibly adjusted to real demand 

equirements at each current period. As mentioned in Lindsey & 

ahmassani (2017) , however, “the spot market itself can be highly 

ynamic, and subject to considerable uncertainty in availability 

nd/or pricing, making it difficult for shippers to utilize”. 

At the other end of the spectrum, long-term contractual agree- 

ents guarantee more stable prices for the shipper. Thus, the 

hipper is interested in signing such contracts that could reduce 

ts outbound logistics costs in the long run while ensuring the 

vailability of transportation capacity, at the risk of buying over- 

apacity in a fixed network. In return, the carriers expect some 

evel of regularity in demand for their services in order to make 

he contracts profitable: they agree to conclude discounted con- 

racts when the shipper offers sufficient business volume, sufficient 

egularity, and service compatibility (see Kuyzu, Akyol, Ergun, & 

avelsbergh, 2015 ). 

In markets subject to seasonal variations and to significant un- 

ertainty, both policies mentioned above may prove costly. Indeed, 

he short-term policy tends to incur high spot prices when the de- 

and is large, and the long-term policy suffers from the reserva- 

ion of excess capacity when the demand is low. Such situations 

re typically encountered in e-commerce, but also in classical sup- 

ly chains (see Section 2 ). With this in mind, this article focuses on

id-term contracts whereby the shipper tactically manages a port- 

olio of carrier contracts that are dynamically revised to balance 

he reserved capacity over a mid-term horizon. The setting is in- 

pired by real-world situations encountered in a collaboration with 

ast-delivery companies, as described in Gendron & Semet (2009) . 

n this study, the shipper operates a two-echelon distribution sys- 

em where the intermediate facilities are owned and operated by 

arriers which engage in mid-term contracts with the shipper. 

he system is highly adaptive, in the sense that the facilities can 

e used or not, depending on fluctuations of the demand. While 

endron & Semet (2009) focus on the mathematical properties of 

he single-period optimization model, our main interest here is in 

ntegrating the contractual options in a multi-period framework. 

A main objective of this paper is therefore to propose a math- 

matical optimization approach of the planning problem faced by 

he shipper in this context, namely, the tactical design, through dy- 

amic mid-term contracts, of a suitable network of cross-docking 

acilities and related transportation capacities belonging to differ- 

nt carriers. The optimization approach aims at the reduction of 

perational costs, assuming that the parameters of the contracts 

price, duration) are known. When used in a simulation frame- 

ork, it also allows for a comparison of the impact of different 

ontractual conditions (e.g., contracts with different durations). 

Accordingly, as a first contribution, the paper introduces an op- 

imization model integrating multi-period purchase commitment 

ontracts within the distribution network design. To the best of 

ur knowledge, this problem has not been previously studied, and 

ven less modeled or solved, in the literature. The optimization 

roblem is proved to be NP-hard, and as expected, solving large- 

ize instances is time-consuming. As a second contribution, the 

tructure of the problem is used to decompose it into a collection 

f single-period network design problems. This algorithmic contri- 

ution is implemented in two ways: we propose, first, an exact 

ethod based on Benders’ canonical cut decomposition and sec- 

nd, an ad-hoc relax-and-repair heuristic. Finally, computational 

xperiments are carried out to assess the efficiency of the algo- 

ithms, the applicability of the problem formulations, and the eco- 

omic benefits derived from the flexibility of the contracts. 
557 
The article is organized as follows. Section 2 reviews the lit- 

rature on multi-period network design and capacity reservation 

ontracts as applied in operations management. Section 3 specifies 

he decision problem, which is then formulated in Section 4 as a 

ixed-integer linear program. Section 5 establishes the complexity 

f the problem. Section 6 presents an exact optimization procedure 

ased on combinatorial Benders decomposition, and Section 7 pro- 

oses a relax-and-repair heuristic. Section 8 describes the data sets 

sed in the computational tests. The results of the tests are dis- 

ussed in algorithmic terms in Section 9 and in economic terms 

n Section 10 . Finally, Section 11 draws conclusions and proposes 

uture research paths. 

. Literature review 

The literature review consists of two parts. The first one deals 

ith the multi-period design of distribution networks. The second 

art covers contracts in supply chain management. 

Network design is a broad research area. As mentioned in Klose 

 Drexl (2005) , this class of problems features a least 9 core di- 

ensions: topography, objective function, capacity and demand 

atisfaction constraints (single or multiple sourcing), number of 

tages or echelons, single or multiple products,the elasticity of 

emand with respect to location, static or dynamic design over 

 planning horizon, deterministic or uncertain data, inclusion or 

xclusion of routing decisions. Additional features could also be 

entioned. This leads to a vast literature related to network de- 

ign. Therefore, we aim to position our problem statement in this 

tream briefly. 

The “multi-period” nature of our problem refers to a sequence 

f decisions made over a planning horizon discretized into a fi- 

ite number of periods. In contrast with this assumption, many 

etwork design models aim at making a “static” strategic deci- 

ion entailing large investments and engaging the firm for a long 

eriod of time. However, even when discussing one of the most 

asic network design models, namely, the facility location prob- 

em, the issue arises of dealing with time-dependent demand (see 

rezner, 1995 and Owen & Daskin, 1998 ). This leads to tactical 

roblem statements, expressing that the firm wants to determine 

 “dynamic” sequence of distribution networks in which facilities 

an be opened or closed over time, at a cost, or with a limited 

umber of changes from one period to the next, or should re- 

ain their status for a fixed, minimum number of periods; see, 

.g., Wesolowsky & Truscott (1976) , Van Roy & Erlenkotter (1982) , 

rezner & Wesolowsky (1991) , Klose & Drexl (2005) , Melo, Nickel, 

 da Gama (2005) , Dias, Captivo, & Clímacos (2008) , Jena, Cordeau, 

 Gendron (2015) . As mentioned in Klose & Drexl (2005) , this sec-

nd, tactical approach leads to an increase in data requirements 

ompared to an aggregated model, so the ability to solve the mod- 

ls reduces accordingly. Also, a main added difficulty with multi- 

eriod problems arises from the connections between periods. It is 

ell-known in production planning that inventories or setup costs 

ink successive periods with each other. In the case of multi-period 

etwork design problems, the status of the facilities (open, operat- 

ng or closed) similarly creates connections between periods. 

In single-echelon networks, it is usually assumed that the facil- 

ties are owned by the decision maker, who is therefore entitled 

o define the opening/closing conditions and related costs. When 

ealing with multi-echelon networks, it may be the case that the 

ntermediate levels are owned by subcontractors who can be acti- 

ated over time. This leads to the consideration of temporary con- 

racts to use these facilities. A detailed introduction to such two- 

chelon network design problems can be found in Ben Mohamed, 

libi, & Vanderbeck (2020) . These authors propose a classification 

ased on the following notations for the multi-period setting: 
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- 1 vs. T for a mono-period or multi-period problem, 

- O if opening new locations is allowed, 

- C if closing previously opened locations is allowed, C implies O, 

- Re if reopening closed locations is allowed, Re implies O and C. 

Our problem falls in the class T/O/C/Re, like Pimentel, Mateus, & 

lmeida (2013) (one-echelon), Cortinhal, Lopes, & Melo (2015) , or 

en Mohamed et al. (2020) . Yet, in these papers, the contracts with 

he suppliers involve opening and operating costs for the facilities, 

ut no minimal or maximal duration extending over several peri- 

ds, nor any purchase commitment. 

The latter comment leads to the second part of our literature 

eview, which deals with contracts used in supply chain manage- 

ent. Two distinct perspectives can be found in the discussion of 

upply chain contracts (see Lariviere, 1999 for a global overview). 

A first, large stream of literature focuses on the design of con- 

racts aiming at the coordination of firms in a decentralized sup- 

ly chain. Setting up contract parameters appropriately can pro- 

ide a sufficient mechanism to achieve optimal global profitability 

nd overcome inefficiency factors such as information asymmetry, 

isk aversion, or power imbalance between players that motivate 

ctions in their individual interest. In this setting, contract param- 

ters are usually considered as endogenous in the problem formu- 

ation. Illustrations can be found in Tsay & Lovejoy (1999) , Cachon 

 Lariviere (2001) , Corbett, Zhou, & Tang (2004) . 

The second stream of research focuses on determining optimal 

rocurement plans for a single firm with one or multiple suppli- 

rs, assuming that the general terms and conditions of risk-sharing 

ontracts are exogenously fixed. Examples are found in de Albéniz 

 Simchi-Levi (2005) , Lian & Deshmukh (2009) , Akbalik, Hadj- 

louane, Sauer, & Ghribi (2017) . The present work falls in this sec- 

nd category: it investigates procurement planning of transporta- 

ion services (from a single firm perspective) under given contract 

arameters, namely, fixed duration and minimum business volume 

ommitment. 

The supply chain literature describes different variants of such 

ontractual mechanisms and related parameters, e.g., capacity 

eservation contracts ( Akbalik et al., 2017; Jin & Wu, 2007; Li, 

uo, Wang, & Zhou, 2020 ), total minimum order quantity ( Bassok 

 Anupindi, 1997; Chen & Krass, 2001 ), quantity flexibility con- 

racts ( Chen, Hum, & Sun, 2001; Heydari, Govindan, Ebrahimi, & 

aleizadeh, 2020; Li et al., 2020; Lian & Deshmukh, 2009; Tsay & 

ovejoy, 1999 ), option contracts ( de Albéniz & Simchi-Levi, 2005; 

osoohi & Nookabadi, 2016; Spinler & Huchzermeier, 2006 ). 

In particular, the subject of contractual carrier selection has 

een investigated in several forms, from simple to more advanced 

nes. For instance, the basic Carrier Selection Problem (CSP) was 

ddressed by several authors in the context of combinatorial auc- 

ions, usually viewed from the strategic perspective of yearly con- 

racts. Caplice & Sheffi (2003) develop optimization models to de- 

ermine how shippers should procure transportation services after 

eceiving bids from carriers. Song & Regan (2005) describe a unit 

uction where shippers predefine sets of routes for bidding pur- 

oses. In maritime transportation, Lim, Wang, & Xu (2006) further 

ncorporate a minimum quantity commitment requirement in the 

lassical transportation model. In their model, the freight owner 

ecides how to allocate shipments among multiple carriers while 

especting the constraint that each selected carrier must handle a 

inimum volume of cargo. In Brusset (2009, 2010) , several types 

f multi-period contracts are compared to formalize long-term 

elationships between one carrier and one supplier. In addition 

o the simple price-only contract without commitments, contracts 

ith minimum purchase commitments (per period or over several 

eriods) can be selected based on the economic return for both ac- 

ors. Patel & Swartz (2019) consider a supply chain design problem 

otivated by applications in the chemical industry, in which the 
558 
ransportation links are subject to contracts with a fixed duration. 

his model shares some similarities with ours, with the significant 

ifference that the contracts do not entail any minimum purchase 

ommitment. 

Only a few publications deal with risk-sharing contracts for 

ogistic services other than transportation. For example, in Chen 

t al. (2001) , the authors consider flexible commitment contracts 

roposed by a company which subcontracts warehousing space to 

hird-party service providers. Each client specifies a base (reserva- 

ion) commitment for storage space at the warehouse based on its 

xpected demand. Any space used above the commitment level is 

harged at a premium price during the planning period. The base 

apacity commitment can be adjusted according to periodic de- 

and requirements along the multi-period horizon. 

In this paper, we consider a multi-period network design prob- 

em where multiple carriers operate their own subnetworks of fa- 

ilities as well as their transportation resources. We focus on con- 

racts with minimum purchase commitments , a type of risk-sharing 

ontract which is appropriate in the context of multi-product pro- 

urement planning. In this model, the shipper commits to pay a 

eductible fee in order to benefit from discounted prices for a “re- 

erved” business volume. An advantage of such contracts is that 

hey express the commitment in homogeneous monetary units, 

nd hence, they can be applied to the purchase of multiple product 

ypes. For instance, they are common in the electronics industry, 

ee, e.g., Bassok & Anupindi (1997) . In transportation, carriers of- 

ering loads on different corridors can be considered as selling dif- 

erent products with distinct prices. On the other hand, the reser- 

ation of transportation (truckloads) or service (handling) capacity 

s not explicitly modeled in the contract. Alternative models taking 

apacity commitments into account are discussed in Clavijo López 

2021) . 

. Description of the problem 

A logistics service intermediary known as the shipper acts on 

ehalf of online sellers for the distribution of products in many 

ustomer areas. The shipper manages the inventory in warehouses 

hich are replenished by the sellers on a continuous basis. More- 

ver, the shipper is in charge of delivering parcels along time ac- 

ording to customer orders . To do so, it relies on specialized carriers 

or long-haul transportation from the warehouses to intermediate 

acilities and for cross-docking operations at the facilities, and it 

elies on parcel delivery services for last-mile transportation to cus- 

omers areas. An example of such a distribution network is shown 

n Fig. 1 . 

Our work focuses on optimizing the shipper’s decisions regard- 

ng its multi-period contractual relations with the carriers (con- 

ract portfolio). The shipper’s planning process encompasses the 

election of a sequence of contracts with the carriers, together 

ith the associated transportation plans, over multiple sub-periods 

f a discrete time horizon. A contract with a particular carrier al- 

ows the shipper to move its parcels to the cross-docking facili- 

ies operated by the carrier. We assume that the range of services 

ffered by the carriers is limited to long-haul road transportation 

rom the warehouses to their facilities and to cross-docking oper- 

tions (freight consolidation, vehicle loading, and unloading). Par- 

el delivery services provide last-mile distribution of parcels from 

ross-docking facilities to customer areas. 

The two-echelon network displayed in Fig. 1 is similar to 

hose discussed in papers which focus on the role of interme- 

iate facilities for freight-consolidation and delivery to the fi- 

al customers, e.g., Lin & Wu (2001) , Gendron & Semet (2009) , 

uastaroba, Speranza, & Vigo (2016) , Hanbazazah, Abril, Shaikh, 

 Erkoc (2018) , Hanbazazah, Abril, Erkoc, & Shaikh (2019) , Gu 

t al. (2022) . Similarly to these authors, we assume that demand is 
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Fig. 1. Two-echelon distribution network layout. 
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nown with full certainty, as is the case over relatively short plan- 

ing horizons when delivery due dates must be strictly respected 

“time-definite requirements”). The case of stochastic demand is 

andled in Clavijo López (2021) , but is not further discussed 

ere. 

The total cost incurred by the shipper can be decomposed as 

ollows. First, each contract with a given carrier, say carrier e , ex- 

ends over a predefined duration , say H e periods (weeks, months), 

nd stipulates a minimum purchase commitment M 

t 
e , that is a min- 

mum due fee for each period t covered by the contract, inde- 

endently of the utilization of services. If the services requested 

t period t amount to a higher monetary value than M 

t 
e , then the 

arrier charges the actual total cost to the shipper. The minimum 

urchase commitment may vary in each period based on the ex- 

ected demand. When a contract with carrier e expires (after H e 

eriods), it can be immediately renewed (i.e., access to facilities 

an be reopened, complying with a T/O/C/Re model, see Section 2 ); 

ut it cannot be cancelled nor extended before its expiration 

ate. 

The amount charged by each carrier for transportation on a 

pecific lane, from a warehouse to one of its cross-docking facili- 

ies, is a function of the total volume of freight. More precisely, we 

odel it as a function of the required capacity level , that is, of the

equired number of full truckload shipments. In our computational 

xperiments, we use a staircase function in order to translate a de- 

reasing marginal price for each additional truck. We also assume 

hat the number of shipments to a facility determines the oper- 

tional costs incurred for handling and cross-docking activities at 

his facility. A last-mile delivery company performs the transporta- 

ion of parcels from each cross-docking facility to each related cus- 

omer area, and charges a fixed unit rate (per distance and weight) 

or this service. 

In order to minimize its total distribution costs, the shipper 

ends to favor shipping lanes (from warehouses to intermediate fa- 

ilities) which optimize transportation and handling costs. How- 

ver, variable demand and seasonality effects induce fluctuations 

f transportation needs which, from a short-term perspective, af- 

ect the optimal selection of carriers and cross-docking points in 

ach period. On the other hand, each contract binds the shipper to 

 carrier for successive periods, which means that the portfolio of 

ontracts must be optimized from a mid-term perspective. These 

nteractions between the tactical and operational decision levels 

ignificantly increase the difficulty of solving the resulting multi- 

eriod distribution network problem with purchase commitment con- 

racts (MDPC). 

a

559
. Mathematical formulation 

In this section, we propose a mixed-integer linear programming 

MILP) formulation of the MDPC problem. We start with definitions 

nd notations (see also Table 1 ). 

.1. Definitions and notations 

The shipper’s decision problem involves selecting carriers, from 

 set E of candidates, over a multi-period planning horizon T = 

 1 , 2 , . . . , N} . Every carrier e ∈ E operates its own set of geograph-

cally dispersed facilities, I e , each of which is equipped for cross- 

ocking operations. From the point of view of the shipper, the col- 

ection I = ∪ e ∈ E I e forms the complete set of available cross-docking 

acilities. To use the facilities in I e , the shipper must have previ- 

usly signed a contract with carrier e . The conditions applying to 

 contract with e include its duration ( H e periods) and the mini- 

um payment commitment ( M 

t 
e ) for every period t ∈ T . If a con-

ract with a carrier e is in effect during period t , then the total pay-

ent due to e for period t , denoted c t e , is at least equal to M 

t 
e or

f it exceeds M 

t 
e , the costs (handling and transportation) incurred 

uring this period t . 

For the long-haul part of the distribution network, the trans- 

ortation and cross-docking capacity which can be requested by 

he shipper at any carrier’ facility is discretized at increasing lev- 

ls Q 1 , Q 2 , . . . , Q L . The capacity Q l at level l may be typically equal

o the total load capacity of l vehicles expressed in weight unit. 

ransportation and cross-docking services are then charged de- 

ending on the capacity level requested at a given facility: the 

ong-haul cost charged to the shipper is F i,l when facility i is used 

t level l. 

For the parcel delivery part of the distribution network, we 

ssume that the customers are located in a set K of distinct ar- 

as, where each area is small enough to be identified as a sin- 

le point. The aggregated deterministic demand for parcels is D 

t 
k 

weight units) for period t in area k . Each customer area k ∈ K must

e served on time from a subset of facilities, say I k ⊆ I, considered 

lose enough to receive an offer from a last-mile delivery opera- 

or. Conversely, vehicles departing from any facility i ∈ I can only 

eliver parcels to a subset of customer areas, say, K i ⊆ K. The unit 

ost of parcel delivery depends on the distance travelled: U i,k de- 

otes the cost of transporting one weight unit from facility i ∈ I to 

ustomer area k ∈ K i . 

Note that split deliveries from several facilities in I k to a same 

rea k are allowed. On the other hand, we assume that there is 
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Table 1 

Mathematical notations for the MDPC model. 

Datasets and indices 

Set Description Index 

T Planning horizon t, n 

E Candidate carriers e 

I Cross-docking facilities i 

K Customer areas k 

I e Network of cross-docking facilities operated by carrier e i 

I k Network of cross-docking facilities that can serve customer area k i 

K i Customer areas that can be served from cross-docking facility i k 

E k Carriers that can serve customer area k e 

L Capacity levels of cross-docking facilities l

Input parameters 

Symbol Description 

N Number of periods in the planning horizon ( N = | T | ) 
H e Duration of contracts with carrier e (number of periods) 

M 

t 
e Minimum Purchase Commitment with carrier e at period t ( €) 

Q l Available capacity at level l (weight units) 

F i,l Cost for operating facility i at capacity level l ( €) 
D t 

k 
Demand of customer area k in period t (weight units) 

U i,k Unit transportation costs for delivery from facility i to area k ( € per unit) 

Decision variables 

Symbol Description 

αt 
e 1 if a contract with carrier e takes effect at period t , 0 otherwise 

v t 
i,l 

1 if cross-docking facility i is used at capacity level l in period t , 0 otherwise 

q t 
i,k 

Demand from customer area k allocated to facility i in period t (weight units) 

c t e Total fee due to carrier e in period t ( €) 

e

e

c

a  

e

e

a  

e

t  

i  

q

s  

n

f

4

p

f

c

T

(

r

f

h

k

o

(

t

r

p

o

f  

u

(

w  

a

f

g

F

d

O

m

C∑
∑
k

q  

c

c

∑

H

∑

nough transportation capacity in the system to satisfy demand in 

ach period. This can be ensured, for example, by including a spe- 

ial carrier m representing the spot market, with enough capacity 

nd no contractual requirement: say, H m 

= 1 , M 

t 
m 

= 0 for all t , large

nough capacity and operating costs. 

The MILP model involves four families of decision variables for 

very period t ∈ T in the planning horizon. First, αt 
e is a 0–1 vari- 

ble which takes value 1 if a contract with carrier e ∈ E goes into

ffect in period t (and remains valid throughout periods t , t + 1 ,..., 

 + H e − 1 ). Next, v t 
i,l 

is a 0–1 variable which takes value 1 if facility

 ∈ I is operated at level l ∈ L in period t . The continuous variable

 

t 
i,k 

represents the quantity of parcels (number of weight units) 

hipped from facility i ∈ I to customer area k ∈ K i in period t . Fi-

ally, as already introduced above, an auxiliary variable c t e stands 

or the total cost charged to the shipper by carrier e in period t . 

.2. Mixed-integer programming formulation 

The multi-period distribution network design problem with 

urchase-commitment contracts (MDPC) can now be formulated as 

ollows. 

The objective function (1) has two components. The first one 

omputes the fees due to all carriers over the planning horizon. 

he second one accounts for the parcel delivery costs. Constraints 

2) enforce demand satisfaction for all customer areas in each pe- 

iod. Constraints (3) ensure that the total demand allocated to a 

acility for the last-mile delivery does not exceed its selected long- 

aul capacity level. Constraints (4) establish that a customer area 

 can only be served from facilities belonging to carriers with 

ngoing contracts. These constraints are actually redundant with 

2) - (3) , but they strengthen the linear relaxation of the formula- 

ion. Constraints (5) and (6) determine the payment due to car- 

ier e in period t , taking into account the effective costs of services 

rovided and the minimum purchase commitments pre-agreed by 

ngoing contracts, i.e., any contract signed in one of the periods 

rom t − H e + 1 to t . Constraints (7) express that a facility can be

sed only if there is a valid contract with its owner. Constraints 
e

560 
8) specify that two contracts cannot be in effect simultaneously 

ith the same carrier. Note that in view of constraints (7) and (8) ,

t most one capacity level can be selected for each facility. The 

ormulation is strengthened by the covering constraints (9) which 

uarantee that each customer area is served by at least one carrier. 

inally, constraints (10) - (12) specify the range of the variables. We 

enote by Z opt the optimal value of MDPC. 

bjective function 

in Z = 

∑ 

t∈ T 

[ ∑ 

e ∈ E 
c t e + 

∑ 

k ∈ K 

∑ 

i ∈ I k 
U i,k q t i,k 

] 

(1) 

onstraints 
 

i ∈ I k 
q t i,k = D 

t 
k ∀ k ∈ K, t ∈ T (2) 

 

 ∈ K i 
q t i,k ≤

∑ 

l∈ L 
Q l v t i,l ∀ i ∈ I, t ∈ T (3) 

 

t 
i,k ≤ D 

t 
k 

∑ 

l∈ L 
v t i,l ∀ i ∈ I k , k ∈ K, t ∈ T (4)

 

t 
e ≥

∑ 

l∈ L 

∑ 

i ∈ I e 
F i,l v t i,l ∀ e ∈ E, t ∈ T (5) 

 

t 
e ≥ M 

t 
e 

H e −1 ∑ 

n =0 

αt−n 
e ∀ e ∈ E, t ∈ T (6) 

 

l∈ L 
v t i,l ≤

H e −1 ∑ 

n =0 

αt−n 
e ∀ i ∈ I e , e ∈ E, t ∈ T (7) 

 e −1 ∑ 

n =0 

αt−n 
e ≤ 1 ∀ e ∈ E, t ∈ T (8) 

 

 ∈ E k 

H e −1 ∑ 

n =0 

αt−n 
e ≥ 1 ∀ k ∈ K, t ∈ T (9) 
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e ∈ { 0 , 1 } ∀ e ∈ E, t ∈ T (10)

 

t 
i,l ∈ { 0 , 1 } ∀ i ∈ I, l ∈ L, t ∈ T (11)

 

t 
i,k ≥ 0 ∀ k ∈ K, i ∈ I, t ∈ T (12) 

. Complexity 

.1. NP-hardness 

For specific values of the parameters, the MDPC model reduces 

o the well-known simple facility location problem (SFL), (see, e.g., 

hiani, Laporte, & Musmanno, 2004 ). Specifically, consider the spe- 

ial case of MDPC where 

(a) there is a single period: N = 1 ; 

(b) the contract duration is equal to one period: H e = 1 ; 

(c) there is only one operating level ( L = { 1 } ) and Q 1 is large

enough to satisfy the total demand. 

(d) a single carrier can reach all the customer areas from all its 

facilities: E = { e } , I = I e , and K i = K for all i ∈ I; 

(e) there is no purchase commitment: M 

1 
e = 0; 

Under these conditions, the shipper has no choice but to con- 

ract with the unique carrier (i.e., to set α1 
e = 1 ), and MDPC re-

uces to the problem of selecting the facilities i ∈ I (i.e., the val- 

es of the variables v 1 
i, 1 

) and the delivery quantities q i,k to mini- 

ize the total cost of operating the facilities and of transporting 

he parcels: which is precisely the SFL problem. Since SFL is NP- 

ard, so is MDPC. 

The previous argument does not tell us anything about the dif- 

culty of handling the contracts, since under its assumptions, the 

nique variable α1 
e is trivially set to 1 in all feasible solutions of 

odel (1) - (12) . An alternative argument, therefore, might consider 

nstead the special case of MDPC where assumptions (a)-(c) above 

re satisfied, and 

(f) each carrier e ∈ E owns a single facility, and each facility can 

reach all the customer areas: E = I, I e = { e } , and K i = K for

all i ∈ I; 

(g) there is no service cost for any of the facilities: F i, 1 = 0 for

all i ∈ I. 

In this case, again, MDPC reduces to SFL, with the variables α1 
e , 

 ∈ E, indicating the contracts to be signed in order to use the as-

ociated facilities. 

.2. Decomposability 

From a practical point of view, the difficulty of MDPC mainly 

tems from the interrelationship among various subsets of deci- 

ion variables. Indeed, the selection of carrier contracts in each pe- 

iod t ∈ T (expressed by the values of the variables αt 
e ) restricts 

he candidate facilities that can be used in period t (variables v t 
i,l 

) 

nd hence, the quantities that can be shipped in the same period 

variables q t 
i,k 

). Moreover, the contracts signed with carriers usu- 

lly extend over several periods which creates a linkage between 

he decisions made in successive periods. 

These observations suggest that appropriate solution method- 

logies may be developed by relaxing some of the interrelation- 

hips mentioned above in various ways. In particular, when feasi- 

le values are set for the decision variables αt 
e , finding the optimal 

alues of (v t 
i,l 

, q t 
i,k 

) becomes a time-separable sub-problem which 

s easier to handle, even though it remains theoretically hard. This 

uggests that Benders decomposition can be useful for tackling the 
561 
omplex structure of the problem. An exact method based on this 

dea is presented in Section 6 . 

Similarly, when we relax the constraints (6) - (9) , which bind 

onsecutive periods for each contract, the distribution sub-problem 

an be independently tackled for each period. Section 7 describes 

 heuristic algorithm based on this idea. 

. Combinatorial Benders Algorithm - (CBA) 

We start this section with a brief review of combinatorial Ben- 

ers approaches. 

.1. Benders with integer sub-problems 

The classical Benders procedure for mixed-integer linear pro- 

ramming requires fixing (iteratively) the value of all integer vari- 

bles and solving the remaining sub-problem, which is by con- 

truction a linear programming problem with continuous vari- 

bles. Then, duality theory allows the derivation of valid (feasibility 

r optimality) inequalities from the optimal solution of the sub- 

roblem, and these inequalities can be added as cuts to the for- 

ulation of the original master problem (see Benders, 1962; Rah- 

aniani, Crainic, Gendreau, & Rei, 2017 ). 

In contrast, in some recent extensions of the classical approach, 

nly a subset of the integer variables are fixed (in our case, the αt 
e 

ariables), and the resulting sub-problem is still an MILP problem. 

hen this is the case, classical Benders cuts cannot be used, due 

o the failure of duality relations, and different approaches need to 

e applied. 

Hooker & Ottosson (2003) coined the term combinatorial 

uts and applied Benders-type decomposition methods for sub- 

roblems in binary variables by developing an abstract theory of 

inference dual”. Similarly in Codato & Fischetti (2006) , combina- 

orial cuts were implemented to model and solve MIP problems 

nvolving logical implications. The cuts are so-called canonical cuts 

see Balas & Jeroslow, 1972 ) of the general form: 
 

j∈ C 
y j + 

∑ 

j∈ D 
(1 − y j ) ≥ 1 (13) 

or appropriate binary variables y j and subsets of indices C, D . 

Similar types of cuts appear as part of “nogood” learning tech- 

iques used in constraint programming together with mixed- 

nteger programming. The main idea is to find combinations of 

ariable assignments that cannot be part of an optimal solution, 

r no good combinations (see Sandholm & Shields, 2006 ). Such 

echniques can be embedded in a branch-and-cut framework in 

rder to reduce the size of the search tree. Examples of such ap- 

roaches with integer sub-problems can be found in Botton, Fortz, 

ouveia, & Poss (2013) , Gendron, Scutellà, Garroppo, Nencioni, & 

avanti (2016) , Fakhri, Ghatee, Fragkogios, & Saharidis (2017) . 

For our MDPC model, we develop a decomposition strategy us- 

ng combinatorial cuts that we add to the master problem in the 

ranch-and-cut process (similar to Gendron et al., 2016 ). The mas- 

er problem is solved only once. The branch-and-cut process stops 

t some nodes for evaluating integer solutions in the sub-problem. 

his approach, which differs from the iterative classical procedure, 

s known as a single-tree Benders procedure ( Rahmaniani et al., 

017 ). 

.2. Decomposition 

The mathematical formulation (1) –(12) of MDPC contains three 

ain sets of variables, respectively associated with the selection 

f contracts (binary variables αt 
e ), the selection of facilities (binary 

ariables v t 
i,l 

), and the allocation of demand to these facilities (con- 

inuous variables q t 
i,k 

). The optimal value of the cost variables c t e is 
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asily deduced from the values of the other variables. We decom- 

ose this formulation into a master problem (MP), obtained by re- 

axing the integrality requirements on the binary variables v t 
i,l 

, and 

nto a sub-problem (SP), obtained by fixing the binary variables αt 
e 

o valid values ˆ αt 
e derived from the optimal solution of the MP. 

Whenever the MP generates new values for ˆ αt 
e (that is, a new 

entative contract plan), an additional combinatorial cut is intro- 

uced into the MP formulation. The procedure stops when no new 

alues for ˆ αt 
e are eligible to be optimal. Let us now describe this 

rocedure in more detail. In the next sections, we denote by Z inc 

he incumbent, or best-known value of a solution of MDPC at any 

ime during the procedure. 

.2.1. Master problem (MP) 

The initial MP formulation is identical to the formulation (1) –

12) , except that the integrality constraints (11) are relaxed and re- 

laced by: v t 
i,l 

∈ [0 , 1] for all i ∈ I, l ∈ L, t ∈ T . 

The relaxed variables v t 
i,l 

are included in the MP in order to 

uide the search for good values of the contract variables αt 
e . The 

P is solved by a standard branch-and-cut (B&C) procedure, and 

ts formulation is additionally enriched by combinatorial cuts as 

xplained later on. 

In the course of solving the MP by branch-and-cut, (possibly 

any) feasible assignments of binary values ˆ α = ( ̂  αt 
e : e ∈ E, t ∈ T )

re identified for the contract variables in intermediate nodes of 

he enumeration tree. We denote by Z R ( ̂  α) the optimal value of 

he master problem when α is fixed at ˆ α (the subscript R re- 

inds us that the v t 
i,l 

variables are relaxed). If Z inc ≤ Z R ( ̂  α) , then ˆ α

s dominated by the incumbent assignment for the contract vari- 

bles, and hence ˆ α can be further discarded from the search pro- 

ess, either by pruning or adding a combinatorial cut. Otherwise, 

 sub-problem SP( ̂  α) must be solved to evaluate the quality of the 

ontract plan associated with ˆ α, as explained next. 

.2.2. Sub-problem (SP) 

For each feasible assignment ˆ α, the associated sub-problem 

P( ̂  α) is generated by setting αt 
e to the value ˆ αt 

e in the formulation 

f MDPC, for all e ∈ E, t ∈ T . Thus, SP( ̂  α) is an MILP model with

bjective function (1) , with binary variables v t 
i,l 

and with continu- 

us variables q t 
i,k 

, c t e . It includes constraints (2) –(5) and (11) –(12) ,

s well as constraints (6) and (7) which can respectively be rewrit- 

en as : 

 

t 
e ≥

{
M 

t 
e if 

∑ H e −1 
n =0 ˆ αt−n 

e = 1 

0 otherwise 
∀ e ∈ E, t ∈ T , (14) 

 

l∈ L 
v t i,l ≤

{
1 if 

∑ H e −1 
n =0 ˆ αt−n 

e = 1 

0 otherwise 
∀ i ∈ I e , e ∈ E, t ∈ T . (15)

onstraints (14) and (15) respectively guarantee the minimum pay- 

ent due to carriers and the availability of facilities if and only if 

 contract is in effect at period t . 

Constraints (8) –(10) do not appear in the sub-problem formula- 

ion. Note, however, that the presence of the covering constraints 

9) in the master problem ensures that all customers can be served 

rom the facility network available under the contract plan repre- 

ented by ˆ α. In other words, the sub-problem SP( ̂  α) is always fea- 

ible. 

As mentioned in Section 5.2 , a key feature of the sub-problem 

P( ̂  α) is that it is separable per period: indeed, for each t ∈ T , the

ptimal values of (v t , q t , c t ) only depend on the contracts ( ̂  αt )

hat are active in period t . Thus, if we denote by Z SP ( ̂  α) the opti-

al value of SP( ̂  α), and by Z SP ( ̂  α
t ) the optimal value of the sub-

roblem SP( ̂  αt ) arising in period t , then 

 SP ( ̂  α) = 

∑ 

t∈ T 
Z SP ( ̂  αt ) . 
562
his property facilitates the resolution of SP( ̂  α), and motivates the 

ntire decomposition scheme. 

.2.3. Combinatorial cuts 

The optimal solution of SP( ̂  α) provides the best assignment 

v ∗, q ∗, c ∗) associated with the contracts defined by ˆ α. In partic-

lar, it defines a feasible solution of MDPC, and its value Z SP ( ̂  α)

s an upper bound on the optimal value of MDPC. The incumbent 

r best-known value, i.e., Z inc , is compared with Z SP ( ̂  α) and is up-

ated if needed, that is, if Z SP ( ̂  α) < Z inc . Moreover, a combinatorial

ut of the following type can be added to the MP formulation: 

 

t∈ T 

( ∑ 

e ∈ E: ̂ αt 
e =0 

αt 
e + 

∑ 

e ∈ E: ̂ αt 
e =1 

(1 − αt 
e ) 

) 

≥ 1 . (16) 

This combinatorial cut removes the solution ˆ α from the feasible 

pace of MP. In other words, the cut expresses that the contract 

lan ˆ α has already been handled, and therefore ˆ α can be ruled out 

rom the subsequent search process. 

The combinatorial cut (16) can be further strengthened by 

estricting the first double sum to those pairs (t, e ) such that 
 H e −1 
n =0 

ˆ αt−n 
e = 0 . Indeed, suppose that a new contract plan is to be 

onsidered by switching some value ˆ αt 
e from 0 to 1 (i.e., by acti- 

ating a new contract at time t) so as to satisfy (16) , and suppose

hat t is the first time period for which such a switch takes place. 

hen, it must be the case that ˆ αt−n 
e = 0 for all n = 0 , . . . , H e − 1 :

therwise, it would not be feasible to start a new contract at time t

see constraints (8) ). 

Thus, the strengthened cut (17) can be included in the formu- 

ation instead of (16) : 

 

t∈ T 

⎛ 

⎝ 

∑ 

e ∈ E: 
∑ H e −1 

n =0 
ˆ αt−n 

e =0 

αt 
e + 

∑ 

e ∈ E: ̂ αt 
e =1 

(1 − αt 
e ) 

⎞ 

⎠ ≥ 1 . (17) 

Note that the cut (17) is not separable per period. 

.3. Algorithmic procedure 

The cut insertion procedure of the Combinatorial Benders Al- 

orithm (CBA) is sketched in Fig. 2 . As mentioned above, the tree 

s generated when solving the master problem by branch-and-cut. 

ommercial solvers enable the user to interrupt the MP branch- 

nd-cut process at various nodes to launch predefined routines. 

n our algorithm, this practical tool is used to solve the SP( ̂  α) 

odel whenever the value Z R ( ̂  α) of a new feasible integer solu- 

ion ˆ α is lower than the incumbent value Z inc , as described by 

lgorithm 1 . The solution method for the SP is summarized below 

y Algorithm 2 . 

Algorithm 1: Single-tree Benders Subroutine (Feasible ˆ α). 

Input : ˆ α: Contract plan, 

Z R ( ̂  α) : Optimal value of MP when α = ˆ α, 

Z inc : Incumbent value of MDPC. 

1 if Z R ( ̂  α) < Z inc then 

2 solve sub-problem SP ( ̂  α) {see Algorithm~2} 
3 retrieve value Z SP ( ̂  α) 

4 if Z SP ( ̂  α) < Z inc then 

5 Z inc ← Z SP ( ̂  α) 

6 add combinatorial cut (17) to MP 

The addition of the combinatorial cut (17) to the MP formula- 

ion excludes candidate ˆ α from the feasible space, whether it is 

ptimal for MDPC or not. The branch-and-cut procedure continues 
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Fig. 2. Single-tree Combinatorial Benders Algorithm (cut-insertion process). 
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earching for better feasible solutions, and it may either generate 

ew values for ˆ α, or eventually conclude that there is none left. 

hen the solver stops, the optimality criterion is satisfied: the re- 

axed value Z R ( ̂  α) of any solution ˆ α is above the incumbent value, 

hich is therefore optimal ( Z inc = Z opt ). The lower bound obtained 

long the process is associated with the MP formulation. Therefore, 

t is never larger than the optimal value of the MP, which is itself

 lower bound for the MDPC model. 

The sub-problem SP to be solved by Algorithm 1 is a MILP that 

ust be solved repeatedly and may take a considerable amount 

f time to solve. In order to facilitate its solution, as suggested 

n Section 6.2.2 , we decompose it per period, and we solve each 

ub-problem SP( ̂  αt ), for t ∈ T . This process can be further acceler-

ted as follows. For the contract plan ˆ α and a period t , consider 

he assignment ˆ αt , that is, the restriction of ˆ α to period t . It may 

ery well happen (and in fact, it frequently happens in practice) 

hat ˆ αt = αt for another contract plan α which was considered in 

 previous call to Algorithm 1 : indeed, two contract plans ˆ α and 

can involve the same carriers in period t , even if they differ in 

ther periods. In such a case, obviously, Z SP ( ̂  α
t ) = Z SP ( α

t ) . In view

f this observation, when solving SP ( ̂  α) , we find it advantageous to

ecord each assignment ˆ αt together with the optimal value Z SP ( ̂  α
t ) 

n a set �t , for each period t . When the same assignment ˆ αt is 

ncountered again in subsequent iterations, its value is simply re- 

rieved from �t , and there is no need to solve the sub-problem 

gain for that particular period t . 

The resulting sub-problem procedure is described by the fol- 

owing pseudocode. 

Algorithm 2: Sub-problem Procedure. 

Input : ˆ α: Contract plan. 

ˆ αt : Restriction of the contract plan to period t . 

�t , t ∈ T : storage sets of previously encountered 

contract plansand their optimal values. 

Output : Z SP ( ̂  α) : Optimal value of the sub-problem SP( ̂  α). 

1 Z SP ( ̂  α) ← 0 

2 for each t ∈ T do 

3 if ˆ αt ∈ �t then 

4 retrieve the optimal value Z SP ( ̂  α
t ) 

5 else 

6 solve SP( ̂  αt ) 

7 add ˆ αt and Z SP ( ̂  α
t ) to �t 

8 Z SP ( ̂  α) ← Z SP ( ̂  α) + Z SP ( ̂  α
t ) 

9 return Z SP ( ̂  α) 
f

563
. Relax-and-repair heuristic 

In this section, we present a heuristic optimization algorithm 

ased on a decomposition of MDPC per period. The heuristic pro- 

eeds in two phases, which respectively consist in solving a ”relax- 

tion” of the problem for each period, then in ”repairing” the ob- 

ained solutions ˆ αt to merge them over the horizon into a feasible 

olution ˆ α. 

.1. Phase 1 - Relaxation - (RL) 

The idea of the first phase consists in relaxing the duration of 

he contracts to a single period, that is, in assuming that H e = 1

or all e ∈ E. Another way of looking at this relaxation is as fol-

ows. Replace each occurrence of the expression 

∑ H e −1 
n =0 

αt−n 
e in the 

ormulation (1) - (12) by a single binary variable βt 
e , and add the 

onstraints 

 e −1 ∑ 

n =0 

αt−n 
e = βt 

e ∀ e ∈ E, t ∈ T . (18) 

his obviously yields an equivalent formulation of MDPC, with the 

nterpretation that βt 
e = 1 if and only if a contract with carrier e 

s in effect in period t . Now, remove all constraints (18) . In this

ay, we obtain a relaxation of MDPC where the variables βt 
e are 

ot necessarily associated with contracts of duration H e , but can 

e viewed as describing contracts of duration 1. Let us denote this 

elaxed problem as RL , and its optimal value as Z RL . Clearly, Z RL is

 valid lower bound for MDPC: Z RL ≤ Z opt . 

The formulation RL can be decomposed and solved indepen- 

ently for each period t ∈ T . Let RL (t) define the single-period

roblem at period t and let Z RL (t) be its optimal value. Then, 

 RL = 

∑ 

t∈ T Z RL (t) . 

In order to avoid confusion, we stress that each sub-problem 

L (t) involves the binary decision variables βt 
e in its formulation. 

hus, it differs from the single-period sub-problem SP ( ̂  αt 
e ) intro- 

uced in Section 6.2.2 , which is associated with fixed values of the 

ariables αt 
e . On the other hand, if ˆ βt denotes the optimal value of 

t in the solution of RL (t) , then, by definition, Z SP ( ̂  βt ) = Z RL (t) . 

.2. Phase 2 - Repairing - (RP) 

Consider now an optimal solution ˆ s = ( ̂  β, ̂  v , ̂  q , ̂  c ) of problem 

L . With a slight abuse of terminology, we say that this solution 

s feasible for MDPC if the succession of single-period contracts 

 

ˆ βt 
e , t ∈ T ) describes a collection of contracts with duration H e for

ach e ∈ E (meaning that there exists an assignment of values ˆ α
or the α-variables such that ( ̂  α, ˆ β) satisfies constraints (18) ). Note 
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Algorithm 3: Relax-and-repair Heuristic: Phase 1. 

Input : An instance of MDPC. 

Output : Z RL : Lower bound on the optimal value of MDPC. 

ˆ β: A feasible contract plan for the relaxation of 

MDPC - ( RL ). 

1 Z RL ← 0 

2 for each t ∈ T do 

3 solve RL (t) , obtain { ̂  βt , Z RL (t) } 

4 Z RL ← Z RL + Z RL (t) 

5 return Z RL , 
ˆ β = ( ̂  βt : t ∈ T ) 

t   

(  

i  

t

H

Z

c

f

t  

s

d

r

b

p

f

r

u  

s  

r

c  

p

p

z

fi

d  

t  

p  

s

Z  

i

i

o

(  

p

t

M

n

o

i

s

t  

p

8

p

Algorithm 4: Relax-and-repair Heuristic: Phase 2. 

Input : ˆ β: A feasible contract plan for the relaxation of 

MDPC ( RL ) 

Output : ˆ αRP : A feasible contract plan. 

Z RP : Value of the heuristic solution. 

1 Z RP ← Z RL 

2 for each t ∈ T , t 
 = 1 do 

3 for each e ∈ E do 

4 if ˆ βt 
e = 0 and ˆ βt−1 

e = 1 then 

/* {potentially incomplete contract} */ 

/* {determine s, the first period such that 
ˆ βs 

e = . . . = 

ˆ βt−1 
e = 1 } */ 

5 s ← t − 1 

6 while s > 1 and ˆ βs −1 
e = 1 do 

7 s ← s − 1 

8 r ← (t − s ) mod H e 

/* {r: elapsed duration (mod H e ) of the contract running 

at period t − 1 } */ 

9 if r 
 = 0 then 

/* {the sequence ˆ βs 
e , . . . , 

ˆ βt 
e is not feasible} */ 

/* {estimate the extra cost of completing the 
contract} */ 

10 C urrentC ostC ← 

∑ H e −r−1 
k =0 

Z SP ( ̂  βt+ k ) 
11 temporarily set ˆ βt 

e , . . . , 
ˆ βt+ H e −r−1 

e ← 1 

/* temporarily complete the contract */ 
12 

13 NewCostC ← 

∑ H e −r−1 
k =0 

Z SP ( ̂  βt+ k ) 
14 �C ostC ← NewC ostC − C urrentC ostC 

15 reset the previous values of 

ˆ βt 
e , . . . , 

ˆ βt+ H e −r−1 
e ← 0 

/* {estimate the extra cost of removing the contract} 
*/ 

16 C urrentC ostR ← 

∑ r 
k =1 Z SP ( ̂  βt−k ) 

17 temporarily set ˆ βt−r 
e , . . . , ˆ βt−1 

e ← 0 

/* temporarily remove the contract */ 
18 

19 if SP ( ̂  βt−k ) is feasible for k = 1 to r then 

20 NewCostR ← 

∑ r 
k =1 Z SP ( ̂  βt−k ) 

21 else 

22 NewCostR ← ∞ 

23 �CostR ← NewCostR − Current Cost R 

24 reset the previous values of ˆ βt−r 
e , . . . , ˆ βt−1 

e ← 1 

25 if �C ostC ≤ �C ostR then 

/* { the completion option is preferred} */ 

26 ˆ βt 
e , . . . , 

ˆ βt+ H e −r−1 
e ← 1 

27 Z RP ← Z RP + �CostC 

28 else 

/* {the removal option is preferred} */ 

29 ˆ βt−r 
e , . . . , ˆ βt−1 

e ← 0 

30 Z RP ← Z RP + �CostR 

31 return Z RP , ˆ αRP 
hat this is easy to check. When this is the case, then the solution ŝ

or more rigorously, ( ̂  α, ̂  v , ̂  q , ̂  c ) ) is necessarily optimal for the orig-

nal MDPC model as it satisfies constraints (8) , i.e., Z RL = Z opt , and

he second phase of the heuristic simply returns this solution. 

On the other hand, if the conditions on the contract durations 

 e are not respected, then the solution ˆ s is infeasible for MDPC and 

 RL only provides a lower bound for Z opt . The second phase then 

onsists in “repairing” the infeasible solution to transform it into a 

easible one. The repair heuristic RP iterates forward over periods 

 ∈ T . For each carrier e such that ˆ βt 
e = 0 , it examines whether the

ingle-period contracts ( ̂  βt−1 
e , ˆ βt−2 

e , . . . ) opened in previous periods 

efine a contract of duration H e (or a sequence of contracts of du- 

ation H e ). When this is not the case, the unfinished contract can 

e either Completed up to H e periods, or Removed . 

We next give a more formal description in Algorithm 4 of the 

hase 2 procedure (RP) with descriptive comments in brackets. 

The Completion option considers the number of periods needed 

or the unfinished contract to get completed (namely, H e − r pe- 

iods), starting from time t . The local variable C urrentC ostC sums 

p the optimal cost values Z SP ( ̂  βt ) , . . . , Z SP ( ̂  βt+ H e −r−1 ) of the re-

pective sub-problems SP ( ̂  βt ) , . . . , SP ( ̂  βt+ H e −r−1 ) . Next, the algo-

ithm temporarily sets the variables ˆ βt ,..., ̂  βt+ H e −r−1 to one and re- 

omputes the costs Z SP ( ̂  βt ) , . . . , Z SP ( ̂  βt+ H e −r−1 ) by solving the sub-

roblems with these modified values. The difference is saved in 

arameter �C ostC and the values of ˆ βt ,..., ̂  βt+ H e −r−1 are set back to 

ero. 

The Removal option considers the elapsed duration of the un- 

nished contract running at period time t − 1 (namely, r) in or- 

er to discard it. The local variable C urrentC ostR sums up the op-

imal cost values Z SP ( ̂  βt−r ) , . . . , Z SP ( ̂  βt−1 ) of the respective sub-

roblems SP ( ̂  βt−r ) , . . . , SP ( ̂  βt−1 ) . Next, the algorithm temporarily

ets the variables ˆ βt−r ,..., ̂  βt−1 to zero and recomputes the costs 

 SP ( ̂  βt−r ) , . . . , Z SP ( ̂  βt−1 ) by solving the sub-problem with the mod-

fied values. The difference is saved in parameter �CostR , which 

s set to a large value in case of infeasibility induced by at least 

ne uncovered customer area. The incremental cost of each option 

 �C ostC , �C ostR ) is estimated, and the least expensive one is im-

lemented. 

It may be interesting to note that in a “real-world” setting, 

he heuristic could be implemented in a rolling-horizon fashion. 

ore precisely, when using the relax-and-repair heuristic, we do 

ot really need to solve the problem over the complete horizon 

f N periods in order to make decisions in any given period: 

ndeed, the decisions in period t only depend on the contracts 

igned in the previous periods and on the demand for periods 

, t + 1 , . . . , t + max { H e : e ∈ E} − 1 . Thus, the heuristic can be im-

lemented with a forecast horizon of max { H e : e ∈ E} periods. 

. Experimental design and performance measures 

We have conducted a series of experiments comparing the pro- 

osed algorithms with a commercial solver on multiple sets of in- 
564 
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Table 2 

Description of instance classes. 

Instances Small Medium Large 

Carriers | E| 4 4 6 6 8 8 8 8 10 10 12 12 8 8 10 10 12 12 

Periods | T | 4 6 6 8 8 10 8 10 10 12 12 14 8 10 10 12 12 14 

Customers | K| 100 200 300 

Facilities per carrier [ i −, i + ] [2,4] [3,5] [4,6] 

Contract duration H e 2, 3, 4 2, 3, 4 2, 3, 4 
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tances. This section first describes the set of instances that we 

enerated, then the solution approaches considered, and finally the 

erformance measures. 

.1. Instances 

Data about the location of facilities and of customers, costs, de- 

and and contract terms were randomly generated based on the 

ollowing assumptions and parameter values. 

Location and scope of sites 

• The shipper operates two warehouses. 
• The warehouses and customer areas are randomly uniformly 

located in a 2-dimensional ( 10 0 0 × 10 0 0 ) grid. 
• The carriers’ facilities are randomly located in a ( 700 × 700 ) 

centered area of the grid. 
• For each carrier e , the size of I e is randomly chosen from the

uniform discrete distribution on an interval [ i −, i + ] : U[ i −, i + ]
(see Table 2 ). 

• Customers can only be served from carriers’ facilities that 

are within an Euclidean distance of 500 units. No carrier can 

supply all customers. 

Service costs 

• The long-haul cost and cross-docking services F i,l for operat- 

ing facility i at capacity level l is of the form F i,l = C i + T i,l ,

where C i is the fixed operational cost of facility i , and T i,l is

the cost charged by the carrier for (full truckload) shipment 

requiring l trucks from the shipper’s warehouses to facility i 

and for operating it at level l. 
• The fixed operational cost C i is set randomly from a discrete 

uniform distribution U[50 0 , 10 0 0] . 
• For a given operating level l, the variable cost T i,l for long- 

haul transportation is proportional to the Euclidean distance 

from facility i to the closest warehouse. As a function of the 

level l, it is modelled by a staircase function with decreasing 

marginal costs. 
• The cost charged by the parcel delivery company for trans- 

porting one unit of good from facility i to customer area k , 

that is, U i,k , is taken equal to the Euclidean distance from i 

to k . 

Customers demand 

• The planning horizon is subdivided into three demand sea- 

sons, starting with low, then high, and finally mid season. 

For each customer region k ∈ K and each period t ∈ T , the

demand quantity D 

t 
k 

(in weight units) is issued from a uni- 

form distribution which depends on the season: U[0 . 1 , 0 . 4]

in low season, U[0 . 35 , 0 . 65] in mid season, and U[0 . 6 , 0 . 9] in

high season. 
565 
Contract terms and conditions 

• In a given instance, all contracts have the same fixed dura- 

tion H e ∈ { 2 , 3 , 4 } , for all e ∈ E. 
• Each carrier has enough available capacity to meet the de- 

mand of all customer areas that can be served from its facil- 

ities. 
• The MPC M 

t 
e is equal to 10% of the total capacity reserva- 

tion fee, that is, the minimum fee that would be charged 

by carrier e at period t if it were assigned all the demand 

( 
∑ 

k : e ∈ E k D 

t 
k 
) that it can possibly handle through its network 

of facilities 

The main parameters that determine the size of the instances 

re the number of carriers | E| , the number of periods N = | T | ,
he number of customer areas | K| , and the range [ i −, i + ] of the

umber of facilities per carrier. The instances are partitioned into 

hree classes according to the value of these parameters, namely 

mall , medium and large instances. In each class, 6 combina- 

ions of parameter values are considered as displayed in Table 2 . 

oreover, we are also interested in analyzing the effect of the 

ontract duration on the difficulty to solve the MDPC model. 

ence, three different values of H e , namely, H e = 2 , 3 , 4 , are con-

idered for each instance class. For each combination of parame- 

ers (| E| , | T | , | K| , [ i −, i + ] , H e ) , a set of five instances was randomly

enerated, for a grand total of 3 × 6 × 3 × 5 = 270 instances. 

.2. Algorithms 

The computational study aims to evaluate the performance of 

ifferent algorithms for solving the MDPC model. We compare the 

lgorithms described in Sections 6 and 7 with two state-of-the- 

rt generic algorithms, namely: CPLEX default implementations of 

ranch-and-cut and of Benders decomposition. In contrast with 

ur combinatorial Benders decomposition approach, CPLEX Ben- 

ers decomposition classically separates the integer variables ( αt 
e , 

 

t 
i,l 

), which are included in the master problem, from the continu- 

us variables ( q t 
i,k 

), which are handled in the LP sub-problem. 

Thus, we consider four methods, respectively labeled as: 

• (CP-B&C) - CPLEX Branch-and-Cut; 
• (CP-Bend) - CPLEX Benders; 
• (CBA) - Combinatorial Benders Decomposition Algorithm 

( Section 6 ); 
• (RL-RP) - Relax-and-repair heuristic ( Section 7 ). 

The algorithms were coded in Java using CPLEX 12.8 Concert 

echnology. All tests were performed using four core processors In- 

el E5-2650 with 2.0 GHz and 16 GB of RAM (4GB/Core). 

.3. Performance measures 

Each algorithm is run for a maximum of 3600 seconds on each 

f the 270 instances. The algorithms are compared based on two 

erformance measures: 

- The efficiency of algorithm A is assessed by its total running 

ime, and by its running time until it obtains its best overall solu- 

ion (within the time limit): 
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Fig. 3. Performance of algorithms on small instances. 

Fig. 4. Efficiency: performance profile of total running time F A and of running time until best found solution B A - small instances. 

Fig. 5. Effectiveness: performance profile of optimality gap G A and of gap to best known value �Q A - small instances. 
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1. F A : Running time of A until termination. 

2. B A : Running time of A until it obtains its best solution. 

- The effectiveness of algorithm A is assessed by two distinct 

etrics, namely: the gap with respect to the best lower bound pro- 

ided by the algorithm itself, and the gap with respect to the best 

olution found by any algorithm. Let Q 

A be the best value obtained 

y algorithm A , L A be the best lower bound obtained by A , and

 

best be the best solution value obtained by one of the algorithms. 

hen: 
566 
1. G 

A = 

Q A −L A 

Q A 
(×100%) → Relative optimality gap reported by A . 

2. �Q 

A = 

Q A −Q best 

Q A 
(×100%) → Relative gap of A with respect to 

the best known value. 

There always holds 0 ≤ G 

A ≤ 1 and 0 ≤ �Q 

A ≤ 1 . If an exact 

lgorithm A (CP-B&C, CP-Bend, CBA) terminates before the time 

imit, then the best found solution is optimal and G 

A = �Q 

A = 0 .

he same holds for RL-RP when it finds a feasible solution in 

hase 1. 



C. Clavijo López, Y. Crama, T. Pironet et al. European Journal of Operational Research 312 (2024) 556–572 

Fig. 6. Performance of algorithms on medium instances. 

Fig. 7. Efficiency: performance profile of total running time F A and of running time until best found solution B A - medium instances. 

Fig. 8. Effectiveness: performance profile of optimality gap G A and of gap to best known value �Q A - medium instances. 
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. Computational performance 

We report in this section on the computational results obtained 

or instances of different sizes and with different contract dura- 

ions. 

.1. Small size instances 

A first overview of the results for the set of 90 small instances 

s displayed in Fig. 3 . On the left side, the bar chart (a) presents

esults with respect to the efficiency criteria. For each algorithm, it 
s

567 
hows the percentage of instances for which the algorithm termi- 

ates within the time limit (3600 seconds). The average running 

ime (in seconds) for these instances is shown in parentheses. On 

he right side, the bar chart (b) summarizes results in terms of the 

ffectiveness criteria. It shows the percentage of instances for which 

ach algorithm A obtains the best overall solution ( �Q 

A = 0 ). The

rst bar in Fig. 3 (b), marked “RL ”, shows the percentage of in-

tances for which the contract-duration relaxed model yields a fea- 

ible (and hence, optimal) solution in the first phase of the relax- 

nd-repair heuristic (see Section 7 ). For each algorithm A , the av- 

rage gap G 

A over the set of instances for which A finds the best 

olution is shown in parentheses. On the other hand, when A does 
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Fig. 9. Performance of algorithms on large instances. 

Fig. 10. Efficiency: performance profile of total running time F A and of running time until best found solution B A - large instances. 

Fig. 11. Effectiveness: performance profile of optimality gap G A and of gap to best known value �Q A - large instances. 
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ot find the best solution, the average relative difference �Q 

A to 

he best-known value is displayed in parentheses. 

Another overview of the results is provided in Figs. 4 and 5 , 

hich display the performance profile of each algorithm for the cri- 

eria F A , B A , G 

A , and �Q 

A . The performance profile can be viewed

s the empirical distribution function of the performance criterion 

f interest ( Dolan & Moré, 2002 ). More precisely, for an algorithm 

 , a criterion C A , and a value x on the horizontal axis, the per-

ormance profile indicates the percentage of instances for which 

 

A ≤ x . The profiles allow for easy visualization and comparison of 

he performance of different algorithms over a range of instances 

in the present case, the collection of 90 small instances). 
568 
The relax-and-repair heuristic generates the optimal solution 

or approximately 53% of the instances in its Phase 1 - RL, by 

elaxing the contract-duration constraints. Moreover, this percent- 

ge reaches 73% after repairing infeasibilities in Phase 2 - RP 

 Figs. 3 (b) and 5 (b)). For the remaining instances, the heuris- 

ic provides suboptimal solutions with a relative gap ( G 

RL −RP 

r �Q 

RL −RP ) smaller than 1% for most of the small instances 

 Fig. 5 ). 

CPLEX is able to solve almost all small instances ( 97% for B&C, 

3% for CP-Bend) to optimality in less than one hour. In both cases, 

PLEX is faster than the heuristic RL-RP for 80–85% of the in- 

tances ( Fig. 4 (a)). 
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Finally, the combinatorial Benders algorithm (CBA) terminates 

n 61% of the cases only ( Figs. 3 (a) and 4 (a)), although it generally

nds the optimal value within the time limit (for 86% of the in- 

tances, see Figs. 3 (b) and 5 (b)), in about the same time as CPLEX

 Fig. 5 (b)). Its main weakness lies in slightly weaker lower bounds 

hich do not completely close the optimality gap, as shown by the 

alue of the optimality gap: G 

CBA = 0 . 44% on average when CBA

nds the optimal solution (see also Fig. 5 (a)). It is interesting to 

bserve, however, that the performance profile of �Q 

A lies lower 

or the heuristic RL-RP than for CBA, which means that CBA is gen- 

rally able to find better feasible solutions. 

.2. Medium size instances 

Figs. 6 , 7 and 8 present the aggregated results for the set of

edium size instances, using the same conventions as in the pre- 

ious Section 9.1 . 

For most instances, none of the exact methods terminate within 

ne hour, proving optimality. The heuristic RL-RP always stops be- 

ore the time limit (in less than 1900 seconds - Figs. 6 (a), 7 (a)). It

btains an exact solution for 8% of the instances ( Figs. 6 (b), 8 (a)).

L-RP provides solutions that are at least as good as the exact 

ethods for 55.2% of the instances and mostly outperforms CPLEX 

ethods (CP-B&C, CP-Bend) (see Fig. 8 (b)). We observe that the 

euristic method has a small integrality gap, below 1% ( Fig. 8 (a)). 

his means that the lower bound computed in the first phase is 

ight. 

Among exact methods, the combinatorial algorithm CBA pro- 

ides the best feasible solution faster than the two CPLEX methods 

see performance profile B CBA in Fig. 7 (b)). CPLEX methods tend to 

ontinuously improve their incumbent solution, slowly closing the 

ap to their respective LBs. However, the lower bound computed 

y the CBA method alone remains relatively weak, which trans- 

ates into values of G 

CBA between 1.9% and 3.5% (see performance 

rofile G 

CBA in Fig. 8 (a)). 

.3. Large size instances 

The results of our tests on large instances are shown in 

igs. 9 , 10 and 11 . The trends observed for medium size instances 

Fig. 12. Variation of the computing tim

Fig. 13. Variation of the computing time of
569
L-RP with respect to H e and (| E| , | T | ) . 

 methods with respect to H e and (| E| , | T | ) . 

are again present and accentuated here. Even though its com- 

letion time is steadily increasing, the heuristic RL-RP is the only 

ne that terminates (for 93% of the instances) within one hour of 

unning time ( Fig. 9 (a)). The remaining 7% take on average 16.7% 

ore than 1 hour, and the last instance takes up to 29% above the 

ime limit. Yet, RL-RP provides the best solution for more than 90% 

f the instances ( Fig. 9 (b)). The first phase RL provides an exact 

olution for 4.4% of the large instances. However, the optimality 

ap G 

RL −RP is smaller than for any other method and in fact always 

maller than 0.5% ( Fig. 11 (a)). 

Only our Combinatorial Benders Algorithm can sometimes 

atch or improve the solution found by RL-RP (for about 16% of 

he large instances). For the remaining instances, the relative gap 

Q 

CBA to the heuristic value is 0.18% on average. Furthermore, it is 

nteresting to note that CBA generally finds its best solution faster 

han any other method, including the heuristic ( Fig. 10 (b)). 

On large size instances, CP-B&C frequently (41%) fails to de- 

ect a single feasible solution (upper bound). As a consequence, 

Q 

CP−B & C and G 

CP−B & C are very large for these instances ( Fig. 11 ). 

onversely, CP-Bend (classical) decomposition is still able to find 

ne. However, the lower bound provided by CP-B&C is systemati- 

ally tighter than that of CP-Bend. On average, L CP−B & C is 1.26% and 

.48% closer to the optimal value than L CP−Bend and L CBA respec- 

ively, while it is looser than L RL −RP in 0.61%. 

.4. Variations of contract duration 

Finally, we examine the behavior of the computational time 

f all algorithms with respect to variations in the contract dura- 

ion ( H e = 2, 3, 4). The contracts establish the only link between 

he different periods (via constraints (7) - (9) of the MILP formula- 

ion) and thus, at first sight, they represent the main complexi- 

ying component of the MDPC model. On the other hand, some 

f the methods are based on a decomposition of the problem per 

ime period, and it is not clear whether the efficiency of these al- 

orithms is significantly affected by the value of H e . 

The heuristic RL-RP, in particular, is based in its first phase on 

he relaxation of the contract duration, and hence this phase is in- 

ensitive to the value of H e . One could argue that as H e becomes
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Table 3 

Variation of total cost and carriers’ cost as a function of contract duration . 

H e : 1 → 2 H e : 2 → 3 

Cost total: total: carriers: total: total: carriers: 

increase average (min,max) average average (min,max) average 

Small 0.02% (0.00, 0.18)% 0.01% 0.04% ( −0.11, 0.50)% −0.15% 

Medium 0.08% (0.00, 0.38)% 0.59% 0.04% ( −0.07, 0.22)% −0.25% 

Large 0.11% (0.00, 0.39)% 0.31% 0.03% ( −0.15, 0.18)% −0.11% 

H e : 3 → 4 H e : 4 → LT 

Cost total: total: carriers: total: total: carriers: 

increase average (min,max) average average (min,max) average 

Small 0.05% (-0.17, 0.46)% -0.41% 0.57% (0.00, 1.92)% 1.16% 

Medium -0.01% (-0.17, 0.13)% 0.12% 0.21% (-0.01, 1.71)% -0.13% 

Large 0.00% (-0.20, 0.21)% 0.03% 0.94% (0.00, 4.19)% 2.98% 
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Table 4 

Increase of total cost with respect to the case without purchase commitments. 

H e = 1 H e = 2 H e = 3 H e = 4 

Small 0.01% 0.03% 0.07% 0.12% 

Medium 0.13% 0.21% 0.24% 0.24% 

Large 0.37% 0.48% 0.51% 0.51% 

Table 5 

MPC utilization rate (and share of MPC in the carriers cost). 

H e = 2 

Small 99.87% (33.82%) 

Medium 97.10% (48.63%) 

Large 95.62% (53.32%) 
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arger, the first phase of RL is more likely to result in an infeasible

ontract plan, so the RP repair mechanism should be called more 

requently in the second phase. But conversely, when a contract 

ith carrier e is signed at period t ( αt 
e = 1 ), its consequences ex- 

end over more periods, and hence the decision space is reduced 

hen H e increases. The overall outcome of these effects is hard to 

redict a priori. 

Experimentally, the multi-chart displayed in Fig. 12 shows that 

he running time of RL-RP tends to increase with the value of H e ,

or all instance sizes. The variation is noticeable when H e increases 

rom 2 to 3 periods and from 3 to 4 periods (with a few excep-

ions). This behavior is particularly significant for large instances. 

For the exact algorithms, most medium and large size instances 

annot be solved within the allocated time limit, and are there- 

ore not considered in this analysis. Fig. 13 displays the behavior 

f these algorithms for the set of small instances only. The trend 

ere is not clear. For the considered instance, there is little change 

n the computational time when H e increases. This may simply be 

 sign that the instances are too easy to draw meaningful conclu- 

ions. 

0. Managerial insights 

In this section, we discuss some economic features of the best 

olutions obtained in our experiments. As follows from the previ- 

us section, these solutions are close to optimal ones. 

0.1. Impact of contract duration 

Table 3 shows the variation of the total cost and of the cost of 

arriers when the contract duration H e increases from 1 to 2, or 2 

o 3, or 3 to 4, or 4 to LT. Here, LT refers to the situation where

he shipper engages into “long term” agreements with the carriers. 

ore precisely, this case is modelled by substituting the expression 

 H e −1 
n =0 

αt−n 
e by αe in constraints (6) –(9) of the MIP model (i.e., re- 

oving the time-dimension from contract decision variables: when 

e = 1 , a contract is in effect with carrier e over the complete hori-

on). The table also displays the minimum and maximum vari- 

tion of the total cost over all 30 instances of a given size. Fi-

ally, the table shows the (average) variation of the cost of carriers 

or long-haul transportation and cross-docking services, i.e., of the 

um 

∑ 

t∈ T 
∑ 

e ∈ E c t e that appears in the objective function (1) . 

Note that extending the contract length intuitively entails less 

exibility to modify the set of active carriers, and may therefore 

ead to more costly solutions. However, this is not necessarily the 

ase since dynamic variations of demand and of other parameters 

ay occasionally cause a succession or non-renewal of longer con- 

racts to be more advantageous than a sequence of shorter ones. 

enerally speaking, in our experiments, variations of H e lead to 
570 
mall differences in total cost (less than 1% on average, less than 

.2% in the worst case). These small differences are observed for 

ll types of instances. The cost of carriers may show larger fluctu- 

tions (up to 14% increases for some instances – not shown in the 

able), but these variations are amortized in the total cost. 

0.2. Impact of purchase commitment 

We next assess the impact of minimum purchase commitments 

n the total cost. For this purpose, we compute the difference be- 

ween the total cost of solutions with or without purchase com- 

itment quantities. The second case is obtained by setting M 

t 
e = 0 

or all e ∈ E and t ∈ T , meaning that the shipper only pays for

he resources that it actually uses. Table 4 displays the average 

ost differences computed over instances of a same class (small, 

edium, or large) for different values of H e . (Columns associated 

ith H e = 2 , 3 , 4 can be directly deduced from column H e = 1 and

rom Table 3 , but we display them here for convenience.) 

The table shows that the existence of minimum purchase com- 

itments results, on average, in a very small increase of the total 

ost. This suggests that in the solutions selected by the optimiza- 

ion process, the shipper manages to take full advantage of the ca- 

acity that it reserves with each carrier through the MPC contracts, 

o that the payments M 

t 
e are not “wasted”. This is confirmed by the 

esults displayed in Table 5 . The figures in this table are obtained 

s follows. For the solution of an arbitrary instance, we let C be the 

ollection of pairs (e, t) such that a contract with carrier e is in ef-

ect in period t . We record the proportion of pairs (e, t) in C such

hat the cost c t e paid to the carrier e is equal to 
∑ 

l∈ L 
∑ 

i ∈ I e F i,l v t 
i,l 

meaning that the MPC is fully utilized by the shipper; see con- 

traints (5) - (6) in the MIP model). Table 5 first displays this pro-

ortion, averaged over all instances of the same class. Next to this 

alue, between parentheses, we also indicate the share of the car- 

iers costs due to the minimum purchase commitment, that is, the 
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Table 6 

% of carriers selected (% permanent) – % selected in low and high season. 

H e = 1 H e = 2 

Season Season 

% Carriers Full horizon Low High Full horizon Low High 

Small 80.30% (50.6%) 52.3% 65.0% 78.61% (51.6%) 52.6% 64.8% 

Medium 81.36% (32.2%) 43.8% 57.1% 77.97% (37.3%) 43.8% 58.5% 

Large 85.46% (32.1%) 49.1% 57.9% 80.63% (39.0%) 48.8% 59.6% 

H e = 3 H e = 4 

Season Season 

% Carriers Full horizon Low High Full horizon Low High 

Small 77.36% (54.6%) 51.3% 65.3% 74.17% (60.2%) 52.0% 66.0% 

Medium 73.69% (41.0%) 43.6% 57.9% 72.89% (44.8%) 43.6% 58.5% 

Large 78.85% (37.8%) 48.1% 60.4% 77.18% (44.3%) 47.9% 60.0% 
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uantity 100 
∑ 

(e,t) ∈C 
M 

t 
e 

c t e 
(averaged over 30 instances). We only dis- 

lay here the values obtained when H e = 2 since the other cases 

re very similar in view of Table 3 . 

We see that when a contract is in effect, the purchase commit- 

ent is exceeded in more that 95% of the cases. Accordingly, the 

PC only represents 33% to 53% of the carriers’ cost. Even though 

his share is significant and tends to increase with the instance 

ize, it remains much smaller than 100%. 

Of course, these observations are very specific to the numeri- 

al instances that we have generated. Taken together, however, the 

esults in this section indicate that the existence of mid-term con- 

racts involving minimum purchase commitments does not heavily 

enalize the shipper. By carefully selecting its partners, the ship- 

er can avoid major cost impacts in the long term, whereas the 

arriers benefit from the organizational advantages of the contracts 

reduced uncertainty, improved communication and trust, etc.; see 

russet, 2009; Brusset, 2010 ). 

0.3. Selection of suppliers 

The existence and the duration of contracts are likely to affect 

he number of carriers selected over the planning horizon. Table 6 

isplays the average percentage of carriers activated by the shipper 

n the optimal (or best found) plans. It also gives the percentage of 

ermanent carriers (i.e., those who remain active in all periods of 

he horizon) and the percentage of carriers selected in low (respec- 

ively, high) season. 

We see that the selected carriers represent on average between 

2% and 86% of the number of available candidates. As one might 

xpect, this proportion tends to decrease with the duration of the 

ontracts, and to increase slightly with the instance size. More in- 

eresting is the relatively large gap between, on the one hand, the 

ercentage of carriers whose services are utilized at least once, 

nd on the other hand, the percentage of permanent carriers. For 

edium or large instances, in particular, the proportion of perma- 

ent carriers is only between 30% and 45%. Moreover, the carriers 

sed in low season are not necessarily the same as in high sea- 

on: indeed, on average, 43% to 53% of the carriers are used in 

ow season, whereas this number ranges from 57% to 65% in high 

eason, still significantly less than the total number of carriers se- 

ected overall. All these observations point again to the fact that 

exibility in the choice of carriers is effectively exploited in the 

ptimization process. 

1. Conclusions 

In this article, we have proposed a mathematical formula- 

ion of a multi-period distribution network design problem with 
571 
inimum-purchase commitment contracts. The formulation is 

hallenging for state-of-the-art algorithms when the size of in- 

tances increases, mainly when a long horizon is considered and 

hen the shipper considers many carriers. To produce satisfac- 

ory solutions for large instances, we developed two algorithms, 

amely, CBA and RL-RP, which decompose the mathematical model 

o alleviate the difficulty created by the existence of contracts. 

hese algorithms were tested on classes of instances of various 

izes and compared against CPLEX branch-and-cut and Benders al- 

orithms on two main performance criteria. 

The CBA algorithm adds combinatorial cuts while solving a re- 

axed version of the model by branch-and-cut. Compared with 

PLEX methods, this exact algorithm underperforms in terms of 

esolution time for small instances. However, for larger instances, 

BA produces more satisfactory results overall, as it finds better 

olutions than both CPLEX procedures in less computational time. 

his confirms the usefulness of the CBA algorithmic approach, 

hich could possibly be further enhanced with additional strate- 

ies to improve its weak lower bounds. It also underlines the diffi- 

ulties faced by CPLEX methods to fully exploit the decomposable 

tructure of the multi-period problem. This suggests that variants 

f our combinatorial Benders approach might tackle problems with 

imilar structures more effectively than the classical methods im- 

lemented in CPLEX. 

On the other hand, for medium to large-size instances, the ad- 

oc heuristic RL-RP can produce better solutions than exact meth- 

ds (usually, within 1% of optimality), in less time. This demon- 

trates the relevance of the decomposition, which produces tight 

ower bounds on the optimal value, and the effectiveness of the 

imple repairing mechanism for solutions that violate contract- 

erm constraints. Even better solutions might be obtained by in- 

luding local search in the repair phase. 

From a managerial point of view, our study shows that despite 

ts conceptual and computational complexity, the tactical MDPC 

roblem can be efficiently solved to produce near-optimal contract 

ortfolios and distribution plans. This provides managers with the 

pportunity to move away from the alternative of only relying on 

he spot market or on long-term binding contracts. The numerical 

esults suggest that as long as the contracts are optimally selected, 

he existence of minimum purchase requirements does not neces- 

arily increase the total cost in a significant way. 

As mentioned in Section 2 , the paper does not cover the design 

f contracts, in the sense that the parameters of the contracts (du- 

ation, minimum purchase commitment) are assumed to be fixed 

x ante. However, our models and algorithms could be used to 

imulate the implications of different contract specifications, e.g., 

n the context of negotiations with the carriers. They can also be 

xtended to examine different types of contracts with risk-sharing 

echanisms beyond the purchase commitment expressed in mon- 
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tary terms that we have introduced in this paper. For example, 

uantity flexibility contracts can be used to reserve some resource 

apacity (e.g., a number of truckloads), while allowing additional 

apacity to be charged at a higher cost. Such flexible options be- 

ome particularly meaningful when the environment presents sig- 

ificant uncertainty with regard to demand or cost parameters. 

tochastic models arising in this context are investigated in Clavijo 

ópez (2021) . Finally, it may be interesting to investigate the ex- 

stence and the effect of short-term contracts in different settings, 

.g., for the procurement of warehousing capacity. The decompo- 

ition approach used in the relax-and-repair heuristic would be a 

atural candidate for the solution of the associated planning prob- 

ems. 
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