

Protection of peri-urban groundwater catchments: a multi-tracer approach for the identification of urban pollution sources

EGU 2022 Congress, Vienna, Austria --- Session HS8.2.8

Laura Balzani*, Philippe Orban & Serge Brouyère

Hydrogeology & Environmental Geology, Urban & Environmental Engineering, University of Liège, Belgium

* Corresponding author (e-mail: laura.balzani@uliege.be)

Thursday, May 26th, 2022

General Context and CASPER Project's aims

Urban Water Cycle

- Increase of the impermeable surfaces due to construction of houses, traffic lanes, car parks, etc.
- Increase in domestic water consumption despite the water-efficient machines, increase in n° households/house and comforts (swimming pools, gardens)

Problem

Relevant diversity of pollution sources linked to the diversity of land use occupation

Aims

- Discriminate between different pollution sources using a range of tracers and approaches
- Decision-making reference system (prioritizing pollution and remediation measures)

(modified from Wei et al., 2018 and Barret et al., 1999)

Tracers of different contaminations (origin of pollution)

Industry

Chlorinated Solvents;
Specific reaction reagentproducts; Cleaningrinsing-dusting and gas
washing; Suspended
solids, Organic matter, N
and P products, toxic
substances (flame
retardants, ...)

Agriculture

Organic and Artificial-inorganic fertilizers;
Nutrients (N, P);
Heavy metals (Cd, Cu, Zn, ...);
Herbicides and Pesticides;
Veterinary Animal
Pharmaceuticals and Hormones
(manure)

Micro-pollutants of <u>road</u> <u>waters</u>: trace metals, total hydrocarbons, PAHs, Cu, Cd, Cr, Fe, Pb, Ni and Zn,

Household wastewaters: EOC (lifestyle compounds; caffeine, nicotine; pharmaceutical substances; detergents), N compounds

<u>Hospitals</u>: specific substances as Gd for IRM imaging

<u>Specific dumpsites</u> <u>substances</u> (hazardous wastes, metals, polyfluorinated compounds, ...)

(Berg et al., 2007)

Pilote site: abstraction wells in the cretaceous chalk aquifer in western Wallonia, Belgium

Application of specific analysis performed

MAIN POLLUTANTS OF THE CASE STUDY

SPECIFIC ANALYSIS PERFORMED

NITRATE

SULFATES

CHLORINATED SOLVENTS

Stable isotopes of NO3 and Boron to manly distinguish urban effluents from agricultural fertilisers (Nikolenko et al., 2018; Widori et al., 2005); Occurrence of pharmaceutical (carbamazepine, etc.) and lifestyle (caffeine, nicotine) products to identify anthropogenic contamination (Neufcourt, 2017) or agricultural pesticides-products and manure contamination substances.

Stable isotopes of SO4 to distinguish anthropic activity, dissolution of evaporates, or alteration of carbon mines waste (Knöeller et al., 2011); Occurrence of pharmaceutical (carbamazepine. etc.) and lifestyle (caffeine, nicotine) products; and Occurrence of Gd (REE) used as a contrast agent in magnetic-resonance imaging, therefore suitable to verify contamination by anthropic wastewater and hospitals (Boester et Rüde, 2020; Petelet-Giraud et al., 2009) .

Isotopes of Chlorinated Solvents to check if natural attenuation/degradation is happening and try to get closer to the location of their point source/origin (Akesson et al., 2021; Elsner et al. 2005); Microbiological and bacteriological analysis to make an inventory of all the microbial/bacterial species present in the samples and verify hypothesis on the occurrence of denitrification, sulfur reduction/oxidation, chlorinated solvants degradation, etc. (Kanohin F. et al., 2018; Kumar et al., 2014)

Catchment area: sampling campaigns

Groundwater <u>Catchment Area of</u> Abstraction

(investigations focused in <u>PAFA – part of</u> aquifer feeding the abstraction)

List of <u>sources of potential pollution</u> (old dumps and slag heaps, railway wastes, discharges, hospitals, housing and agriculture, energy-industrial activities)

Different sampling campaigns

Catchment area: sampling campaigns

Groundwater <u>Catchment Area of</u> Abstraction

(investigations focused in <u>PAFA – part of</u> <u>aquifer feeding the abstraction</u>)

List of <u>sources of potential pollution</u> (old dumps and slag heaps, railway wastes, discharges, hospitals, housing and agriculture, energy-industrial activities)

Different sampling campaigns

NO₃ and isotopes (results from 2021)

- Evidence of denitrification (correlation with [Se])
- Mixture: wastewater vs agriculture

SO₄ and isotopes (results from summer 2021)

SO₄ and isotopes (results from summer 2021)

Pharmaceuticals substances (results 2021)

Used mainly as a proof of hypothesis contamination's origin

Selection of few substances for each of the 4 categories analysed

To couple with Gd presence

HUMAN HEALTH	HUMAN CONSUMPTION	AGRICULTURE	ANIMAL HEALTH
Carbamazépine	Caféine	Bentazone	Sulfaméthazine
Hydrochlorothiazide	Cotinine	MCPA	Clorsulon
Paracétamol		Isoproturon	Dicyclanil
Sulfaméthoxazole		Diclorobenzamide	Florfénicol

Chlorinated Solvents (summer 2021 → spring 2022)

P01_CASPER

♦ SURFACE WATER PCE 0-1 µg/l

piezometric lines CHALK

Mainly: PCE, DCE, TCE, TCA

- Analysis on gradient concentrations and molar ratio
- Research of historical activities in the site
- Degradation isotopes C, H, Cl and microbiological analysis

Following steps to go further...

- Measures of gw fluxes
- Modelling

 Development of tools to prioritize investigation and remediation measures

Acknowledgement

 Société Publique de Gestion de l'Eau – SPGE for financing the project

 CASPER project partners for collaborations and discussions

Thank you for your attention

