

COMPUTATIONAL FLUID DYNAMICS

Discontinuous Galerkin method

AERO0030 V.E. Terrapon **A. Bilocq, N. Levaux**

Object of CFD

Solving numerically the governing laws of motion of fluids

Motivation

Low-order methods suffer from **numerical dispersion** and **numerical diffusion**

High-order methods can tackle these issues

Object of CFD

Solving numerically the governing laws of motion of fluids

Motivation

Low-order methods suffer from **numerical dispersion** and **numerical diffusion**

High-order methods can tackle these issues

Outline

What is Discontinuous Galerkin method?

Variational formulation

Interface fluxes

In practice

Our PhD theses

What is Discontinuous Galerkin method?

Finite volume method

- Finite cells/volumes
- Cell averaged solution
- Discontinuous between volumes

- Robust due to numerical conservation
- Complex geometry
- Well suited for convective problems

× Need large stencils to achieve high order

What is Discontinuous Galerkin method?

Finite element method

- *u*₄• Finite cells/elements
 - Solution at nodes
 - Continuous between elements

- High order accuracy
- + Complex geometry

- X Not well suited for convective problems
- × Not conservative

What is Discontinuous Galerkin method?

- Numerical conservation of the equations
- Suited for problem with a direction
- High order accuracy without large stencils

Discontinuous Galerkin method

- + Better accuracy than FVM
- + Better **stability** than **FEM** for convective problem

Outline

What is Discontinuous Galerkin method?

Variational formulation

Interface fluxes

In practice

Our PhD theses

Galerkin principle

Discontinuous Galerkin

$$u^e(x) = \sum\nolimits_{i=0}^p u^e_i \phi^e_i(x)$$

- Continuous within volume
- Doubling of DOF at interface
- Discontinuities allowed

- $\varepsilon = \tilde{u} u$
- $\varepsilon \perp \mathcal{V}$
- $meas(\varepsilon) = R$

Variational formulation

Generic system of PDE to solve on Ω

$$\frac{\partial \tilde{u}}{\partial t} + \nabla \cdot \vec{g}(\tilde{u}, \nabla \tilde{u}) = 0$$

Galerkin variational form

$$\int_{\Omega} v \frac{\partial u}{\partial t} dV + \int_{\Omega} v \nabla \cdot \vec{g}(u, \nabla u) \, dV = 0, \qquad \forall v \in \mathcal{V}$$

Integration by part

$$\int_{\Omega} v \frac{\partial u}{\partial t} dV - \int_{\Omega} \nabla v \cdot \vec{g} \, dV + \int_{\partial \Omega} v \vec{g} \cdot \vec{n} \, dS = 0, \qquad \forall v \in \mathcal{V}$$

Global to local formulation

Domain is meshed $\Omega \approx \mathcal{E} = \cup e$

$$\sum_{e} \left(\int_{e} v \frac{\partial u}{\partial t} dV - \int_{e} \nabla v \cdot \vec{g} \, dV + \int_{\partial e} v \vec{g} \cdot \vec{n} \, dS \right) = 0, \forall v \in \mathcal{V}$$

Set of SF spanning \mathcal{V}

Don't need to test every v_i just shape functions!

$$\sum_{e} \left(\int_{e} \phi_{i}^{e} \frac{\partial u^{e}}{\partial t} dV - \int_{e} \nabla \phi_{i}^{e} \cdot \vec{g}^{e} dV + \int_{\partial e} \phi_{i}^{e} \vec{g}^{e} \cdot \vec{n} dS \right) = 0, \forall \phi_{i}^{e}$$

 ϕ_i^e have elementwise support \rightarrow from global to **local**

Interface fluxes

Connect elements with each other's through faces integral

$$\sum_{e} \int_{\partial e} \phi_i^e \vec{g}^e \cdot \vec{n} \, dS = \sum_{f \in e} \int_f \phi_i^e \vec{g}^e \cdot \vec{n} \, dS$$
$$= \sum_{f} \int_f \left(\phi_i^{e^+} \vec{g}^+ \cdot \vec{n}^+ + \phi_i^{e^-} \vec{g}^- \cdot \vec{n}^- \right) dS$$
$$\gamma^e : \text{Suitable interface flux}$$
$$\begin{cases} \vec{g}^+ & \vec{g}^- \\ \vec{g}^+ & (g)^- \\ \vec{g}^+ & (g)^-$$

Outline

What is Discontinuous Galerkin method?

Variational formulation

Interface fluxes

In practice

Our PhD theses

Hyperbolic part

$$\frac{\partial u}{\partial t} + \nabla \cdot \boldsymbol{f}(u) + \nabla \cdot \boldsymbol{d}(u, \nabla u) = 0$$

Hyperbolic part

$$\frac{\partial u}{\partial t} + \nabla \cdot \boldsymbol{f}(u) + \nabla \cdot \boldsymbol{d}(u, \nabla u) = 0$$

Hyperbolic part – Linear advection of a scalar

a

$$\frac{\partial u}{\partial t} + \boldsymbol{a} \cdot \nabla \mathbf{u} = 0$$

$$H = (\boldsymbol{a} \cdot \boldsymbol{n}) \frac{u^+ + u^-}{2} + |\boldsymbol{a} \cdot \boldsymbol{n}| \frac{u^+ - u^-}{2}$$

$$= \frac{f^{n}(u^{+}) + f^{n}(u^{-})}{2} + |\mathbf{a} \cdot \mathbf{n}| \frac{u^{+} - u^{-}}{2}$$

Conservation Stabilization 18

Hyperbolic part – Linear system

$$\frac{\partial u}{\partial t} + A^n \frac{\partial u}{\partial x} = 0$$

n real eigenvalues $\rightarrow A^n = R\Lambda L$

$$H(u^{+}, u^{-}; n) = \frac{f^{n}(u^{+}) + f^{n}(u^{-})}{2} + |A^{n}| \frac{u^{+} - u^{-}}{2}$$
$$= \frac{f^{n}(u^{+}) + f^{n}(u^{-})}{2} + R \bigwedge u^{-} \frac{u^{+} - u^{-}}{2}$$
Characteristics
Characteristics
$$H_{LX} = \frac{f^{n}(u^{+}) + f^{n}(u^{-})}{2} + \max_{i}(|\lambda_{i}|) \frac{u^{+} - u^{-}}{2}$$

Hyperbolic part – Nonlinear system

$$\frac{\partial u}{\partial t} + \nabla \cdot \boldsymbol{F}(u) = 0$$

The numerical flux is linked to the characteristics

$$p_L > p_R \qquad \text{T=Os}$$

$$p_L \ \rho_L \ v_L = 0 \qquad p_R \ \rho_R \ v_R = 0$$

Hyperbolic part – Nonlinear system

$$\frac{\partial u}{\partial t} + \nabla \cdot \boldsymbol{F}(u) = 0$$

The numerical flux is linked to the characteristics

Hyperbolic part – Riemann problem

1. Exact Riemann solver: $H = F(\tilde{u}_f) \cdot n$ — Too expensive

2. Approximate Riemann solver

$$\tilde{A}(u) = \frac{\partial F(u)}{\partial u}$$

Hyperbolic part – Approximate Riemann problem

Hyperbolic part – Finite volume

Hyperbolic part – Discontinuous Galerkin

Elliptic part

Elliptic part

How to construct appropriate **central** scheme?

 $\gamma^e = \llbracket \phi^e_i \rrbracket \cdot \{ \vec{d} \}$

We need boundary conditions! Neumann are dealt transparently.

How to construct appropriate **central** scheme?

 $\gamma^e = \llbracket \phi^e_i \rrbracket \cdot \{ \vec{d} \}$

We need boundary conditions! How to impose Dirichlet BC?

How to construct appropriate **central** scheme?

$$\gamma^e = \llbracket \phi_i^e \rrbracket \cdot \{ \vec{d} \} + \sigma_f \llbracket \phi_i^e \rrbracket \cdot \llbracket u \rrbracket$$

 $\sigma_f = f(h, p)$, impact stability & conditioning

How to construct appropriate **central** scheme?

$$\gamma^{e} = \llbracket \phi_{i}^{e} \rrbracket \cdot \{\vec{d}\} + \sigma_{f} \llbracket \phi_{i}^{e} \rrbracket \cdot \llbracket u \rrbracket + \beta \llbracket u \rrbracket \cdot \{\mu \nabla \phi_{i}^{e}\}$$

Linearised diffusivity

$\sigma_f = f(h, p)$, impact stability & conditioning

 β to get a (anti-)symmetric or incomplete formulation

How to construct appropriate **central** scheme?

$$\gamma^{e} = \llbracket \phi_{i}^{e} \rrbracket \cdot \{\vec{d}\} + \sigma_{f} \llbracket \phi_{i}^{e} \rrbracket \cdot \llbracket u \rrbracket + \beta \llbracket u \rrbracket \cdot \{\mu \nabla \phi_{i}^{e}\}$$

At convergence

 $\sigma_f = f(h, p)$, impact stability & conditioning

 β to get a (anti-)symmetric or incomplete formulation

Outline

What is Discontinuous Galerkin method?

Variational formulation

Interface fluxes

In practice

Our PhD theses

Quadrature rules

$$\int_{-1}^{1} f(\xi) d\xi \approx \sum_{q=0}^{n} w_q f(\xi_q)$$

- Gaussian QR are exact for polynomials $f(\xi)$ of degree 2 n -1
- Integration is performed on parametric reference elements

Expansion to quadrature points

Expansion to quadrature points

Expansion to quadrature points

$$\sum_{e} \left(\int_{e} \phi_{i}^{e} \frac{\partial u^{e}}{\partial t} dV - \int_{e} \nabla \phi_{i}^{e} \cdot \vec{g}^{e} dV + \sum_{f} \int_{f} \left[\phi_{i}^{e} \right] \cdot H^{e} dS \right) = 0, \forall \phi_{i}^{e}$$

Inertia term

$$\sum_{e} \left(\int_{e} \phi_{i}^{e} \frac{\partial u^{e}}{\partial t} dV - \int_{e} \nabla \phi_{i}^{e} \cdot \vec{g}^{e} dV + \sum_{f} \int_{f} \left[\phi_{i}^{e} \right] \cdot H^{e} dS \right) = 0, \forall \phi_{i}^{e}$$

$$\approx \sum_{q=0}^{n} w_q \phi_i^e(x_q) \cdot \frac{\partial u^e}{\partial t}(x_q) = \mathbf{M} \frac{\partial u_i^e}{\partial t}$$

Volume term

$$\sum_{e} \left(\int_{e} \phi_{i}^{e} \frac{\partial u^{e}}{\partial t} dV - \int_{e} \nabla \phi_{i}^{e} \cdot \vec{g}^{e} dV + \sum_{f} \int_{f} \left[\phi_{i}^{e} \right] \cdot H^{e} dS \right) = 0, \forall \phi_{i}^{e}$$
$$\approx \sum_{q=0}^{n} w_{q} \nabla \phi_{i}^{e} (x_{q}) \cdot \vec{g}^{e} \Big|_{x_{q}} = R_{v} G(U_{q})$$

Interface term

$$\sum_{e} \left(\int_{e} \phi_{i}^{e} \frac{\partial u^{e}}{\partial t} dV - \int_{e} \nabla \phi_{i}^{e} \cdot \vec{g}^{e} dV + \sum_{f} \int_{f} \left[\phi_{i}^{e} \right] \cdot H^{e} dS \right) = 0, \forall \phi_{i}^{e}$$

$$\approx \sum_{q=0}^{n} w_{q} \phi_{i}^{e}(x_{q}) H^{e} \Big|_{x_{q}} = \mathbf{R}_{f} \mathbf{H}(\mathbf{U}_{q})$$

$$M\frac{\partial u_i^e}{\partial t} + R_v G(U_q) + \sum_f R_f H(U_{qf}^+, U_{qf}^-) = \mathbf{0}$$

$$M \frac{\partial u_i^e}{\partial t} + R_v G(U_q) + \sum_f R_f H(U_{qf}^+, U_{qf}^-) = 0$$

1. Collocation

$$M \frac{\partial u_i^e}{\partial t} + R_v G(U_q) + \sum_f R_f H(U_{qf}^+, U_{qf}^-) = 0$$

1. Collocation 2. Evaluation of volume fluxes

$$M\frac{\partial u_i^e}{\partial t} + R_v G(U_q) + \sum_f R_f H(U_{qf}^+, U_{qf}^-) = 0$$

1. Collocation

$$M\frac{\partial u_i^e}{\partial t} + R_v G(U_q) + \sum_f R_f H(U_{qf}^+, U_{qf}^-) = 0$$

1. Collocation

$$M\frac{\partial u_{i}^{e}}{\partial t} + R_{v}G(U_{q}) + \sum_{f} R_{f}H(U_{qf}^{+}, U_{qf}^{-}) = 0$$

1. Collocation

2. Evaluation of interface fluxes

Outline

What is Discontinuous Galerkin method?

Variational formulation

Interface fluxes

In practice

Our PhD theses

ForDGe, a generic DG solver

Geometry discretization

Body-fitted approach

 Simple interface conditions
 Challenging mesh generation
 Remeshing if evolving geometry

Immersed approach

- Simple mesh generation
- × Numerical errors at interface
- X Lack of resolution in vicinity of interfaces

Towards high accuracy immersed

Adaptive mesh refinement

Validation of DG solver

Convection

Boundary conditions

Convection-Diffusion

Vorticity [-] at time [-] = 237 -2 0 2

Convergence

Immersed approach

Geometry definition

- Implicit sharp definition
- Cut elements identification

Stability & conditionning

Quadrature rules

- Accuracy
- Computational cost

- Cell-agglomeration
- Interior penalty

Validation of Immersed approach

Convergence p + 1

Euler, M = 0.5

Validation of Immersed approach

Convection

Convergence p + 1

Euler, M = 0.5

Validation of Immersed approach

Convection

Convergence p + 1

Navier-Stokes, M = 0.1, Re = 100

Adaptive mesh / order refinement

Local dynamic refinement

Order

Reduce computational cost Interested? Reach us for a master thesis

Transonic turbulent flows

Turbulence

Shock wave

- Increase heat flux
- Aerodynamic losses
- Structure fatigue

Turbulence amplification

Challenges

How can we **minimise** the impact of the **shock capturing method** on the **turbulence**?

Strong vortex – shock interaction

Strong vortex – shock interaction

Strong vortex – shock interaction

